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Abstract

Precise representations of 3D faces are beneficial to var-

ious computer vision and graphics applications. Due to

the data discretization and model linearity, however, it re-

mains challenging to capture accurate identity and expres-

sion clues in current studies. This paper presents a novel 3D

morphable face model, namely ImFace, to learn a nonlinear

and continuous space with implicit neural representations.

It builds two explicitly disentangled deformation fields to

model complex shapes associated with identities and ex-

pressions, respectively, and designs an improved learning

strategy to extend embeddings of expressions to allow more

diverse changes. We further introduce a Neural Blend-Field

to learn sophisticated details by adaptively blending a se-

ries of local fields. In addition to ImFace, an effective pre-

processing pipeline is proposed to address the issue of wa-

tertight input requirement in implicit representations, en-

abling them to work with common facial surfaces for the

first time. Extensive experiments are performed to demon-

strate the superiority of ImFace.

1. Introduction

3D Morphable Face Models (3DMMs) are well-reputed

statistical models, established by learning techniques upon

prior distributions of facial shapes and textures from a set

of samples with dense correspondence, aiming at render-

ing realistic faces of a high variety. Since a morphable

representation is unique across different downstream tasks

where the geometry and appearance are separately control-

lable, 3DMMs are pervasively exploited in many face anal-

ysis applications in the field of computer vision, computer

graphics, biometrics, and medical imaging [2, 8, 27, 50].

In 3DMMs, the most fundamental issue lies in the way

to generate latent morphable representations, and during the
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Figure 1. ImFace encodes complex face variations by two explic-

itly disentangled deformation fields with respect to a template face,

resulting in a morphable implicit representation for 3D faces.

past two decades, along with data improvement in scale, di-

versity and quality [10, 13, 31, 58], remarkable progresses

have been achieved. The methods are initially linear model

based [7, 39, 40] and further extended to multilinear model

based [9, 12, 55], where different modes are individually

encoded. Unfortunately, for the relatively limited repre-

sentation ability of linear models, these methods are not

so competent at handling the cases with complicated vari-

ations, e.g. exaggerated expressions. In the context of

deep learning, a number of nonlinear models have been

investigated with the input of 2D images [53, 54] or 3D

meshes [5, 11, 15, 17, 46] by using Convolutional Neural

Networks or Graph Neural Networks. They indeed deliver

performance gains; however, restricted by the resolution of

discrete representing strategies on input data, facial priors

are not sufficiently captured, incurring loss of shape details.

Besides, all current methods are dependent on the preposed

procedure of point-to-point correspondence [1,6,25,34], but

face registration itself remains challenging.

Recently, several studies on Implicit Neural Representa-

tions (INRs) [16,26,32,35,38] have shown that 3D geome-

tries can be precisely modeled by learning continuous deep

implicit functions. They describe an input observation as a

low-dimensional shape embedding and estimate the Signed
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Distance Function (SDF) or the occupancy value of a query

point so that the surface of an arbitrary resolution and topol-

ogy can be defined by an isocontour. Due to the continuous

parameterization and consistent representation, INRs prove

superior to the discrete voxels, pointclouds and meshes, and

report decent results in shape reconstruction [24, 56, 57, 61]

and surface registration [21,33,62]. Such an advantage sug-

gests an alternative to 3DMM that can fulfill accurate corre-

spondence and fine-grained modeling in a unified network.

Nevertheless, unlike the objects with apparent shape differ-

ences and limited non-rigid variations such as indoor scenes

and human bodies, all facial surfaces look very similar but

include more complex deformations, where multiple identi-

ties and rich expressions deeply interweave with each other,

making current INR methods problematic in face modeling,

as evidenced by the preliminary attempt [59]. Another dif-

ficulty is that implicit functions primarily require watertight

input, which is not friendly to facial surfaces.

This paper proposes a novel 3D face morphable model,

namely ImFace, which substantially upgrades conventional

3DMMs by learning INRs. To capture nonlinear facial ge-

ometry changes, ImFace builds separate INR sub-networks

to explicitly disentangle shape morphs into two deforma-

tion fields for identity and expression respectively (as Fig. 1

shows), and an improved embedding learning strategy is in-

troduced to extend the latent space of expressions to allow

more diverse details. In this way, inter-individual differ-

ences and fine-grained deformations can be accurately mod-

eled, which simultaneously takes into account the flexibility

when applied to related tasks. Furthermore, inspired by lin-

ear blend skinning [30], a Neural Blend-Field is presented

to decompose the entire facial deformation or geometry into

semantically meaningful regions encoded by a set of lo-

cal implicit functions and adaptively blend them through

a lightweight module, leading to more sophisticated repre-

sentations with reduced parameters. Besides, a new pre-

processing pipeline is designed, which bypasses the need

of watertight face data as in existing SDF-based INR mod-

els and works well for various facial surfaces, i.e., either

hardware-acquired or artificially synthesized.

In summary, the main contributions of this study include:

• We propose a novel INR-based 3DMM, which encodes

complex face shape variations by two explicitly dis-

entangled deformation fields, learning powerful repre-

sentations in a fine-grained and semantically meaning-

ful manner.

• We present an effective preprocessing pipeline, which

defines a general SDF for non-watertight 3D faces, en-

abling INRs to work with them for the first time.

• We experimentally demonstrate that ImFace has the

advantage in synthesizing high-quality 3D faces with

plausible details, outperforming the state-of-the-art

counterparts in 3D face reconstruction.

2. Related Work

3D Morphable Face Models. 3DMMs were first proposed

by Blanz and Vetter [7] as a general face representation. A

known template mesh was registered to all training scans by

utilizing Non-rigid Iterative Closest Point algorithm (NICP)

[4], and Principal Components Analysis (PCA) was used to

span prior face distributions. To model identity-dependent

expressions, 3DMMs were further extended to multilinear

models [9, 12, 55]. After then, great advancements have

been made with data improvement [10,13,31,58]. FLAME

[31] was an expressive model controlling facial expressions

by combining jaw articulation with linear expression blend-

shapes. It was learned from a large 3D face dataset includ-

ing D3DFACS [20] and delivered more impressive results

than ever, whereas nonlinear facial deformations cannot be

well captured.

The development of deep networks has catalyzed more

powerful nonlinear 3DMMs. A number of models were

learned from 2D images [44,53,54], but they mostly lacked

high fidelity and fine details due to the low resolution of

input images in this ill-posed inverse problem. To better

leverage 3D face scans, Bagautdinov et al. [5] mapped 3D

meshes to the 2D space and more studies [11, 15, 17, 46]

directly learned 3DMMs from meshes by spectral or spiral

convolutions. These neural networks were established upon

discrete 3D representations, thus limiting the performance

in the presence of complex deformations.

Please refer to [22] for a more comprehensive report on

3DMMs.

Implicit Neural Representations. Recently, implicit neu-

ral functions have emerged as a more effective and suitable

representation of 3D geometry [16,26,32,35,38,49] as they

model shapes continuously without discretization. To pre-

serve fine details, the structured local features divided by

shape elements [23], grids [28, 42] or octrees [51, 52] were

further exploited. Moreover, to well capture shape varia-

tions and correspondence relationships, an additional im-

plicit deformation latent space was specially learned [21,

62]. However, high visual fidelity and variety could hardly

be simultaneously achieved by existing techniques and they

are therefore not so qualified to morphable face modeling.

In addition, current studies on INRs mostly focused on the

watertight input, such as the ones in ShapeNet [60], and

a number of methods on watertight human heads or bod-

ies were proposed accordingly [3, 14, 19, 43, 45, 47, 48, 59].

Among them, H3D-Net [45] learned an implicit head shape

space for 2D reconstruction, which was not a generic model.

i3DMM [59] was the first implicit 3D morphable model de-

signed for human heads. However, it severely suffered from

a low quality in representing facial regions. To overcome

the limitation of watertightness, [18] learned an Unsigned

Distance Function (UDF) to handle open surfaces, but the

reconstructed results were not adequately plausible.
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Figure 2. ImFace overview. (a) The proposed network consists of three Mini-Nets blocks to explicitly disentangle shape morphs into

separate deformation fields, where the Expression and Identity Mini-Nets blocks are associated with expression and identity deformations,

respectively, and the Template Mini-Nets block learns the SDF of a template face space. (b) The Mini-Nets block is a shared architecture,

which decomposes an entire facial feature into semantically meaningful parts and encodes them by a set of local field functions. It is tailed

by a Fusion Network for more comprehensive representations. (c) The Landmark-Net is introduced to softly partition the entire facial

surface. (d) The Fusion Network is a lightweight module conditioned on the query point position, which adaptively blends the local field

functions, resulting in an elaborate Neural Blend-Field.

3. Method

We take advantages of INRs to learn a nonlinear 3D mor-

phable face model. The proposed ImFace explicitly disen-

tangles facial shape morphs into two separate deformation

fields associated with identity and expression, respectively,

and a deep SDF is learned to represent the template shape.

All the fields are blended with a series of local implicit func-

tions for more detailed representations.

3.1. Disentangled INRs Network

The fundamental idea of INRs is to train a neural net-

work to fit a continuous function f , which implicitly rep-

resents surfaces through level-sets. The function can be de-

fined in various formats, e.g. occupancies [35], SDF [38], or

UDF [18]. We exploit a deep SDF conditioned on the latent

embeddings of both expression and identity for comprehen-

sive face representations. It outputs the signed distance s

from a query point:

f : (p, zexp, zid) ∈ R
3 × R

dexp × R
did 7→ s ∈ R, (1)

where p ∈ R
3 is the coordinate of the query point in the

3D space, zexp and zid denote the expression and identity

embeddings, respectively.

Our goal is to learn a neural network to parameterize

f , making it satisfy the genuine facial shape priors. As

shown in Fig. 2, the proposed network for Imface is com-

posed of three Mini-Nets blocks, which explicitly disentan-

gles the learning process of facial shape morphs, ensuring

that inter-individual differences and fine-grained deforma-

tions can be accurately modeled. In particular, the first two

Mini-Nets blocks learn separate deformation fields associ-

ated with expression- and identity-variation, respectively,

and the Template Mini-Nets block learns a signed distance

field of a template face shape.

All the fields above are implemented by a shared Mini-

Nets architecture, where the entire facial deformation or ge-

ometry is further decomposed into a number of semantically

meaningful parts and encoded by a set of local field func-

tions, so that rich details can be sufficiently captured. A

lightweight module conditioned on the query point position,

i.e., Fusion Network, is stacked at the end of the Mini-Nets

block to adaptively blend the local fields. As such, an elabo-

rate Neural Blend-Field is achieved. The three core compo-

nents of ImFace work for different purposes and their struc-

tures are slightly changed accordingly. We briefly describe

them as follows:

Expression Mini-Nets (ExpNet). The facial deformations

incurred by expressions are represented by ExpNet E , which

learns an observation-to-canonical warping for every face

scan:

E : (p, zexp, l) 7→ p′ ∈ R
3, (2)
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where l ∈ R
k×3 denotes k 3D landmarks on an observed

face generated by a Landmark-Net η : (zexp, zid) 7→ l,

introduced to localize the query point p in the Neural Blend-

Field. The point p in the observation space is deformed by

E to a new point p′ in the person-specific canonical space,

which represents faces with a neutral expression.

Identity Mini-Nets (IDNet). To model shape morphs

among individuals, IDNet I further warps the canonical

space to a template shape space shared by all faces:

I : (p′, zid, l
′) 7→ (p′′, δ) ∈ R

3 × R, (3)

where l′ ∈ R
k×3 denotes k landmarks on the canonical face

generated by another Landmark-Net conditioned only on

the identity embedding η′ : zid 7→ l′, and p′′ is the de-

formed point in the template space. To cope with the possi-

ble non-existent correspondences generated during prepro-

cessing, I additionally predicts a residual term δ ∈ R to

correct the predicted SDF value s0, which is similar to [21].

Template Mini-Nets (TempNet). TempNet T learns a

signed distance field of the shared template face:

T : (p′′, l′′) 7→ s0 ∈ R, (4)

where l′′ ∈ R
k×3 denotes k landmarks on the template face,

which is averaged on the whole training set, and s0 is the
uncorrected SDF value. The final SDF value of a query
point is calculated via s = s0 + δ, and the ImFace model
can be ultimately formulated as:

f(p) = T (Ip′′(E(p, zexp), zid)) + Iδ(E(p, zexp), zid). (5)

The proposed ImFace learns face morphs by disentangled

deformation fields in a fine-grained and meaningful man-

ner, ensuring that more diverse and sophisticated facial de-

formations can be accurately learned. We detailedly intro-

duce the architectures of the main modules, learning strat-

egy, training critics and data preprocessing pipeline in the

subsequent.

3.2. Neural Blend­Field

The Mini-Nets block is a common architecture shared by

the three sub-networks E , I, and T . It learns a continuous

field function ψ : x ∈ R
3 7→ v, to produce a Neural Blend-

Field for comprehensive face representations. In particular,

to overcome the limited expressivity of a single network,

we decompose a face space into a set of semantically mean-

ingful local regions, and learn v (e.g. deformation or signed

distance value) individually before blending. Such design

is inspired by the recent INRs study [41] on human body,

which introduces the linear blend skinning algorithm [30]

to make the network learn from separate transformations of

body parts. To better represent detailed facial surfaces, we

replace the constant transformation term in the original lin-

ear blend skinning algorithm with ψn(x − ln), and define

the Neural Blend-Field as:

v = ψ(x) =

k∑

n=1

wn(x)ψn(x− ln), (6)

where ln is a parameter that describes the n-th local region,

wn(x) is the n-th blend weight, andψn(x−ln) is the corre-

sponding local field. In this way, the blending is performed

on a series of local fields, rather than calculating a weighted

average of the output values v of some fixed positions, lead-

ing to more powerful representation capability in handling

complicated local features.

Specifically, five landmarks located at the outer eye cor-

ners, mouth corners, and nose tip are utilized to describe

the local regions (ln ∈ R
3)5n=1, and each region is assigned

a tiny MLP with sinusoidal activations [49] to generate the

local field, denoted as ψn. To capture high-frequency lo-

cal variations, we leverage sinusoidal positional encoding

γ [36] on the coordinate x − ln. At the end of a Mini-Nets

block, a lightweight Fusion Network conditioned on the ab-

solute coordinate of input x is equipped, which is imple-

mented by a 3-layer MLP with softmax to predict the blend

weights (wn ∈ R
+)5n=1.

Deformation Formulation. We formulate the deformation
with a SE(3) field (ω,v) ∈ R

6, where ω ∈ so(3) is a rotate
vector representing the screw axis and the angle of rotation.
The deformed coordinates x′ can be calculated by eωx +
t, where the rotation matrix eω (exponential map form of
Rodrigues’ formula) is written as:

e
ω = I+

sin ∥ω∥

∥ω∥
ω

∧ +
1− cos ∥ω∥

∥ω∥2
(ω∧)2, (7)

and the translation t is formulated as:

t =

[

I+
1− cos ∥ω∥

∥ω∥2
ω

∧ +
∥ω∥ − sin ∥ω∥

∥ω∥3
(ω∧)2

]

v, (8)

where ω∧ denotes the skew-symmetric matrix of ω. We ex-

ploit SE(3) to describe facial shape morphs for its superior

capability in handling mandibular rotations and higher ro-

bustness to pose perturbations than the common translation

deformation x′ = x+ t.

Hyper Nets. To obtain a more compact and expressive

latent space, we then introduce a meta-learning approach

[49]. A Hyper Net φn is implemented by an MLP and it

predicts the instance-specific parameters for ExpNet E and

IDNet I. It takes a latent code z as input and generates

the parameters for the neurons in a Mini-Net ψn so that the

learned facial representations possess a higher variety.

3.3. Improved Expression Embedding Learning

The auto-decoder framework proposed by [38] has been

widely adopted in INRs to jointly learn embeddings and net-

work parameters. In the previous attempt [59], each expres-

sion type is encoded by one embedding for attribute dis-

entangling. Unfortunately, such an embedding is merely

able to represent the average shape morph of an expression
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Figure 3. (a) SDF is able to represent closed shapes. (b) UDF is capable of representing an open surface but the gradient is discontinuous

at the boundary, making it hard to be fitted by neural networks. (c) The proposed method generates pseudo watertight faces and restricts

implicit functions on them, enabling implicit neural networks to learn geometry representations on 3D faces.

type, making the learned latent space fail to capture more

diverse deformation details across individuals. To avoid the

dilemma above, we improve the learning strategy by treat-

ing each non-neutral face scan as a unique expression and

generating a specific embedding for it. In this way, the la-

tent space is significantly extended, which enables E to rep-

resent more fine-grained details. On the other side, there

exists a potential failure mode that the identity properties

are tangled into the expression space again, and I collapses

to an identity mapping. To tackle this challenge, we sup-

press E when the current training sample is a neutral face,

written as:

E(pnu, zexp, l) ≡ pnu, (9)

where pnu denotes a point from a neutral face. By apply-

ing such a learning strategy, I and T jointly learn shape

representations on neutral faces, and E focuses only on ex-

pression deformations. Moreover, only neutral labels are

required during training, bypassing the dense expression la-

bels.

3.4. Loss Functions

ImFace is trained with several loss functions to learn

plausible facial shape representations and dense correspon-

dence.
Reconstruction Loss. The basic SDF structure loss is ap-
plied to learn implicit fields:

Li
sdf = λ1

∑

p∈Ωi

|f(p)− s̄|+ λ2

∑

p∈Ωi

(1− ⟨∇f(p), n̄⟩), (10)

where s̄ and n̄ denote the ground-truth SDF values and the

field gradients, respectively. Ωi is the sampling space of the

face scan i, and λ indicates the trade-off parameter.
Eikonal Loss. To obtain reasonable fields throughout the
network, multiple Eikonal losses are used to enforce the L-
2 norm of spatial gradients to be unit:

Li
eik=λ3

∑

p∈Ωi

(

|∥∇f(p)∥−1|+|∥∇T (I(p′))∥−1|
)

, (11)

where Li
eik enables the network to satisfy the Eikonal con-

straint [26] in the observation and canonical spaces simulta-

neously, which also contributes to a reasonable correspon-

dence along face deformations at all the network stages.

Embedding Loss. It regularizes the embedding with a zero-
mean Gaussian prior:

Li
emb = λ4

(

∥zexp∥
2 + ∥zid∥

2
)

. (12)

Landmark Generation Loss. The l1-loss is used to learn
the Landmark-Nets η, η′:

Li
lmkg

=λ5

k
∑

n=1

(

|ln − l̄in|+ |l′n − l̄′n|
)

, (13)

where l̄i denotes the k labeled landmarks on sample i, and

l̄′ denotes the landmarks on the corresponding neutral face.

Landmark Consistency Loss. We exploit this loss to guide
the deformed landmarks to be located at the corresponding
positions on the ground-truth neutral and template faces for
better correspondence performance:

Li
lmkc

=λ6

k
∑

n=1

(

|E(ln)− l̄′n|+ |I(E(ln))− l
′′
n|
)

. (14)

Residual Constraint. As in [21], to avoid that the resid-
ual item δ learns too much template face information and
downgrades the morphable model, we penalize δ by:

Li
res = λ7

∑

p∈Ωi

|δ(p)|. (15)

The total training loss is calculated on all face samples in-
dexed by i, finally formulated as:

L =
∑

i

(Li
sdf +Li

eik +Li
emb +Li

lmkg
+Li

lmkc
+Li

res). (16)

At the testing phase, for each 3D face indexed by j, we min-
imize the following objective to obtain its latent embedding
and the reconstructed 3D face:

argmin
zexp,zid

∑

j

(Lj
sdf + Lj

eik + Lj
emb). (17)
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Figure 4. Reconstruction comparison with i3DMM [59], FLAME [31], and FaceScape [58]. Each column corresponds to a person with a

non-neutral expression. Visually inspected, ImFace captures much richer shape variations with more compact latent embeddings.

3.5. Data Preprocessing

Since neural networks excel in fitting functions that

are differentiable everywhere, the current studies on im-

plicit functions generally require watertight input. Although

functions like UDF do not demand watertightness, they are

nondifferentiable when crossing a surface and are not so

competent at handling details (see Fig. 3 for an illustration).

We present an effective preprocessing pipeline, which gen-

erates pseudo watertight faces and defines a general SDF

on them, so that the geometry and correspondence can be

learned as exquisitely as on watertight objects.

Pseudo watertight face generation. The faces are rigidly

aligned to frontal using landmarks and each mesh is nor-

malized to a unit of 10 cm. The coordinate origin is set at

the point 4 cm behind the nose tip, and the sphere with a ra-

dius of 10 cm is then defined as the sampling area where the

mesh triangles outside are cropped away. The Ray-Triangle

Intersection Algorithm [37] is applied to remove the hid-

den surface such as nasal and oral cavity, and the Delaunay

Triangulation Algorithm [29] is then performed on x-y co-

ordinates for an oriented and pseudo watertight mesh.

SDF computation on facial surfaces. With the pseudo

watertight faces generated, SDF values can then be com-

puted through a distance transform on them. The sign of

the samples is determined simply by the angle between its

distance vector to the nearest surface and the z-axis posi-

tive direction. The values of coordinates behind the facial

surface are defined to be negative. We uniformly sample

250,000 points on each facial surface and 15,000 points

in the sphere and calculate their signed distance and gra-

dient vectors. The sampled data are eventually formulated

as {(p, n̄, s̄)} triplets (query point, gradient vectors, signed

distance value) for ImFace training.

4. Experiments

We conduct extensive subjective and objective evalua-

tions on ImFace, and ablation studies are performed to val-

idate the specifically designed modules.

Dataset. FaceScape [58] is a large-scale high quality 3D

face Dataset consisting of 938 individuals with 20 types of

expressions. The data from 365 individuals are publicly

available and we mainly use them for experiments. To be

specific, 5,323 face scans from 355 persons with 15 expres-

sions are sampled as the training set, and another 200 face

scans from the remaining 10 persons with 20 expressions

are used as the testing set.

Network Architecture. All Mini-Nets blocks ψn are im-

plemented as MLPs with 3 hidden layers and 32 dimen-

sional hidden features activated by sine. The Hyper Nets

φn are 3-layer MLPs activated by ReLU, where the hidden

layer dimensionality is 64. Landmark-Nets η and η′ have

three 128 dimensional fully connected layers. Please refer

to the supplementary material for more details of the net-

works.

Implementation Details. The model is trained with Adam

in an end-to-end manner. We train the model for 1,500

epochs with an initial learning rate of 0.0001, and after 200

epochs, we decay it by a factor of 0.95 for every 10 epochs.
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Source Face

Cross Expression Correspondences

Cross Identity Correspondences

Figure 5. Correspondence results. The leftmost face is morphed into multiple expressions (upper row) and identities (bottom row).

Metrics Dim. Chamfer(mm)† F-score@0.001¶

i3DMM [59] 256 1.635 42.26

FLAME [31] 400 0.971 64.73

FaceScape [58] 352 0.929 67.09

ImFace 256 0.625 91.11

Table 1. Quantitative comparison with the state-of-the-art methods

(†Lower is better; ¶Higher is better).

The training phase takes around 2 days on 4 NVIDIA RTX

3090 GPUs with minibatches of size 72. During testing,

it takes about 4 hours to optimize 200 samples on a single

GPU.

4.1. Reconstruction

We use the proposed ImFace model to fit face scans by

optimizing Eq. (17) and compare the reconstruction results

with FLAME [31], FaceScape [58] and the geometry model

of i3DMM [59], which signify the state-of-the-art. The of-

ficial code of FLAME is used to fit the full face scans in the

test set, with 300 identity parameters and 100 expression

parameters. For FaceScape, we use their released bilinear

model built from 938 individuals for testing, where the iden-

tity and expression parameters are 300 and 52, respectively.

Note that our test scans are included in the training set of

FaceScape. In addition, we modify its official code to fit the

full scans instead of only the landmarks for improved re-

sults. For i3DMM, since the original model is trained only

on 58 individuals, we therefore re-train the model on the

same training set as in ImFace for fair comparison. In both

i3DMM and ImFace, the identity and expression embed-

dings are 128-dimensional.

Qualitative Evaluation. Fig. 4 visualizes the reconstruc-

tion results achieved by different models, where each col-

umn corresponds to a test person with a non-neutral expres-

sion. The results also include unseen expressions during

learning. i3DMM is the first deep implicit model for human

heads, but it is less capable of capturing complicated de-

formations and fine-grained details under a relatively intri-

cate circumstance, resulting in artifacts on the reconstructed

faces. FLAME is able to well present identity characteris-

tics, but is not so competent at dealing with nonlinear de-

formations, delivering stiff facial expressions. FaceScape

performs more favourably mainly due to the high-quality

training scans and the test faces are included in the training

set, but it still cannot precisely present expression morphs.

Comparatively, ImFace reconstructs faces with more accu-

rate identity and expression properties, and it is able to pre-

serve subtle and rich nonlinear facial muscle deformations

such as frowns and pouts by fewer latent parameters.

Quantitative Evaluation. To make fair comparison, all

faces are processed as described in Sec. 3.5 to remove the

inner structures like eyeballs, so that the quantitative met-

rics can be computed in the same facial region for all the

models. Specifically, the symmetric Chamfer distance and

F-score are used as metrics, and the threshold of F-score is

set to 0.001 as a strict standard. The results are shown in Ta-

ble 1. As we can see, ImFace exceeds the counterparts by a

large margin under both the metrics, which clearly validates

its effectiveness.

4.2. Correspondence

In contrast to existing methods that generally require ac-

curate face registration, correspondences can be automati-

cally learned in INRs models. We further design training

critic to enhance such a feature, and this evaluation aims

to confirm it. Given two 3D faces, we use ImFace to fit

them and deform the dense sampled points to the template

space so that point-to-point correspondences can be fulfilled

by nearest neighbor search. Fig. 5 visualizes some results

generated by our method, where we manually paint color

patterns on the shapes to better check the quality. In gen-
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(a) w/o dist. (b) w/o blend (c) w/o extend. (d) ImFace (e) GT

Figure 6. Qualitative ablation study results.

Metrics Chamfer (mm) † F-score@0.001 ¶

Ours w/o dist. 0.772 82.70

Ours w/o blend 0.767 82.37

Ours w/o extend. 0.705 86.98

ImFace 0.625 91.11

Table 2. Quantitative ablation study results.

eral, ImFace is able to establish pleasing correspondences

across various expressions and identities. Meanwhile, it can

be inspected that tiny internal texture dispersion indeed oc-

casionally occurs around mouth corners, and this is mainly

because facial shapes change drastically in these local areas

under different expressions, which is also very hard case to

specialized correspondence methods.

4.3. Ablation Study

ImFace is built on the following core components: dis-

entangled deformation fields (dist.), Neural Blend-Field

(blend), and improved expression embedding learning (ex-

tend.). We experimentally verify the credits of such designs.

On Disentangled Deformation Fields. To highlight the

disentangled deformation learning process, we build a base-

line network which contains only one deformation field to

learn face shape morphs universally. Accordingly, zexp and

zid are concatenated as the input of the hyper net. Fig. 6

(a) provides a demonstration. In spite of some fine-grained

details brought by other designs, there exists a chaos on the

reconstructed faces, especially for the ones with large ex-

pressions. The quantitative results in Table 2 also indicate

the significance of decoupled deformation learning.

On Neural Blend-Field. We replace the Neural Blend-

Field in E , I, T with vanilla MLPs of the same amount

of parameters, which directly predict global deformations

or SDF values of an entire face. As shown in Fig. 6 (b), a

visible blur appears due to the limited capability in learning

high-frequency details. The quantitative results in Table 2

confirm the necessity of Neural Blend-Field in learning so-

phisticated representations.

On Improved Embedding Learning. This strategy is in-

troduced to learn more diverse and fine-grained facial de-

formations. As shown in Fig. 6 (c), when restricting the

number of expression embeddings to be the same as expres-

sion categories, the generated expressions tend to be aver-

age. Moreover, for exaggerated expressions, such as mouth

stretch, the counterpart models can hardly converge to a rea-

sonable state.

5. Discussion

Limitations. Despite the significant advance in 3D facial

shape representation, we mainly focus on face geometry

modeling, whereas facial texture is less considered. In-

deed, a basic texture model can be achieved by plugging

a color field, but a more comprehensive INR-based 3DMM

which presents the facial appearance with realistic diffuse

and specular albedo remains to be explored.

Societal Impact. Our model aims at high-quality face mod-

eling, and similar to existing models, it has the potential to

be applied to downstream scenarios such as 2D reconstruc-

tion and face animation, which may result in unethical prac-

tices like privacy invasion or identity fraud. We encourage

researchers and developers to consider the questions, such

as how to prevent personal face data from being maliciously

accessed, before applying the model to real world.

6. Conclusion

This paper presents a novel nonlinear 3D morphable face

model with INRs, i.e. ImFace, which learns complex facial

shape variations by two explicitly disentangled deforma-

tion fields associated with expression and identity, respec-

tively, along with an improved embedding learning strat-

egy to allow more fine-grained expressions. To precisely

capture detailed facial deformations and geometries, it fur-

ther presents a Neural Blend-Field. In addition, an effective

preprocessing pipeline is presented, which enables INRs to

work with non-watertight facial surfaces for the first time.

Experiments show that ImFace is competent for this issue

and outperforms the state-of-the-art counterparts.
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