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Abstract

Performance evaluation strategy is one of the most im-
portant factors that determine the effectiveness and effi-
ciency in Neural Architecture Search (NAS). Existing strate-
gies, such as employing standard training or performance
predictor, often suffer from high computational complexity
and low generality. To address this issue, we propose to
rank architectures by Representation Mutual Information
(RMI). Specifically, given an arbitrary architecture that has
decent accuracy, architectures that have high RMI with it
always yield good accuracies. As an accurate performance
indicator to facilitate NAS, RMI not only generalizes well
to different search spaces, but is also efficient enough to
evaluate architectures using only one batch of data. Build-
ing upon RMI, we further propose a new search algorithm
termed RMI-NAS, facilitating with a theorem to guarantee
the global optimal of the searched architecture. In particu-
lar, RMI-NAS first randomly samples architectures from the
search space, which are then effectively classified as posi-
tive or negative samples by RMI. We then use these samples
to train a random forest to explore new regions, while keep-
ing track of the distribution of positive architectures. When
the sample size is sufficient, the architecture with the largest
probability from the aforementioned distribution is selected,
which is theoretically proved to be the optimal solution. The
architectures searched by our method achieve remarkable
top-1 accuracies with the magnitude times faster search
process. Besides, RMI-NAS also generalizes to different
datasets and search spaces. Our code has been made avail-
able at https://git.openi.org.cn/PCL AutoML/XNAS.

*Corresponding author.
†These authors contributed equally to this work.

1. Introduction
Neural Architecture Search (NAS) is proposed to facil-

itate the design of deep neural networks, which is a chal-
lenging task and has demonstrated superior performance on
various computer vision tasks, including but not limited to
image classification [61, 67], object detection [10, 53] and
segmentation [7, 33]. As a widely accepted standpoint, a
conventional NAS algorithm is divided into three compo-
nents [19]: search space, search algorithm and performance
estimation strategy. The search space defines the scope of
the search, the search strategy investigates how to explore
the search space and the performance estimation refers to
how to estimate the performance for the architectures.

Through extensive experiments, previous works [62, 64]
have demonstrated that performance estimation is the most
important component in NAS. In particular, an optimal es-
timation strategy is capable of improving both efficiency
and effectiveness simultaneously with different search al-
gorithms in NAS, which is investigated in [62, 64]. Ac-
cording to the previous works [19, 31], performance es-
timation strategies include multiple-fidelity training meth-
ods* [20, 42, 57, 62, 67], accuracy predictor based meth-
ods [2, 37, 38, 49], one-shot methods [5, 35, 48, 51, 54, 56,
58–61, 65] and training-free based methods [8, 31, 39].

The key challenge of the performance estimation is the
trade-off among the accuracy, generalization and computa-
tion cost. Although multiple fidelity and accuracy predic-
tor based methods are accurate and generalize to different
search spaces, such methods require a lot of computation re-
sources which hinder the usage of NAS in practical applica-
tions. For example, AmoebaNet [42] costs more than 3, 150

*These methods use different training hyper-parameters for accelera-
tion, including but not limited to fewer epochs, subset of data and down-
scaled models.
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Figure 1. (a) The illustration of time cost for evaluating 100 ar-
chitectures in the NAS-Bench-201 [16] benchmark. RMI is much
faster with marginal correlation drop compared to NASNet [66],
DARTS [35] and one-shot based methods [59]. (b) By incorport-
ing RMI, we can largely accelerate NAS methods including rein-
forcement learnming (RL) [66], evolution algorithm (REA) [42]
and random search (RS). Meanwhile, the proposed method further
improves the accuracy by a clear margin with less search costs.

GPU-days to search for the optimal on CIFAR-10 [27]. To
reduce the computation costs, one-shot and training-free
based methods are proposed. These methods are based on
parameter sharing and deep learning theory respectively.
Albeit being more efficient than multiple fidelity and ac-
curacy predictor based methods, one-shot and training-free
based methods still have severe generalization issue. For
example, the widely-used DARTS [35] is efficient only on
the cell-based search space [66], where the more practical
chain-structure search space [48] is rarely adopted in these
works [34, 35, 54]. Meanwhile, another popular one-shot
strategy [4] only employs the MobileNet [23, 44] search
space for validation. Such a problem also exists in training-

free based methods [8, 31, 39]. Overall, their search spaces
are carefully selected or designed in their work.

In this paper, we propose a novel performance estimation
strategy that ranks architectures by using the hidden Repre-
sentation Mutual Information (RMI). In particular, through
extensive experiments we find architectures that have good
accuracies always yield high RMI scores. In other words,
an arbitrary architecture that has decent accuracy can be
considered as an accurate indicator by using RMI to facili-
tate NAS. For example, in the widely-used dataset CIFAR-
10 [27], any architectures including human-designed or
random sampled from pre-defined search spaces that have
> 85% top classification accuracy is used as an accurate
performance indicator. In practice, the calculation and op-
timization of RMI between two architectures only require
a mini-batch of data. Compared to using the entire dataset
during regular training, our approach enables a very signifi-
cant speedup to estimate each architecture. Moreover, RMI
also generalizes to different search spaces, which makes it
potentially widely applicable to real-world problems.

We further propose an effective and efficient NAS algo-
rithm that explores the search space by using the RMI score.
In terms of efficiency, the proposed RMI performs as the
guidance in NAS. It eliminates the need for laborious train-
ing on the whole dataset, thus significantly reducing com-
putation complexity. Specifically, RMI-NAS first randomly
samples architectures from the search space, which are then
classified as positive or negative samples using RMI score.
These samples are used to train a random forest to further
accelerate the exploration of the unseen regions. Mean-
while, we keep tracking of the distribution of positive ar-
chitectures. In terms of effectiveness, the architecture found
is also theoretically guaranteed to be the optimal solution.
After the whole search space is fully explored by random
forest [3], we then select the architecture with the largest
probability from the aforementioned distribution. To sum-
marize, our main contributions are two-fold:

• Based upon extensive statistical verification, we em-
pirically demonstrate that representation mutual infor-
mation is a stable and accurate indicator to find the op-
timal architecture†. To the best of our knowledge, RMI
is introduced for the first time to the NAS community
and can be easily incorporated into most existing NAS
algorithms to speed up the search process.

• We introduce a novel NAS optimization method
termed RMI-NAS, which is efficient, fast and gener-
alizes to different search spaces. We employ RMI and
random forest to effectively explore the whole search
space. Meanwhile, we also mathematically prove that

†Extensive experiments in Sec. 4 show that RMI shows a high correla-
tion with the performance of the architectures in the search space.
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the solution found by RMI-NAS is more likely to be
the optimal solution in the search space.

Extensive experimental results demonstrate the efficiency
and effectiveness of the proposed method on search spaces
and datasets. Notably, under the setting of NAS-Bench-201
[16], our searched model achieves 94.36% test accuracy on
CIFAR-10 dataset within 30 minutes, which is attributed to
the proposed RMI and search algorithm.

2. Related work
As mentioned before, performance estimation strategy is

critical to the efficiency and effectiveness of NAS. There-
fore, we review NAS from the perspective of performance
estimation. A comprehensive review of NAS is provided in
the monograph [19]. In early works [42, 66, 67], multiple-
fidelity training based methods are adopted to obtain the ac-
curacy. These methods reduce the time of performance es-
timation by tuning training hyperparameters, including but
not limited to employing downscaled proxy models [66],
training for fewer epochs and using proxy datasets [42].
For instance, AmoebaNet [42] searchs on CIFAR-10 [27]
and then transfers the searched architecture on ImageNet
[15]. Such search process takes 3, 150 GPU-days and the
searched architecture achieves 74.5% top-1 accuracy.

As we can see, multiple-fidelity training based meth-
ods need lots of training which hinders the usage of NAS
practically. To solve this issue, one-shot methods are pro-
posed recently, which employ the weight sharing strategy
to avoid the exhausted and repeated training process. Such
a method is widely adopted successfully in many efficient
NAS applications, such as DARTS [35], PDARTS [34], PC-
DARTS [54] and FBNet [50]. Although the mentioned ef-
forts have reduced the searching cost, their generalizability
and efficiency in performance estimation have been deeply
challenged. For example, PC-DARTS [54] proposes to use
partial channels in the search space for acceleration. Nev-
ertheless, PC-DARTS does not generalize to the channel
number search space, which is an important research area
in network compression. Moreover, recent work [30] has
found that the search algorithms in these works may not be
better than random search.

Until very recently, training-free based methods [8, 31,
39] are proposed and actively explored in the literature.
These methods attempt to employ some easily accessible
architecture attributes to probe good architectures. As the
name implies, these methods do not need any training pro-
cess and thus lead to extremely effective performance esti-
mation. However, these methods cannot generalize to dif-
ferent search spaces. Concretely, the recent work [39] is
effective only in the cell-based search space [35], where
the chain-structure is not investigated. Besides, differ-
ent training-free based methods usually search on different

datasets, e.g., ImageNet and the elaborate search space in
Lin et al. [31] and CIFAR-10 in Mellor et al. [39].

In this paper, we propose a novel performance estimation
method termed RMI, which focuses on estimation accuracy,
generalization and computation cost simultaneously. Incor-
porated with our new search algorithm, RMI-NAS achieves
comparable or better results on several benchmarks and
search spaces with much less computation costs.

3. The Proposed Method
Notation. In this paper, we use upper case letters (e.g.,

X,Y ) as random variables, and bold as vectors (e.g., x, y),
matrices or tensors (e.g., X,Y ). Calligraphic font denotes
spaces or loss functions (e.g., X ,Y , L). To better describe
the proposed method, we further define some common sym-
bols in CNNs. α ∈ A ∈ RN×M denotes an indicator vec-
tor, where N and M are the numbers of edges and opera-
tions, respectively. We use the superscript of αa to repre-
sent a specific architecture a and the subscript of αi as a
certain edge i. W ∈ W denotes the architecture weights.

Problem Formulation. In this paper, we solve the fol-
lowing optimization problem

max
W∈W,α∈A

L (W ,α) , s.t. T (α) < Ω. (1)

L : W × A → R is the loss function that is not differen-
tiable with respect to α, and is differentiable with respect
to W . T (·) is a function that denotes the constraints for
architectures, such as FLOPs, and Ω is given for different
hardwares. We present an overview of RMI-NAS in Fig. 2,
which aims to automatically discover the optimal neural ar-
chitecture. The detailed motivations, descriptions and anal-
ysis are presented in the following sub-sections.

3.1. Representation Mutual Information

RMI Score. As mentioned before, performance estima-
tion directly determines the efficiency of NAS. Fast perfor-
mance estimation allows the search algorithm to explore the
search space widely, while accurate performance estimation
facilitates the search algorithm to better perceive the prob-
ability distribution of the search space. Rather than esti-
mating architectures by using laborious training methods,
we propose Representation Mutual Information (RMI) to
achieve effective and efficient performance estimation. In
particular, given an arbitrary network α+ that has a decent
accuracy, we use X1+, ..., XL+ to represent the random
variables of feature maps in each layer. For any architec-
ture α that is sampled from the search space, we formally
define the RMI score as

φ(α+,α) =

L∑
i=1

I
(
Xi+, Xi

)
. (2)

In general, an architecture that has a high RMI score
tends to be a good architecture, as the proposed RMI score
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Figure 2. Overview of the proposed RMI-NAS. (a) In particular, we first sample n architectures and classify them as good or bad according
to the RMI score, which is used to warm-up the random forest classifier. (b) We then employ the random forest to explore the search
space effectively and iteratively. In each iteration, a large amount of architectures are sampled, where the architecture that has the highest
confidence on the random forest is selected for training and calculating the RMI score. Depending on the score, the architecture is then
classified and added to the sample set for updating the random forest in the next iteration. (c) After collecting a certain amount of good
architectures, we use these architectures to construct an expanded sampling set and approximate the probability distribution of operations.
The architecture that has the largest probability is considered as the optimal, according to Theorem 1.

is robust, effective and efficient, which is also demonstrated
in Sec. 4. More specifically, the RMI score shows a high
correlation with different α+ and training conditions. In
fact, we directly optimize the RMI score using only one
training batch, where the result is accurate enough to ex-
plore the search space.

Acceleration of RMI Score Computation. The RMI
score is hard to calculate since the distribution of hid-
den representations is intractable and time-consuming to
estimate. Besides, the high dimension of Xi also suf-
fers from the curse of dimensionality. Here we intro-
duce the normalized Hilbert-Schmidt Independence Crite-
rion (HSIC) [21, 63]‡ to solve this problem. Specifically,
let D := {(x1, y1), ..., (xn, yn)} contain n i.i.d. samples
drawn from the distribution PXY . In this case, the normal-
ized HSIC [21, 26, 63] is defined as

I(X,Y ) ≈ nHSIClinear(X,Y ) =
||Y TX||2F

||XTX||F ||Y TY ||F
, (3)

where || · ||F is the Frobenius norm or the Hilbert-Schmidt
norm. Calculating of Eq. 3 is effective, i.e., O(n2), where
n is the number of samples. It only takes a few seconds on
a single GPU and CPU in practice.

Representation Learning and Performance Estima-
tion with the RMI Loss. As the RMI score needs only one
batch of data for calculation, the selection of data is of great
importance. In particular, discriminative and representative

‡Normalized HSIC is also known as CKA [26], RV coefficient [43] and
Tucker’s congruence coefficient [36], which is also used to learn diversified
representations [24].

features are more suitable for the RMI score. In deep learn-
ing, samples with a large confidence are close to the class
center, where the corresponding features tend to be discrim-
inative and representative. Therefore, we first set the expan-
sion factor γ and randomly select data with γ times of the
batch size as a data pool. The pretrained architecture α+ is
then used as a teacher network to select nbatch samples with
the largest classification confidences from it. Subsequently,
the samples are used to obtain the feature mapsX+ andX
of each stage/layer in α+ and α, respectively. The RMI
loss and classification error are optimized simultaneously,
which is formally defined as

Lloss = βLRMI + (1− β)Lcls

= β

L∑
i=1

||Xi+T
Xi||2F

||XiTXi||F ||Xi+T
Xi+||F

+ (1− β)Lcls.
(4)

In RMI-NAS, we use Eq. 4 to estimate an architecture. That
is, after optimizing with certain epochs, a lower RMI loss
indicates a better performance. Notably, optimizing Eq. 4
is extremely effective, as it only takes less than 10s for an
architecture sampled from NAS-Bench-201 [16].

3.2. Search Algorithm

Here we describe the proposed RMI-NAS, which is also
illustrated in Fig. 2. Since the RMI score is employed for
performance estimation, only one batch of training data is
required. Meanwhile, a random forest model with sequen-
tial updating is introduced to improve the sampling effi-
ciency, in which the final architecture is obtained based on
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the samples. In general, RMI-NAS consists of three steps:
random forest training, expanded sampling and architecture
selection, which are elobrated in the following contents.

Random Forest Training. Even though the proposed
RMI is effective in estimating neural architectures, it is
still time-consuming to explore the whole search space.
Therefore, we employ a random forest model to facilitate
the exploration. In particular, we first randomly sample
nwarm = 100 architectures, which are then optimized with
the loss function in Eq. 4. After training these architectures
for a certain number of iterations, their loss values are used
for performance evaluation. In this case, top k = 5% archi-
tectures with the lowest loss value are considered as good
and labeled to 1, while the rest are considered as bad and
labeled to 0. Such classification also generates a loss value
threshold τ for the following steps. This classification re-
sult is then used to construct a dataset for training the ran-
dom forest model. Specifically, conventional NAS can be
abstracted as a discrete optimization problem, i.e., candi-
date operation selection for each edge. We thus encode the
selection in each dimension (edge) inα as a one-hot vector.
In this case, α is encoded as a matrix that becomes the in-
put to the random forest, where the classification results are
used as labels to supervise the output. When the random
forest is trained to convergence, it is then used to explore
the search space effectively and iteratively.

Expanded Sampling. During this phase, we first ran-
domly sample nfitting network architectures in the search
space for each iteration. Then, the random forest is em-
ployed to find the architecture with the largest classification
confidence, which is then evaluated by the proposed RMI
loss in Eq. 4. The actual loss value will be used to update
the random forest in the next iteration. This architecture
will be marked as a good sample if its loss value is below
the threshold τ , and when ncollect good architectures are col-
lected, the update step of the random forest is terminated.

Architecture Selection. In the previous step, a set with
ncollect good architectures are collected. We have a new the-
orem to obtain the final architecture, which is described as:

Theorem 1: Assume that P (α) obeys the uniform distri-
bution on the domain of definition for an arbitrary black
box function f(α). For a specific threshold τ , it holds that

arg max
α

f (α) = arg max
α

P (α|f (α) + σε > τ) , (5)

where σ > 0, ε ∼ N (0, 1).

The proof is provided in our supplementary materials for
a better understanding. According to Theorem 1, we can
employ the distribution P (α|f (α) + σε > τ) to find the
optimal solution. However, this distribution is intractable
in practise. Fortunately, we have effectively explored the
search space and collected ncollect architectures whose loss

values are smaller than threshold τ . Therefore, we can ob-
tain the final architecture accordingly. In particular, for
the collected architecture set Acollect, we calculate the sta-
tistical mode in each edge, and set the operation with the
largest frequency as the optimal architecture for this edge.
Formally, for a specific edge i, the architecture is obtained
through

α∗i = Mo
(
Acollect

i

)
, (6)

where Mo denotes the statistical mode function. The algo-
rithm is also summarized in Alg. 1

Discussion. RMI-NAS is a fast, generalizable and effi-
cient method. Firstly, our proposed performance estimation
metric RMI score is effective and generalizes to different
search spaces. In particular, the RMI loss does not need any
training process on the entire dataset. Besides, the caulation
of I(X,Y ) is effective, i.e., O(n2), where n is the number
of samples. Secondly, the proposed random forest further
improves the effectiveness of NAS, where the optimal ar-
chitecture is also guaranteed by Theorem 1. Concretely, it
only takes less than 30 minutes on NAS-Bench-201 [16] to
complete searching. Moreover, RMI-NAS can be incorpo-
rated with latency constraints by using reject sampling.

4. Experiments
In this section, we quantitatively present empirical eval-

uation of the proposed method on several widely-used
datasets and search spaces. In particular, we first ap-
ply RMI-NAS to the NAS for image classification on
the widely-used CIFAR-100, CIFAR-10 and ImageNet
datasets with different search spaces and NAS benchmarks
in Sec. 4.1. We then conduct ablation studies to investigate
the efficiency of each component in Sec. 4.2. We have re-
leased all the source code including baselines, hyperparam-
eter settings, training and searching code. At the same time,
we carefully check all the option checklist [32] and confirm
that the open-source code meets all the requirements.

4.1. Comparison with SOTA methods

Implementation Details. For the computation of RMI,
teacher networks can be either complex, large-scale archi-
tectures, or tiny models with elaborate layers. In practice,
we use ResNet [22] with different depths on CIFAR [27]
and ImageNet [15] datasets. Meanwhile, a similar archi-
tecture is adopted to the search space on the ImageNet16-
120 [11] dataset. Both methods have been proved to be ef-
fective through extensive experiments.

As we mentioned before, since only one batch of data is
needed for the complete training in RMI-NAS, the quality
of data is crucial to the final models’ performance. There-
fore, the aforementioned teacher network is subsequently
used to judge the quality of the input images. In particu-
lar, during the data selection phase, we set the expansion
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Algorithm 1: RMI-NAS
input : Sampling Number nwarm, nfitting, ncollect;

Quantile k ∈ (0, 100); Architecture Search
Space A; Random Forest Model
πθ : A → [0, 1].

output: Searched Architecture α∗

Initial sampling set D = ∅, Dwarm = ∅;
Pick preferred batch data as described in Sec. 4.1;
for i← 1 to nwarm do

αi ←Sample an architecture from A ;
li ← Optimize ωαi by Eq. 4;
Dwarm ← Dwarm ∪

{(
αi, li

)}
;

end
τ ← Get top k% quantile in Dwarm ;
zi = I

[
li ≤ τ

]
for i = 1, . . . , nwarm;

D ← D ∪
{(
αi, zi

)}nwarm

i=1
;

πθ∗ ← Fit πθ by using D ;
i← nwarm + 1;
while i ≤ ncollect do
Afitting ← Sample nfitting architectures;
αi ← arg maxα∈Afitting πθ?

(Afitting);
li ← Optimize αi by Eq. 4;
zi = I

[
li ≤ τ

]
;

D ← D ∪
{(
αi, zi

)}
;

πθ∗ ← Fit πθ by using D ;
i← i+ 1;

end
Obtain the final architecture α∗ through Eq. 6;

factor γ and select data with γ times of the batch size as the
data pool. A batch of data with the lowest classification loss
in the data pool is then selected by the teacher network for
subsequent experiments. In practice, we set the batch size
to 32 and γ = 16 as a trade-off between search speed and
accuracy. We also use MindSpore to validate the generaliz-
ability of our algorithm.

In the post-processing phase, the architecture must be
properly encoded for the random forest in Alg. 1. We thus
encode each operation choice as a one-hot vector. In this
case, the architecture can be represented as a matrix. The
overall process of the random forest has been described
in Sec. 3.2. More specifically, we implement it with the
sklearn [40] library, setting the number of trees to 30 and
keeping all other hyperparameters as defaults. In the ex-
panded sampling phase, one key step is to select the ar-
chitecture with the highest confidence in the random for-
est from a larger set. Since this process is parallel, in-
ference can be completed within seconds even if we set
nfitting = 1000. The selected architecture is retrained us-
ing RMI and classified according to the threshold set in the
warm-up phase. Empirically, we set quantile k = 5 as the

threshold for best performance. This iterative process is ter-
minated when the random forest finds nsucc good architec-
tures. As the number of choices for each operation is gener-
ally less than 10, it is sufficient to set ncollect = 100. Finally,
in order to further stabilize the results, we further select half
of the architectures with lower RMI loss in ncollect to calcu-
late its preferable in the distribution, which eliminates quan-
tile bias in the warm-up step.

We first conduct our experiments in NAS-Bench-201
[16] and DARTS [35]. We set different training epochs for
different search spaces. In particular, we train 150 epochs
for each architecture in the NAS-Bench-201 search space,
while more epochs and time are required in larger search
spaces. Additional experimental settings are provided in the
supplementary materials.

Results on NAS-Bench-201. In this work, we follow the
settings in the NAS-Bench-201 search space and implement
our method on a single GTX 1080ti GPU to ensure a fair
comparison with the baselines.

As shown in Table. 1, RMI-NAS is completed within 30
minutes, which is several times faster than the other base-
lines. In the meanwhile, the accuracy of the searched ar-
chitecture has been significantly improved. We attribute
these superior results to the efficient sampling strategies and
lightweight metrics of RMI-NAS. Notably, the variance of
our results is also reduced by a large margin, which indi-
cates the stability and robustness of our method.

To discover the capability of RMI, we first make compar-
isons among several performance estimation strategies in
Fig. 1(a). Together with Tab. 1, we obtain the following ob-
servations: Training-based evaluation strategies, which are
widely used in traditional NAS algorithms like RS or RL,
result in severe time consumption, but help them achieve
stable performance and lower variance on all datasets. On
the contrary, the efficient weight sharing and training-free
strategies produce varied results under different settings.
For instance, the Jacob cov [39] method, though owning
the best average performance, produces up to 2.07% vari-
ance on the ImageNet16-120 dataset. To summarize, the
training-based methods focus more on stability and general-
izability but result in huge time overhead, while the weight
sharing and training-free strategies improve search speed
but lead to performance decrease. Based on these obser-
vations, RMI-NAS shows the most stable and balanced re-
sults on all datasets, achieving state-of-the-art performance
and verifying our claim in Sec. 3.1.

To demonstrate the generalizability of RMI, we further
extend it to other commonly-used methods in Fig. 1(b).
Specifically, we replace the training-based strategy with
RMI on three different algorithms, which yields an aver-
age speedup of 19 times faster while maintaining almost the
same accuracies. This result highlights that our RMI-NAS
is able to learn the representation from the teacher network
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Method Search Cost CIFAR-10 CIFAR-100 ImageNet16-120
(Seconds) Valid Test Valid Test Valid Test

ResNet [22] - 90.83 93.97 70.42 70.86 44.53 43.63

RS 22993.93 90.93± 0.36 93.80± 0.36 70.93± 1.09 71.04± 1.07 44.45± 1.10 44.57± 1.25
RL 27870.7 91.09± 0.37 93.85± 0.37 71.61± 1.12 71.71± 1.09 45.05± 1.02 45.24± 1.18

ENAS [41] 14058.8 37.51± 3.19 53.89± 0.58 13.37± 2.35 13.96± 2.33 15.06± 1.95 14.84± 2.10
DARTS-V2 [35] 35781.80 39.77± 0.00 54.30± 0.00 15.03± 0.00 15.61± 0.00 16.43± 0.00 16.32± 0.00

SETN [17] 34139.53 84.04± 0.28 87.64± 0.00 58.86± 0.06 59.05± 0.24 33.06± 0.02 32.52± 0.21
GDAS [18] 31609.80 89.89± 0.08 93.61± 0.09 71.34± 0.04 70.70± 0.30 41.59± 1.33 41.71± 0.98

FairNAS [13] 9845.00 90.97± 0.57 93.23± 0.18 70.94± 0.94 71.00± 1.46 41.09± 1.00 42.19± 0.31
MDENAS [61] 5300.00 - 89.07± 0.60 - - - -
MIGONAS [59] 3200.00 - 93.15± 0.18 - - - -
Jacob cov [39] - 89.69± 0.73 92.96± 0.80 69.87± 1.22 70.03± 1.16 43.99± 2.05 44.43± 2.07

Mag [47] - 89.94± 0.34 93.35± 0.04 70.18± 0.66 70.47± 0.18 42.57± 2.14 43.17± 2.57

Ours 1258.21 91.44± 0.09 94.28± 0.10 73.38± 0.14 73.36± 0.19 46.37± 0.00 46.34± 0.00
Ours(best) - 91.55 94.36 73.49 73.51 46.37 46.34

Optimal - 91.61 94.37 73.49 73.51 46.77 47.31

Table 1. Classfication accuracies and average search cost for RMI-NAS, and other NAS algorithms on NAS-Bench-201 [16]. RS denotes
random search and RL denotes reinforcement learning, each of them is tested by sampling 200 architectures following [55]. We use
horizontal lines to divide our compared methods from top to bottom into training based, one-shot based and training-free based methods.

accurately, thus achieving better performance.
Results on the DARTS Search Space. In practice, we

follow the settings in previous work, using the same oper-
ation set but shrink the search space by half for simplic-
ity. In other words, the same architecture is used for both
normal cell and reduction cell. With the help of random
forest, we can still obtain comparable accuracy but deliver
substantial improvements on time consumption, as shown
in Table 2. Considering the randomness of neural network
training, we also retrain baseline architectures under exactly
the same setting and report the corresponding results using
NAS-Bench-301 [46] for fair comparison. As we can see,
the searched architectures show varied performance even
with different random seeds. We thus conclude that RMI-
NAS achieves comparable or better performance with the
minimum search cost. The same results are observed in Im-
ageNet, which is reported in supplementary materials.

4.2. Ablation Study

In this section we conduct ablation experiments to val-
idate the efficiency of each component, which is based on
the CIFAR-10 dataset with NAS-Bench-201 for simiplicity.
Meanwhile, Kendall’s τ ∈ [−1,+1] [45] is directly adopted
as the metric following previous works [61,62], which mea-
sure the ordinal association of architecture performance be-
tween the ground truth and the estimation. In particular,
a large Kendall’s τ means the estimation method is highly
correlated to the ground truth, and vice versa.

Influence of β. We first investigate the effectiveness of
RMI score by adjusting β in Eq. 4. In particular, when β is
set to 0, the RMI loss degenerates to the cross-entropy loss.
As we can see in Fig. 3(a), the RMI loss has the highest

kendall’s τ when β = 0.8. Meanwhile, setting β = 1 only
shows a marginal performance drop. On the contrary, us-
ing only the classification loss as the measure yields a much
lower correlation coefficient of 0.25, which confirms the ef-
fectiveness of the proposed RMI score.

Influence of the α+. Since the mutual information with
the α+ needs to be calculated in Eq. 4, the selection of the
α+ could impact the final performance. To this end, we
first select networks with different accuracies as the α+,
and calculate the correlation between the RMI score and the
accuracy by sampling architectures on NAS-Bench-201. In
Fig. 3(b), we set horizontal axis as the accuracy of the dif-
ferent architectures that selected to be α+. We can see that
the accuracy is positively correlated to Kendall’s τ . This
reflects that choosing a predictive accurate architecture is
beneficial to performance estimation. Another interesting
observation in Fig. 3(b) is that a network architecture with
an accuracy greater than 85% is suitable enough to make
RMI score a good indicator. In other words, almost all de-
cent human-designed architectures can be selected as α+.

Influence of Optimization Iteration. We select
ResNet-20 [22] as α+ and test Kendall’s τ of the RMI
score using different optimization iterations, as reported in
Fig. 3(c). As we can see in the figure, the Kendall’s τ is
also positively correlated to the optimization iteration. The
optimization iteration is set to 150 for the consideration of
the trade-off between efficiency and effectiveness.

Generalizability of RMI Score and Efficiency of the
Search Algorithm. As mentioned before, the proposed
RMI score is an indicator that can be flexibly combined
with any search algorithm. Therefore, we conduct experi-
ments combining different search strategies to validated the
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Method Search Cost CIFAR-10 Test Err. (%) Search
(GPU-days) NAS-Bench-301 Paper Retrain Method

DenseNet-BC [25] - - 3.46 - Manual
AmoebaNet-B [42] 3150 - 2.55± 0.05 - Evolution

NASNet-A [67] 1800 - 2.65 - RL
ENAS [41] 0.5 - 2.89 - RL

DARTS (2nd) [35] 1 5.83 2.76± 0.09 2.60 Gradient
SNAS [52] 1.5 6.03 2.85± 0.02 2.68 Gradient
GDAS [18] 0.17 5.38 2.93 2.65 Gradient

ASNG-NAS [1] 0.11 - 2.83± 0.14 2.85± 0.12∗ ASNG
P-DARTS (CIFAR-10) [9] 0.3 5.52 2.50 2.70± 0.15∗ Gradient

PC-DARTS (CIFAR-10) [54] 0.1 5.51 2.57± 0.07 2.71± 0.11∗ Gradient
PARSEC [6] 1 - 2.81± 0.03 - Gradient
GAGE [29] 0.3 5.54 2.50 2.67∗ Gradient

MdeNAS [61] 0.16 5.80 2.55 2.80± 0.24∗ MDL
FairDARTS-D [14] 0.4 6.10 2.54± 0.05 2.71 Gradient

DARTS- [12] 0.4 5.84 2.59± 0.08 2.62 Gradient
SGAS [28] 0.25 6.19 2.66± 0.24 2.71 Gradient

Ours 0.08 5.61 - 2.64± 0.04 Random Forest

Table 2. Classfication accuracies and average search cost for RMI-NAS and the other NAS algorithms on DARTS. To make the fair
comparison, we retrain all the searched architectures with the released training code [59], where the performance in NAS-Bench-301,
original paper are also reported for a better illustration. ∗ denotes the corresponding results are referenced from the open-sourced code [59].
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Figure 3. (a) Kendall’s τ in different β. In Eq. 4, β controls the ratio of the RMI loss between classfication and RMI score. We repeat
experiments over 3 random seeds, where the mean and standard deviation are illustrated in the figure. (b) Kendall’s τ using architectures
with different accuracy. (c) Kendall’s τ employing different optimization iterations in Eq. 4.

effectiveness of RMI and the proposed algorithm. As shown
in Fig. 1, integrating with different search algorithms defi-
nitely accelerate the search process with better or negligible
performance drop. Another observation from Fig. 1 is that
the search algorithm further improve the performance with
a clearly gap compared to RS, RL and REA, which indicate
the efficiency of the proposed search algoritm.

5. Conclusion
In this paper, we propose a new performance estimation

strategy incorprated with a novel search algorithm. In par-
ticular, we find that representation mutual information is an
effective and efficienct indicator to estimate architectures.
Then, we propose a new search algorithm to further accel-
erate the search process. Meanwhile, the searched solution

is also mathematically guaranteed by the proposed Theorem
1. Extensive experiments on various search spaces demon-
strate the effectiveness in accelerating the search process
and searching better architecture.
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