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Abstract

Scene text recognition (STR) attracts much attention over
the years because of its wide application. Most method-
s train STR model in a fully supervised manner which re-
quires large amounts of labeled data. Although synthetic
data contributes a lot to STR, it suffers from the real-to-
synthetic domain gap the restricts model performance. In
this work, we aim to boost STR models by leveraging both
synthetic data and the numerous real unlabeled images, ex-
empting human annotation cost thoroughly. A robust con-
sistency regularization based semi-supervised framework is
proposed for STR, which can effectively solve the instabili-
ty issue due to domain inconsistency between synthetic and
real images. A character-level consistency regularization is
designed to mitigate the misalignment between character-
s in sequence recognition. Extensive experiments on stan-
dard text recognition benchmarks demonstrate the effective-
ness of the proposed method. It can steadily improve exist-
ing STR models, and boost an STR model to achieve new
state-of-the-art results. To our best knowledge, this is the
first consistency regularization based framework that ap-
plies successfully to STR.

1. Introduction

Scene text recognition (STR) is to recognize text in nat-

ural scenes and is widely used in many applications such

as image retrieval, robot navigation and instant translation.

Compared to traditional OCR, STR is more challenging be-

cause of multiple variations from the environment, various

∗Part of the work was done when C.Zheng was an intern at SRCX.
†P. Wang is the corresponding author.

(a) cross-domain. (b) in-domain.

Figure 1. Scene text recognition test accuracy by using supervised

training, existing consistency regularization SSL (UDA [50] and

FixMatch [43]) and our method. Cross-domain means the labeled

and unlabeled training data are from different domains (e.g. syn-

thetic labeled vs. real unlabeled in our setting), while in-domain

means they are from similar condition. UDA and FixMatch are

feasible in in-domain condition but fail in cross-domain setting.

It is observed that the test accuracy drops drastically during the

training process, and the highest accuracy is even lower than that

obtained by supervised training. By contrast, our method is able

to stabilize the training process and improve test performance in

both in-domain and cross-domain conditions.

font styles and complicated layouts.

Although STR has made great success, it is mainly re-

searched in a fully supervised manner. Real labeled datasets

in STR are usually small because the annotation work is ex-

pensive and time-consuming. Hence, two large synthetic

datasets MJSynth [16,17] and SynthText [15] are common-

ly used to train STR models and produce competitive result-

s. However, there exists domain gap between synthetic and

real data which restricts the effect of synthetic data. Briefly

speaking, synthetic dataset can improve STR performance,

but STR model is still hungry for real data.

Considering that it is easy to obtain a large scale of unla-

14116



beled data in real world, many researchers intend to lever-

age unlabeled data and train models in a Semi-Supervised

Learning (SSL) manner. Baek et al. [3] and Fang et al. [9]

introduced self-training methods to train STR models and

receive improved performance. Nevertheless, self-training

requires a pre-trained model to predict pseudo-labels for un-

labeled data and then re-trains the model, which affects the

training efficiency. By contrast, Consistency Regularization

(CR), another important component of state-of-the-art (SO-

TA) SSL algorithms, has not been well exploited in STR.

In this paper, we would like to explore a CR-based SS-

L approach to improve STR models, where only synthetic

data and unlabeled real data are used for training, exempt-

ing human annotation cost thoroughly. CR assumes that the

model should output similar predictions when fed perturbed

versions of the same image [38]. It tends to outperform self-

training on several SSL benchmarks [1,36]. Nevertheless, it

is non-trivial to utilize existing CR methods to STR directly.

We attempt to two representative CR approaches, UDA [50]

and FixMatch [43]. Neither of them is feasible in our set-

ting. As shown in Figure 1a, the models are quite unstable

during the training process. Compared with experiments on

image classification where they show big superiority, we as-

sume the reasons lie in the following two aspects.

1) Our labeled images are synthetic while unlabeled im-

ages are from real scenarios. The domain gap between syn-

thetic and real images affects the training stability. Actually,

it is found that the collapsed models recognize synthetic in-

puts with a reasonable accuracy, but generate nearly iden-

tical outputs for all real inputs. We conjecture that they

incorrectly utilize the domain gap to minimize the overal-

l loss: they learn to distinguish between synthetic and real

data, and learn reasonable representations for synthetic data

to minimize the supervised loss, but simply project real data

to identical outputs such that the consistency loss is zero. To

validate this conjecture, we perform another experiment by

using training images all from real. As shown in Figure 1b,

the training processes of UDA and FixMatch become stable

in such a setting. However, we aim to relieve human label-

ing cost. The introduced domain gap becomes an issue.

2) Different from image classification, STR is a kind of

sequence prediction task. The alignment between character

sequences brings another difficulty to consistency training.

To address the aforementioned problems, we propose

a robust character-level consistency regularization based

framework for STR. Firstly, inspired by BYOL [14] that

prevents model collapse without using negative samples in

contrastive learning, we propose an asymmetric consistency

training structure for STR. Secondly, a character-level CR

unit is proposed to ensure the character-level consistency

during training process. Thirdly, some techniques are sub-

tly adopted in training process, such as weight decay and

domain adaption, which improve STR model furthermore.

The main contributions are summarized as follows:

1) We propose a robust consistency regularization based

semi-supervised framework for STR. It is capable of tack-

ling the cross-domain setting, thus more easily benefitting

from labelled synthetic data and unlabeled real data. Com-

pared with self-training approaches, our method is more ef-

ficient, without iteratively predicting and re-training.

2) Considering the sequential property of text, we pro-

pose a character-level consistency regularization (CCR) u-

nit to ensure better sequence alignment between the outputs

of two siamese models.

3) Extensive experiments are performed to analyze the

effectiveness of the proposed framework. It boosts the per-

formance of a variety of existing STR models. Despite free

of human annotation, our method achieves new SOTA per-

formance on several standard text recognition benchmarks

for both regular and irregular text.

2. Related Work
2.1. Scene Text Recognition

Researches usually treat text recognition as a sequence

prediction task and employ RNNs to model the sequences

for recognition without character separation. Connectionist

temporal classification (CTC) model [39, 47] and attention-

based encoder-decoder model [21, 40] are two common-

ly used frameworks for STR. The success of regular text

recognition leads researchers to turn their attentions to ir-

regular text recognition. [25, 27, 40, 41, 53, 56] rectified

irregular text into regular ones to alleviate the difficulty in

recognition. [23] and [52] employed 2D attention to han-

dle the complicated layout of irregular text. [7, 49, 55] at-

tempted to improve recognition accuracy by mitigating the

alignment drift in attention. [10,34,54] tried to integrate se-

mantic information from language model to enhance word

recognition. All those methods needs to be trained in a fully

supervised manner.

2.2. Semi-Supervised Learning

Semi-Supervised Learning (SSL) aims to use labeled

data and additional unlabeled data to boost model perfor-

mance. There are mainly two types of SSL methods that

relate to our work, self-training [5, 13, 22, 51] and consis-

tency regularization (CR) [20,30,43,44,50]. Self-training is

simple and effective. It first employs labeled data to train a

teacher model, then predicts pseudo labels for unlabeled da-

ta, and finally trains a student model using both labeled and

pseudo-labeled data. Pseudo Label [22] and Noisy Studen-

t [51] are two popular variants. CR is based on the manifold

assumption that model outputs should be consistent when

fed different augmentation views of the same image. For

example, Temporal Ensembling [20] encourages a consen-

sus prediction of the unknown labels using the outputs of
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Figure 2. Overall framework of our proposed consistency regularization method for STR. Our model takes advantage of labeled synthetic

data and unlabeled real data, exempting human annotation cost thoroughly. An asymmetric structure is designed with EMA and domain

adaption to encourage a stable model training.

the network-in-training on different epochs. Mean Teach-

er [44] requires the outputs from teacher model and student

model to be consistent, and updates teacher model by aver-

aging student model weights. FixMatch [43] combines CR

and pseudo-labeling for better performance. UDA [50] ar-

gues the importance of noise injection in consistency train-

ing, and achieves SOTA performance on a wide variety of

language and vision SSL tasks.

2.3. Semi-Supervised Text Recognition

Some work has been proposed to train STR model with

SSL. For instance, Gao et al. [11] adopted reinforcement

learning techniques to exploit unlabeled data for STR per-

formance improving. However, both labeled and unlabeled

data are divided from synthetic data, without domain gap

issue. [58] and [18] utilized domain adaption techniques to

mitigate the domain shift between source and target data, so

as to improve recognition results on target domain. Baek et
al. [3] attempted to train STR model by using real data only,

and tried both Pseudo Label and Mean Teacher to enhance

STR performance. Fang et al. [9] proposed an autonomous,

bidirectional and iterative language modeling for STR. A

self-training strategy was applied with the ensemble of iter-

ative prediction to increase STR performance further.

3. Proposed Method
3.1. Overview

As shown in Figure 2, our framework consists of an STR

model for text recognition and a CR architecture to inte-

grate information from both labeled and unlabeled data. We

adopt the attention based encoder-decoder STR model here

for illustration. However, our framework is not restricted to

autoregressive STR models. The encoder extracts discrim-

inative features from input images, while the decoder gen-

erates character-level features. The classifier maps features

into probabilities over character space via a linear transfor-

mation and Softmax.

We define two modes for STR model, named train-

ing mode and inference mode, according to whether the

“ground-truth” character sequence is provided. In training

mode, “ground-truth” characters are sent to the decoder for

next character prediction. By contrast, in inference mode,

the output of previous step is fed into decoder to infer next

character. Both modes receive a special “BOS” token at the

first step which means the start of decoding. Training mode

ends when all ground-truth characters are input, while in-

ference mode ends when generating an “EOS” token.

The CR architecture is inspired by UDA [50], which con-

sists of two branches, namely supervised and unsupervised

branch, as demonstrated in Figure 2. The supervised branch

is trained on labeled data, while the unsupervised branch

takes two augmented views of an unlabeled image as input,

and requests the outputs to be similar with each other. Moti-

vated by BYOL [14], we employ STR models with the same

architecture but different parameters in unsupervised branch

for the two views of inputs, denoted as online model and tar-

get model separately. The online model shares parameters

with the one used in supervised branch. To overcome the

instability during model training and improve STR perfor-
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mance, an additional projection layer is introduced before

classifier in online model of the unsupervised branch.

3.2. Supervised Branch

Supervised branch adopts the online STR model and run-

s in training mode, using the labeled synthetic data. Spe-

cially, denote the weight of online STR model as θo, which

is comprised of parameters from three modules, i.e., en-

coder, decoder and classifier, referring to Figure 2. Given

the input image XL and the ground-truth character sequence

Ygt = {ygt1 , ygt2 , . . . , ygtt }, the supervised branch outputs a

sequence of vector PL = {pL
1 , pL

2 , . . . ,pL
T }. Cross-entropy

loss is employed to train the model, i.e.,

Lreg =
1

T

T∑

t=1

log pLt (y
gt
t | XL) (1)

where pLt (y
gt
t ) represents the predicted probability of the

output being ygtt at time step t. T is the sequence length.

3.3. Unsupervised Branch

Different from [50] and inspired by [14], unsupervised

branch in our framework relies on two models, referred to

as online STR model (with model parameter θo) and target

STR model (with model parameter θt) respectively. The

two models interact and learn from each other.

Given the input image without label XU , two differen-

t augmentation approaches are adopted which produce t-

wo augmented views of the image, denoted as XUw and

XUs respectively. The online STR model takes XUs as in-

put and runs in training mode. Motivated by the collapse

preventing solution in [14], an additional projection layer

is introduced between the decoder and classifier, as shown

in Figure 2, and the parameters are denoted as θp indepen-

dently. It is composed by 2 layers of perceptron with Re-

LU activation. The added projection layer makes the ar-

chitecture asymmetric between the online and target model,

which contributes to a stable training process. The clas-

sifier is then followed to transform the output vector in-

to probabilities over character space, denoted as PUs =
{pUs

1 , pUs
2 , . . . ,pUs

T }.

The target STR model takes XUw as input and runs in

inference mode, which generates a sequence of probabili-

ties PUw = {pUw
1 , pUw

2 , . . . ,pUw

T }. The output sequence is

used as the reference target to train the online model. A

stop-gradient operation is acted on the target model, and its

parameters θt are an exponential moving average (EMA) of

the online model parameter θo, i.e.,

θt = αθt + (1− α)θo (2)

where α ∈ [0, 1] is the target decay rate. EMA makes

the target model produce relatively stable targets for online

model, which helps to keep the projection layer in near op-

timal and benefits the model training as well.

Encoder Decoder
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model

////////

...

t1 t2 tN-1 tN

t1 t2 tN-1 tN
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Target 
model
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Figure 3. Character-level consistency regularization (CCR). In

each time step t, target decoder and online decoder share the same

output character produced by target decoder in previous time step

so as to keep good character alignment. Consistency loss is com-

puted between the outputs in each time step.

As indicated in [13, 50], regularizing predictions with

low entropy would be beneficial to SSL. We sharpen the

output from target STR model PUw by using a low Softmax

temperature τ . Denote the output vector at step t before

Softmax as zUw
t = {zUw

1 , zUw
2 , . . . , zUw

C }, C is the number

of character classes, then

pUw
t (yt) =

exp(zUw
yt

/τ)
∑

y′
t
exp(zUw

y′
t
/τ)

(3)

We set τ = 0.4 following [50].

The consistency training regularizes the outputs of PUw

and PUs to be invariant. However, given that STR is a se-

quence recognition task, a character-level consistency reg-

ularization (CCR) unit is proposed for autoregressive de-

coder, so as to keep a good sequence alignment. As shown

in Figure 3, in decoding time step t, a pseudo label is gen-

erated from target model by taking the class that has the

highest probability in pUw
t . The pseudo label will be used

as the input for both online and target decoder in next time

step. The design enforces online decoder and target decoder

share the same context information, benefits character level

alignment, and thus ensures a stable consistency training.

To alleviate the influence caused by noise samples in

training process, we filter out noise samples based on their

confidence scores in recognition. The confidence score is

the cumulative product of the maximum output probability

from target model in each decoding step, i.e.,

sUw =
T∏

t=1

pUw
t (yt | XUw) (4)

The consistency loss used in unsupervised branch is then

defined as:

Lcons = I(sUw > βU )
1

T

T∑

t=1

Dist(pUw
t , pUs

t ) (5)

where I(sUw > βU ) is an indicator, βU is a threshold for

filtering out noises and Dist(·) is a function to measure the
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character-level distance between PUw and PUs . There are

several choices for Dist, such as Cross Entropy (CE), KL-

divergence or Mean Squared Error (MSE). KL-divergence

is adopted in our framework by default.

3.4. Additional Training Techniques

Weight Decay. Weight decay is an important componen-

t in contrastive learning [6, 14] and SSL [43]. It is claimed

that [45] weight decay in BYOL can help balance weights

between predictor and online model dynamically, and im-

prove the representation ability of online model. Here we

also adopt it into our model training so as to improve the

feature learning capability of online model.

Domain Adaption. To mitigate the domain shift in train-

ing data, a character-level domain adaptation unit is em-

ployed between the supervised and unsupervised branches,

referring to [58]. Specially, in each decoding step, decoder

of the online model extracts vision feature for the charac-

ter to be decoded, denoted as HL = {hL
1 , hL

2 , · · · , hL
T }

and HUs = {hUs
1 , hUs

2 , · · · , hUs

T } for features extracted in

supervised and unsupervised branch respectively. Domain

adaption loss is defined as

Lda =
1

4d2
‖(cov(HL)− cov(HUs)‖2F (6)

where ‖ · ‖2F denotes the squared matrix Frobenius norm,

cov(H) is covariance matrix, d is the feature dimension.

3.5. Overall Objective Function

We sum the three loss functions defined above. The over-

all objective function for training our proposed model is:

Loverall = Lreg + λconsLcons + λdaLda (7)

where λcons and λda are hyper-parameters to balance three

terms. We set λcons = 1 and λda = 0.01 empirically.

4. Experiment
4.1. Datasets

Two types of data are used here for training, i.e., synthet-

ic data with annotations and real data without label.

Two widely used synthetic datasets are adopted includ-

ing SynthText (ST) [15] and MJSynth (MJ) [17], which

results in 14.5M samples in total, referring to as synthetic
labeled data (SL).

For real unlabeled scene text data, we collected from

three public available datasets, Places2 [59], OpenImages1

and ImageNet ILSVRC 2012 [37]. CRAFT [4] was em-

ployed to detect text from these images. Then we cropped

text images with detection scores larger than 0.7. Images

with low resolution (width times height is less than 1000)

1https://storage.googleapis.com/openimages/web/index.html

were also discarded. There are finally 10.5M images, de-

noted as real unlabeled data (RU).
In addition, during ablation study, to demonstrate the su-

periority of the proposed framework, we also conduct ex-

periments by using real labeled data collected by [3]. It has

278K images totally, named as real labeled data (RL).
Six commonly used scene text recognition benchmarks

are adopted to evaluate our method.

ICDAR 2013 (IC13) contains 1095 cropped word im-

ages. Following [54], we remove images that contain non-

alphanumeric characters, which results in 857 test patches.

IIIT5K-Words (IIIT) [29] has 3000 nearly horizontal

word patches for test.

Street View Text (SVT) [48] consists of 647 word im-

ages collected from Google Street View for test.

SVT-Perspective (SVTP) [35] contains 645 images for

test, which are cropped from side-view snapshots in Google

Street View.

CUTE80 (CUTE) [32] has 288 curved text images.

ICDAR 2015 (IC15) [19] contains 2077 word images

cropped from incidental scene images. After removing

images with non-alphanumeric characters, there are 1811
word patches left for test.

4.2. Evaluation Metric

Following common practice, we report word-level accu-

racy for each dataset. Moreover, in order to comprehen-

sively evaluate models for their recognition performance on

both regular and irregular text, following [3], we introduce

an average score (Avg) which is the accuracy over the union

of samples in all six datasets.

4.3. Implementation Details

The whole model is trained end-to-end without pre-

training. We use a batch size of 384 for labeled data and

288 for unlabeled data. By default, we set the target decay

rate α = 0.999 and confidence threshold βU = 0.5 respec-

tively. Both supervised branch and unsupervised branch are

jointly trained, while we only use the model in supervised

branch in inference time.

Four STR models are adopted to validate the effective-

ness of the proposed framework, with their default model

configurations, including CRNN [39], MORAN [28], H-

GA [52] and TRBA [2]. Note that CRNN uses CTC for

character decoding, which is non-autoregressive. Hence, C-

CR is not adopted when training model with CRNN.

We adopt Adadelta when training MORAN or HGA, fol-

lowing their original optimization method. The learning

rate is 1.0 initially and decreases during training process.

AdamW [26] optimizer is adopted when using CRNN or

TRBA model. Following [3], we use the one-cycle learning

rate scheduler [42] with a maximum learning rate of 0.001.

The weight decay rate is aligned with the used STR model.
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The unsupervised branch takes two augmented views of

an image as input. Here we define two types of augmen-

tations, i.e., StrongAug and WeakAug. StrongAug is bor-

rowed from RandAugment [8] which includes multiple aug-

mentation strategies on both geometry transformations and

color jitter. Considering Cutout may crop some characters

from the image which will corrupt the semantic informa-

tion of text, we remove ”Cutout” operation from RandAug-

ment. WeakAug only has color jitter, including brightness,

contrast, saturation and hue. In our framework, we use

WeakAug for target model and StrongAug for online mod-

els of both supervised and unsupervised branches.

4.4. Comparison with SOTA

We perform experiments by using different STR models.

For fair comparison, we also reproduce those models under

supervised setting using the same data augmentation strate-

gy as that used in our semi-supervised training. As present-

ed in Table 1, our reproduced models have comparable or

even higher accuracies than that reported in the original pa-

per. Those results provide an even fair baseline to show the

advantage of our method. Experiments with their original

settings can be found in Supplementary.

By training with the proposed framework using addi-

tional unlabeled real images, all models gain improvemen-

t. To be specific, CRNN improves by 3.1% (from 82.8%
to 85.9%) on average, MORAN increases from 88.5% to

90.2% (+1.7%). HGA has an accuracy increase of 2.5%
(from 88.7% to 91.2%) and TRBA has an increase of 3.0%
(from 91.5% to 94.5%). The consistent enhancement over

different STR models shows the effectiveness and univer-

sality of our proposed method. Specially, the performance

gain over irregular text (IC15, SVTP and CUTE) is more

obvious, since irregular text has more variance on appear-

ance which is hard to be generated by synthetic engine.

Note that although TRBA is worse than ABINet [9] in

supervised setting (91.5% vs. 92.7%), our framework helps

TRBA outperform ABINet that adopts self-training in semi-

supervised setting (94.5% vs. 93.5%), which proves the su-

periority of our proposed CR method again. Compared

with other SOTA work, our proposed framework with TR-

BA achieves the highest accuracies on vast majority of test

datasets (only except IIIT), which demonstrates its robust-

ness for both regular and irregular text recognition.

In addition, to accelerate training process, we perform an

experiment with TRBA using only 10% synthetic labeled

data (denoted as “SLsm” that contains only 1.45M images)

and 10% real unlabeled data (denoted as “RUsm” which

has 1.05M images). Surprisingly, experimental results is

fairly good with the average score of 93.2%, even high-

er than that obtained by TRBApr (91.5%) and ABINet [9]

(92.7%). It should be noted that TRBApr and ABINet are

trained in a fully supervised manner using all synthetic data

some
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Figure 4. Hard examples that can be successfully recognized by

using our method. The first line shows the recognition results by

TRBApr , which include mistakes (red characters), while the sec-

ond line are results by TRBAcr . Our method enables TRBA ad-

dress even tough samples like dark, blur, or severe distortion.

(14.5M). The training data is 5.8 times more than that used

in TRBAsm. The excellent results suggest the necessary of

using real images in training STR models and the advantage

of our semi-supervised training framework.

In Figure 4, we present several examples that can be cor-

rectly recognized by TRBAcr but encounter failure when

using TRBApr. Although the employed real images are un-

labeled, STR models can still get benefit from our method,

particularly for recognizing text that are severely blurred,

distorted, or with artistic font.

4.5. Ablation Study

In order to analyze the proposed model, we conduct a

series of ablation experiments in this section. All ablation

experiments are performed using TRBA because of its good

performance. SLsm and RUsm are employed for fast train-

ing. More experiments with different data size can be found

in Supplementary.

4.5.1 Effect of domain gap on model stability

In this work, we propose a stable CR based SSL framework

for STR. As stated in Section 1, we guess it is the domain

inconsistency among training data used in STR that causes

the instability or even failure by previous CR methods.

To prove this conjecture, we perform experiments using

domain consistent training data (in-domain data). Special-

ly, we split the real labeled training data RL into RL20p

and RL80p with a ratio of 1:4. RL20p is adopted with la-

bels while RL80p is employed without annotations. SO-

TA CR methods are tested, including FixMatch [43] and

UDA [50]. As presented in Table 2, when training data is

from the same domain, they work well. The test accura-

cy increase by 3.6% using FixMatch and 2.6% using UDA.

However, when the training data is from different domains,

e.g., SLsm and RUsm, their training processes become un-

stable. We test the models before collapse. The recognition
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Methods Labeled

Dataset

Unlabeled

Dataset

Regular Text Irregular Text
Avg

IC13 SVT IIIT IC15 SVTP CUTE

S
O

T
A

M
et

h
o
d
s

Shi et al. [39] (CRNN) MJ - - 80.8 78.2 - - - -

Luo et al. [28](MORAN) SL - - 88.3 93.4 77.8 79.7 81.9 -

Yang et al. [52](HGA) SL - - 88.9 94.7 79.5 80.9 85.4 -

Baek et al. [2](TRBA) SL - - 87.5 87.9 - 79.2 74.0 -

Liao et al. [24](Mask TextSpotter) SL - 95.3 91.8 93.9 77.3 82.2 87.8 88.3

Wan et al. [46](TextScanner) SL - 92.9 90.1 93.9 79.4 84.3 83.3 88.5

Wang et al. [49](DAN) SL - 93.9 89.2 94.3 74.5 80.0 84.4 87.2

Yue et al. [55](RobustScanner) SL - 94.8 88.1 95.3 77.1 79.5 90.3 88.4

Qiao et al. [34](SRN) SL - 95.5 91.5 94.8 82.7 85.1 87.8 90.4

Zhang et al. [57](SPIN) SL - - 90.9 95.2 82.8 84.3 83.2 -

Mou et al. [31](PlugNet) SL - - 92.3 94.4 - 84.3 84.3 -

Qiao et al. [33](PIMNet) SL - 95.2 91.2 95.2 83.5 84.3 84.4 90.5

Fang et al. [9](ABINet) SL - 97.4 93.5 96.2 86.0 89.3 89.2 92.7

Gao et al. [12] 10% SL 90% SL - 78.1 74.8 - - - -

Baek et al. [3](CRNN) RL Book32 et al. - 84.3 89.8 - 74.6 82.3 -

Baek et al. [3](TRBA) RL Book32 et al. - 91.3 94.8 - 82.7 88.1 -

Fang et al. [9](ABINet) SL Uber-Text 97.3 94.9 96.8 87.4 90.1 93.4 93.5

O
u
rs

CRNN-pr SL - 91.0 82.2 90.2 71.6 70.7 81.3 82.8

CRNN-cr SL RU 92.4 87.9 92.0 75.8 75.7 85.8 85.9

MORAN-pr SL - 95.1 90.4 93.4 79.7 80.6 85.4 88.5

MORAN-cr SL RU 96.5 93.0 94.1 82.6 82.9 88.5 90.2

HGA-pr SL - 95.0 89.5 93.6 79.8 81.1 87.8 88.7

HGA-cr SL RU 95.4 93.2 94.9 84.0 86.8 92.0 91.2

TRBA-pr SL - 97.3 91.2 95.3 84.2 86.4 92.0 91.5

TRBA-cr 10% SL 10% RU 97.3 94.7 96.2 87.0 89.6 94.4 93.2

TRBA-cr SL RU 98.3 96.3 96.5 89.3 93.3 93.4 94.5
Table 1. Comparison with SOTA methods on STR test accuracy. In each column, the best result is shown in bold, and the best result

in supervised setting is shown with underline. ”-pr” means our reproduced results and ”-cr” means using our consistency regularization

method. Our method improves STR models firmly, and propels TRBA towards new SOTA performance on test benchmarks.

accuracies are even lower than that obtained by only using

SLsm, with performance degradation of 11.0% (FixMatch)

and 4.6% (UDA) separately.

By contrast, our method is able to improve the recog-

nition accuracy no matter the training data is from similar

domain or not. In comparison to the results by fully super-

vised training, our method improves STR model accuracy

steadily by 4.5% (84.8% to 89.3%) using in-domain data

and 3.3% (89.9% to 93.2%) in cross-domain setting. The

performance gain in in-domain setting is even larger than

that brought by FixMatch and UDA.

4.5.2 Ablation on model units

The techniques used in our method include an additional

projection layer for asymmetric structure, EMA, domain

adaption and weight decay. Here we analyze the effect of

each unit in detail. The experiments are performed with C-

CR added to benefit character-level consistency.

As presented in Table 3, the use of additional projection

layer can improve the final average score by 0.7%. How-

ever, the performance is still lower than that obtained un-

der fully supervised setting (87.7% vs. 89.9%). As indicat-

ed in [45], without weight decay, the consistency between

online and target outputs is dependent mainly on the pro-

jection layer, rendering the online model weights inferior.

Weight decay helps balance weights between online model

Labeled/

Unlabeled Data
Methods

IC13

IC15

SVT

SVTP

IIIT

CUTE
Avg

In
-d

o
m

ai
n RL20p(55.7K)/

-
Sup

90.1

77.6

87.5

78.0

88.8

83.0
84.8

RL20p(55.7K)/

RL80p(223K)

FixMatch
93.0

82.3

88.6

82.5

92.0

88.5
88.4

UDA
92.5

80.7

88.6

80.9

91.4

88.5
87.4

Ours
93.8

82.5

91.5

83.6

92.9

88.5
89.3

C
ro

ss
-d

o
m

ai
n SLsm(1.45M)/

-
Sup

96.0

82.4

90.0

82.6

94.4

88.9
89.9

SLsm(1.45M)/

RUsm(1.06M)

FixMatch
90.0

72.6

86.2

77.2

79.2

69.1
78.9

UDA
94.2

75.7

85.3

79.5

90.0

82.3
85.3

Ours
97.3

87.0

94.7

89.6

96.2

94.4
93.2

Table 2. Experiments with CR methods on in-domain and cross-

domain data settings. Our method can consistently improve recog-

nition accuracy. The results of FixMatch and UDA in cross-

domain setting are obtained by the models before collapse.

and projection layer dynamically. The use of weight decay,

with projection layer, increases the average score on test da-

ta by another 3.5%, surpassing the supervised results. EMA

mechanism brings an accuracy gain of 1.6% furthermore as

it helps keep projection layer in near-optimal and improves

training stability. Lastly, the adding of domain adaption im-
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Projection WD EMA DA
IC13

IC15

SVT

SVTP

IIIT

CUTE
Avg

94.2

80.5

91.5

84.0

88.7

84.0
87.0

�
94.5

81.6

90.1

86.1

89.5

85.4
87.7

� �
97.2

85.9

93.0

87.0

93.5

91.3
91.2

� � �
96.7

86.7

94.6

89.3

95.9

92.7
92.8

� � � �
97.3

87.0

94.7

89.6

96.2

94.4
93.2

Table 3. Ablation on model units. “Projection” means using ad-

ditional projection layer before classifier. ”WD” means weight

decay, ”EMA” means using EMA for target model. ”DA” means

domain adaption.

Method
IC13

IC15

SVT

SVTP

IIIT

CUTE
Avg

SCR
96.6

84.9

93.0

85.9

96.4

93.1
92.2

CCR
97.3

87.0

94.7

89.6

96.2

94.4
93.2

Table 4. Effect of our proposed CCR. Compared to using standard

consistency regularization, training with CCR conduces to 1% av-

erage score increase for TRBA.

Consistency Loss
IC13

IC15

SVT

SVTP

IIIT

CUTE
Avg

MSE
96.3

84.0

92.0

86.8

94.2

92.0
91.0

CE
97.4

86.9

94.3

89.8

96.3

92.7
93.2

KL-divergence
97.3

87.0

94.7

89.6

96.2

94.4
93.2

Table 5. Ablation on different distance functions used in consis-

tency loss. CE and KL-divergence leads to similar performance,

better than MSE.

proves the average test accuracy up to 93.2%.

4.5.3 Effect of CCR

Another contribution of this work is a character-level con-

sistency regularization (CCR) unit to handle the special-

ly sequential property of STR task. Instead of letting on-

line model and target model run separately in unsupervised

branch (standard consistency regularization, SCR), and on-

ly restricting their final outputs by consistency loss, we pro-

posed CCR to enforce the same context information for both

online and target model. Experimental results in Table 4

prove the effectiveness of CCR. It helps TRBA improve 1%
more on the final test accuracy.

4.5.4 Ablation on distance measure functions

By default, we use KL-divergence to measure the consisten-

cy in loss function (5). Here we test other distance measure

functions, such as CE and MSE. As presented in Table 5,

Method
IC13

IC15

SVT

SVTP

IIIT

CUTE
Avg

Pseudo Label (PL)
95.9

82.9

91.2

85.7

95.4

90.6
90.9

Noisy Student (NS)
96.3

85.5

94.4

86.7

96.1

94.1
92.4

Ours
97.3

87.0

94.7

89.6

96.2

94.4
93.2

Table 6. Comparison with other semi-supervised methods. Our

method brings more benefit to STR model and outperforms the

other approaches.

empirically, CE leads to similar recognition performance

with KL-divergence, while MSE results in lower accuracies

(93.2% vs. 91.0%).

4.6. Comparison with Other Semi-supervised
Methods

We compare our method with other SSL approaches that

have been successfully used in STR, including Pseudo La-

bel (PL) [22] and Noisy Student (NS) [51]. TRBA is used

as the basic model. PL based SSL is performed following

the practice in [3], while NS based SSL is following [51],

with the threshold βU = 0.5 and 3 iterations of re-training.

The results are shown in Table 6. Our CR based method

outperforms all the others, with the resulted average score

2.3% higher than PL and 0.8% higher than NS. Note that

compared to NS, our training process is more efficient,

without time consuming iterations.

5. Conclusion
In this paper, we propose a robust character-level consis-

tency regularization method for STR. Our framework con-

sists of a supervised branch trained with synthetic labeled

data, and an unsupervised branch trained by two augmented

views of real unlabeled images. An asymmetric structure is

designed with EMA, weight decay and domain adaption to

encourage a stable model training and overcome the domain

gap issue caused by synthetic and real images. Moreover,

a character-level consistency regularization unit is proposed

to ensure better character alignment. Without using any hu-

man annotated data, our method is able to improve existing

STR models by a large margin, and achieves new SOTA

performance on STR benchmarks.
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