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Abstract

It is extremely challenging to create an animatable
clothed human avatar from RGB videos, especially for loose
clothes due to the difficulties in motion modeling. To ad-
dress this problem, we introduce a novel representation on
the basis of recent neural scene rendering techniques. The
core of our representation is a set of structured local ra-
diance fields, which are anchored to the pre-defined nodes
sampled on a statistical human body template. These local
radiance fields not only leverage the flexibility of implicit
representation in shape and appearance modeling, but also
factorize cloth deformations into skeleton motions, node
residual translations and the dynamic detail variations in-
side each individual radiance field. To learn our represen-
tation from RGB data and facilitate pose generalization, we
propose to learn the node translations and the detail varia-
tions in a conditional generative latent space. Overall, our
method enables automatic construction of animatable hu-
man avatars for various types of clothes without the need
for scanning subject-specific templates, and can generate
realistic images with dynamic details for novel poses. Ex-
periment show that our method outperforms state-of-the-art
methods both qualitatively and quantitatively.

1. Introduction

Animatable human avatar modeling is of great impor-
tance in many applications such as content creation and en-
tertainment, and virtual characters have become ubiquitous
in our lives with the rise of computer graphics in movies and
games. Traditional methods for high-quality human avatar
reconstruction are often costly and tedious, due to the diffi-
culties in modeling the complex dynamics of clothes. Be-
sides, they typically presume the availability of a subject-
specific template [22] and its accurate registration to the in-
put frames [6,78], which are difficult to acquire in practice.

With the rapid development in computer vision in the
past ten years, researchers have started to explore the pos-
sibility of automatic human avatar reconstruction without
pre-scanning efforts. Pioneer studies deformed a statisti-

Driving Video

Animation Results

Figure 1. Example results produced by our method. Our
method can learn animatable human avatars with various cloth
topologies and realistic dynamic details. Top row: driving video,
from which the animation poses are extracted. Bottom two rows:
animation results rendered from the front and the back view.

cal human body template (e.g., SMPL [40]) to model the
clothed human geometry and appearance [2–4]. Neural tex-
ture maps and image-to-image networks are later adopted to
achieve photo-realistic rendering [36, 37, 58, 65]. Recently,
neural radiance representations, which implicitly encode
shape and appearance using neural networks, are also ap-
plied in pursuit of higher-fidelity results [35, 49, 54]. These
methods typically define the radiance field in a canonical
pose, and warp it to live poses using linear blending skin-
ning (LBS) under the guidance of the SMPL surface.

Despite the differences in the representations inside the
aforementioned approaches, we find that there is one thing
in common: they all heavily rely on the skeleton or the
surface of SMPL model for cloth motion modeling. This
is apparent in methods based on the SMPL topology, ei-
ther using traditional texture maps [2–4] or neural textures
[36, 37, 58, 65]. Even in state-of-the-art methods based on
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implicit fields [35, 49, 54], researchers still assumed that
skin motions can be propagated to approximate the cloth
deformations, which, unfortunately, only holds for tight-
fitting clothes. When applying these methods to loose
clothes, articulation motions based on solely body joints
cannot express the complete information about the wrin-
kles and non-rigid deformations. Some methods learned to
directly regress cloth deformations from body pose config-
urations [35]; however, the complexity gap between body
poses and cloth details results in a one-to-many mapping
problem, leading to under-fitting issues where the network
learns averaged, blurry appearance. Suffering from this fa-
tal limitation, no methods have demonstrated animatable
human characters wearing skirts or dresses so far.

To overcome this limitation and fill the void, we propose
a new representation for clothed human characters. Our
representation is built upon neural radiance fields [46], or
NeRF in short, for its excellent performance in learning the
appearance of static scenes. To extend NeRF for dynamic
character modeling, we break a global NeRF into a set of
structured local radiance fields, which are attached to the
pre-defined nodes on the SMPL model. Each local radiance
field is responsible for representing the shape and appear-
ance in the local space around its corresponding node. The
local radiance fields can be driven by the body skeleton,
while having their own residual movements to represent the
non-rigid deformation of garments. Furthermore, each ra-
diance field is conditioned on a dynamic detail embedding,
which encodes the high-frequency dynamic details that can-
not be modeled via node translation. In this way, our repre-
sentation decomposes the cloth deformations in a coarse-to-
fine manner: the coarsest level is the skeleton motion, the
middle level is the residual movements of the local radiance
fields, and the finest level is the time-varying details inside
each radiance field.

However, employing such a representation for avatar
modeling is not straight-forward as the node-related vari-
ables (i.e., the node residual translations and the dynamic
detail embeddings) are difficult to acquire in practice. Al-
though we can obtain these variables for training frames
through naive optimization with image evidence, it remains
unclear how to compute them for unseen poses. Alter-
natively, one can train a network that directly regresses
these variables from body poses, but this will result into
the aforementioned under-fitting issues due to information
deficiency [6]. In order to achieve a balance between data
fitting and generalization, we draw inspiration from [6] and
learn the node-related variables in a conditional generative
latent space. Specifically, we introduce a tiny conditional
variational auto-encoder (cVAE) [68] for each local radi-
ance field. Conditioned on the pose parameters, the cVAE
decoders convert the latent bottlenecks into node-related
variables. For the input of the cVAE encoder, we find that
the time stamp [16, 57, 77] is an effective option, because

it is simple, distinguishable, and naturally guarantees the
temporal smoothness of the node-related variables thanks
to the low-frequency bias in MLPs [71]. Intuitively, the
time stamp is provided as an auxiliary input to help our
network distinguish similar poses at different frames, while
the VAE property can push the latent space to be uninfor-
mative, thereby encouraging the network to mainly rely on
pose conditions when inferring node-related variables. With
all of these building blocks, our network can be trained in
an end-to-end manner, eventually producing a realistic dy-
namic human avatar.

Overall, our proposed method offers the new ability to
automatically create an animatable human character with
general, dynamic garments. This is achieved by using only
RGB videos, without any pre-scanning efforts. Compared
to methods that heavily depend on the topology of a naked
human body template, our approach is powerful yet general
in terms of both appearance learning and motion modeling,
and able to generate realistic dynamic details. To the best
of our knowledge, our method is the first one that demon-
strates automatic human avatar creation for dresses. Exper-
iments prove that our method outperforms state-of-the-art
approaches qualitatively and quantitatively.

2. Related Work

Image-based 3D Human Reconstruction. Three-
dimensional human character reconstruction is traditionally
the very first step towards human avatar modeling. Pre-
vious studies focused on using multi-view images [38, 69,
73, 75, 76] or RGB(D) image sequences [3, 4, 7, 12, 13, 21,
23, 79, 80, 82–84, 88] for human model reconstruction. Ex-
tremely high-quality reconstruction results have also been
demonstrated with tens or even hundreds of cameras [10].
In order to reduce the difficulty in system setup, human
model reconstruction from sparse camera views has been
investigated by using neural networks for learning silhou-
ette cues [19, 48] and stereo cues [26]. More recently, var-
ious approaches were proposed to reconstruct a 3D human
model from a single-view RGB images [5,14,25,27,61,62,
74, 89, 90]. For example, PIFu [61] and PIFuHD [62] pro-
posed to regress a deep implicit function using pixel-aligned
image features and is able to reconstruct high-resolution re-
sults. ARCH [27] and ARCH++ [25] proposed to recon-
struct the 3D human model in a canonical pose in order to
support animation. Although demonstrating plausible re-
sults, these methods rely on large scale dataset of 3D hu-
man scans to train the model, and suffer from reconstruction
errors and weak generalization capability. In contrast, our
method bypasses the reconstruction step and directly learns
an animatable avatar from RGB videos.

Neural Scene Representations and Rendering. Repre-
senting objects or scenes implicitly with neural networks,
is becoming more and more popular for its compactness
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Figure 2. Illustration of our clothed human representation. In our proposed method, we represent the dynamic appearance of a clothed
human character using structured local radiance fields attached to pre-defined nodes on the SMPL model. The garment deformations
are then modeled in a coarse-to-fine manner with three set of variables, including the body poses as the coarsest level, the node residual
translations as the middle level and the dynamic detail embeddings of the local radiance fields as the finest level.

and strong representation power. Pioneer studies proposed
to learn an implicit function where the shapes are embed-
ded into the iso-surface of network output [8, 9, 11, 18,
45, 51, 87]. Another line of work on implicit represen-
tation aimed at learning scene representations for novel
view synthesis from posed 2D images. They represent
static scenes using voxel grids of high-dimensional fea-
tures [66], continuous learnable function [67] or neural radi-
ance fields (NeRF) [46]. NeRF, in particular, shows strong
capability of modeling view-dependent effects and thus at-
tracts much attention [17, 34, 39, 44, 59, 81, 85]. It is later
extended for dynamic scenes through deformation learn-
ing [15,16,32,33,52,57,64,72,77]. Human motions are usu-
ally much more challenging to learn using neural networks,
and several works [30,49,55] incorporated prior from a sta-
tistical body template to tackle this difficulty. Note that
most of these works can only playback the dynamic se-
quence that the networks are trained on, while our work
aims at animation, which is a much harder task because the
method has to generalize to new poses.

Animatable Human Avatars. In the last decade, many
efforts have been made for achieving expressive and animat-
able 3D models for human avatars. To facilitate geometric
learning, several statistical parametric templates are devel-
oped for face [31], hands [47, 60] and minimally clothed
body [28,40,50,53]. To acquire animatable characters wear-
ing casual clothes, traditional pipelines mostly reconstruct
a subject-specific mesh template in advance, and then gen-
erate its motions using physics simulation [20, 70], defor-
mation space modeling [28], or deep learning [6, 22, 78].
The reliance on pre-scanning efforts can be eliminated via
deforming a general body template, and several works pro-
posed to directly learn this deformation from geometric
data [41–43, 56] or RGB videos [2–5]. The texture map
and the rasterization step in those methods are later replaced
with neural texture maps and image decoders in order to
achieve photo-realistic rendering [36, 37, 58, 65]. Recently,

neural scene representations and rendering techniques are
adopted for higher-fidelity results [35, 54, 55]. However,
state-of-the-art methods only demonstrate results of tightly-
fitting garments, while our method is more general in terms
of clothes topology and deformation.

3. Representation
Our goal is to learn an animatable virtual characters di-

rectly from RGB videos and to support loose clothes like
skirts and dresses without pre-scanning a template. To this
end, we propose a new representation that has a strong ca-
pability of modeling the shape, appearance and dynamic
deformations of clothed humans. At its core is a set of
structured local radiance fields, each of which models the
dynamic appearance inside a local space while moving ac-
cording to the body poses as well as the cloth deformations.
To be more specific, we first pre-define N nodes on the
SMPL model via farthest point sampling. Their coordinates
on the canonical SMPL surface are denoted with {n̄i}Ni=1.
Since the nodes are sampled from the SMPL model, each
of them has an associated skinning weight vector ωi ∈ RJ ,
where J is the number of body joints. Given a pose vector
θ(t) at time stamp t, we can transform node i to the posed
space using linear blending skinning (LBS):

T
(t)
i =

∑
ωi,jMj(θ

(t)), (1)

n
(t)
i = T

(t)
i n̄i, (2)

where Mj(θ
(t)) ∈ SE(3) is the rigid transformation of the

j-th body joints and ωi,j is the j-th entry of ωi.
In Eqn. (2), the nodes strictly follow the motion of the

body surface. In order to handle the non-rigid deforma-
tions of clothes, we allow the nodes to shift independently.
Mathematically, we assign a time-varying residual transla-
tion ∆n

(t)
i to node i in the canonical space, and modify
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Eqn. (2) into:

n
(t)
i = T

(t)
i

(
n̄i +∆n

(t)
i

)
. (3)

Finally, we construct a local radiance field over the in-
fluence of each node, with a function Fi represented by a
tiny MLP. This MLP takes as input a coordinate in the local
space of node i and outputs a high-dimensional feature vec-
tor. To model the fine-grain dynamic details that cannot be
represented by node translations, we condition the local ra-
diance field on a dynamic detail embedding e

(t)
i . Formally,

given any point p ∈ R3 in the posed space at frame t, we
first calculate its coordinate in the local space of node i as:

pi =
(
T

(t)
i

)−1

p−
(
n̄i +∆n

(t)
i

)
. (4)

After that, we feed it into the local radiance network Fi and
blend the feature vectors produced by all local MLPs:

f =

∑
wiFi(pi; e

(t)
i )∑

wi
, (5)

where wi is the blending weight defined as

wi = max{exp(−∥p− n
(t)
i ∥

2
2/2σ

2)− ϵ, 0}, (6)

and ϵ is a hyperparameter controlling the influence radius of
the nodes. This blended feature f is fed into two additional
MLPs, G(·) andH(·), to compute the color & density of p:

Color(p) = G(f ,v), Density(p) = H(f), (7)

where v ∈ R3 is the viewing direction [46].
Overall, the dynamic appearance of a clothed character

is parameterized in a coarse-to-fine fashion with three sets
of variables: body poses {θ(t)}, node residual translations
{∆n

(t)
i } and dynamic detail embeddings {e(t)i }. With the

radiance field determined by these variables and the net-
works (i.e., F1,F2, ...,FN , G and H), we can shoot rays
and render images via volume rendering as in [46]. An il-
lustration of our representation is presented in Fig. 2.

Discussion. Compared to state-of-the-art methods, our
representation has two advantages:
• Our method has expressive representation power in terms

of both the motion and the topology. Although the nodes
in our representation are sampled from the SMPL model,
our method is not restricted by it. Instead, our method
allows more degrees of freedom for motion and geome-
try modeling, enabling avatar creation for different cloth
topologies, which is a significant departure from the ex-
isting works [35, 54, 58, 65].

• Our method does not explicitly define a global canoni-
cal field and consequently avoids the need for “backward
skinning” during training. Backward skinning is used

(a) (b) (c) (d)
Figure 3. Visualization of the effect of node-related variables.
(a) Ground-truth reference. (b) Rendering results without node
residual translation and dynamic detail embeddings. (c) Results
without dynamic detail embeddings. (d) Results with full set of
variables. See Sec. 5.3 for details.

to transform the points in the posed space to a global
canonical space, and has been the basis of previous meth-
ods [35, 54, 63]. Even so, we argue that this operation
is ambiguous, especially for the points around contacting
body parts. In contrast, our approach computes the radi-
ance of any point in the local space, thus resolving the
ambiguity issue.

4. Method
Having elaborated on the proposed representation, we

turn to network learning in this section. Specifically, we
need to determine the aforementioned variables alongside
with the weights of the radiance networks for a training im-
age sequence It, t = 1, 2, ..., T . The images can be cap-
tured from a multi-view system or a monocular one. In
order to synthesize images for new poses, we also have
to compute the node residual translations and the dynamic
detail embeddings corresponding to those poses. We as-
sume access to the body poses of the training images (i.e.,
θ(t), t = 1, 2, ..., T ), which can be estimated using marker-
less MoCap tools such as [1, 86]. The node residual trans-
lations and the detail embeddings are referred to as “node-
related variables” in the following context.

4.1. Network Architecture
To obtain the node-related variables for the train-

ing frames and ensure generalization during animation,
we design a simple conditional variational auto-encoders
(cVAE) [68] as an auxiliary network for each node. Each
auxiliary network consists of an encoder and a decoder,
both implemented with tiny MLPs. Following the practice
of SCANimate [63], the condition variable of this cVAE is
the pose vector multiplied by the skinning weight and an
attention map:

θ
(t)
i = (W · ωi) ◦ θ(t), (8)
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where W is the weight map that converts the skinning
weights into pose attention weights as in [63] and ◦ denotes
element-wise product. During training, the encoder takes
the time stamp t as input and θ

(t)
i as condition, and pro-

duces parameters of a Gaussian distribution, from which a
latent code z

(t)
i is sampled:

µ
(t)
i ,σ

(t)
i ← E(t, θ

(t)
i ), z

(t)
i ∼ N (µ

(t)
i ,σ

(t)
i ), (9)

Conditioned on the body pose, the latent code is then de-
coded into the node residual translation and the dynamic
detail embedding:

∆n
(t)
i , e

(t)
i ← D(z

(t)
i ,θ

(t)
i ), (10)

which are later used in Eqn. (4) and Eqn. (5), respectively.
In this network, the time instant is used to distinguish

similar poses at different time instants, thereby avoiding the
one-to-many mapping issue. With the KL-divergence loss
in cVAE, there is a preference to let the decoder to mainly
rely on the pose condition for prediction, and the time input
only provides information necessary for good reconstruc-
tion. In our implementation, we augment the time stamp
and the coordinates with Fourier encoding before feeding
them into MLPs [46] . Fig. 4 illustrates the data flow in our
network during training. Once the training is done, we can
render the model for either training frames or novel poses.
To render the training sequence, we use the full network and
set z(t)

i = µ
(t)
i in Eqn. (9) to eliminate randomness. When

unseen poses are given, the encoder half of the cVAE will
be omitted and z

(t)
i will be set to zeros.

4.2. Training Loss
Our network can be trained in an end-to-end manner.

The training loss is composed of four components, includ-
ing a reconstruction loss, a node translation regularization,
an embedding regularization, and a KL-divergence loss:

L = λrecLrec + λtransLtrans + λebdLebd + λKLLKL.
(11)

Below we discuss them in details. For ease of notation, we
drop the superscript (t) of all variables in this subsection.

Reconstruction Loss Lrec measures the mean squared
error between the rendered and true pixel colors:

Lrec =
∑
r∈R

∥∥∥C (r|θ, {∆ni}, {ei})− Ĉr

∥∥∥2
2
, (12)

where R is the set of rays in each batch, Ĉr is the ground-
truth pixel color, C(·|θ, {∆ni}, {ei}) is the volume ren-
dering function with the representation defined in Sec. 3.

Node Translation Regularization Ltrans simply con-
strains the position change of each nodes in order to stabi-
lize training:

Ltrans =
∑
i

∥∆ni∥22. (13)

Time
Stamp 
𝑡

Body 
Pose
𝜽 ·

𝐖 ∘ 𝝎𝒊

𝝁

𝝈

𝒛

𝒆𝒊

Δෝ𝒏𝒊

Point 
𝒑

Node Transformation 𝐓𝒊

Local Coordinate ෥𝒑𝒊 =

(𝐓𝒊
−𝟏𝒑 − ഥ𝒏𝑖 − Δෝ𝒏𝒊)

𝒇𝒊

× 𝑁

∑𝑤𝒊𝒇𝒊

Color & 
Density
(𝐜, 𝜎)

Inputs Intermediate Results Neural NetworksOutputs

𝓖,𝓗

Figure 4. Illustration of the data flow in our network. The time
stamp and body pose feature are first passed through the cVAEs,
which produces the node residual translations and dynamic detail
embeddings of the local radiance fields. For a point in the posed
space, we calculate its local coordinate in each local field, and then
query its feature. Finally, all features are blended and decoded into
the color and density values.

Embedding Regularization Lebd penalize large magni-
tudes of the dynamic detail embeddings:

Lebd =
∑
i

∥ei∥22. (14)

A similar loss is also used in [51]; here we utilize it to en-
courage the embeddings to encode only the information that
cannot be represented by node position.

KL-divergence Loss LKL is a standard VAE KL-
divergence penalty [29]:

LKL =
∑
i

KL (N (µi,σi) ∥ N (0, I)) . (15)

Implementation Details The local radiance networks and
cVAEs in our architecture are implemented with parallel
tiny MLPs in the form of group 1D convolution. To ac-
celerate training and inference, we exploit the fact that, for
any point in the posed space, only a small portion of nodes
have influence on its color and density value. We use Adam
optimizer to train our models. Training the whole models
takes about 25 hours on one NVIDIA 3090 GPU with 500k
iterations, while rendering an color image with resolution of
512×512 typically takes 5 seconds on one NVIDIA 3080TI
GPU. Please refer to the Supp.Mat. for more details.

5. Experiments
Dataset and Metrics. For evaluation and comparison with
baseline methods, we mainly use the following dataset: (1)
Two dress sequences from [22], which are captured using
100 cameras but we manually select 20 views among them
for computational efficiency; (2) One sweater sequences
from [24] captured with 10 cameras; (3) Two sequences
from ZJU-MoCap [55] captured with 23 cameras; and (4)
three multi-view sequences collected by ourselves with 24
cameras1. For quantitative evaluation, we use two standard

1Data collection and disclosure have been consented by the volunteers.
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Figure 5. Example results of our method. We train our network on various datasets and show the novel pose synthesis results.

metrics: peak signal-tonoise ratio (PSNR) and structural
similarity index (SSIM). More details about data collection
and preprocessing can be found in the Supp.Mat..

5.1. Results

We train our model for each individual subjects, and
present some example animation results in Fig. 1 and Fig. 5.
The results cover various body poses and different cloth
styles. As shown in these figures, our method not only
gracefully tackles different cloth types, but also generates
realistic dynamic wrinkles. Please see our supplemental
video for more visualization.

Although we mainly use multi-view videos for evalua-
tion, our method is also able to learn an avatar from single-
view input. Fig. 6 demonstrates the results of our method on
the PeopleSnapshot dataset [4], which captures performers

rotating 360 degrees in an A-pose with a monocular cam-
era. As shown in the figure, our method can also work well
with such extremely simple input, further proving its gener-
alization capability.

5.2. Comparison

We mainly compare our method with Animatable
NeRF [54] and Neural Body [55]. We omit other related
methods since they have been compared in [54].

We first compare with Animatable NeRF [54] on the
dataset of [22] and our own data. We split each video into
training frames and testing ones, train the networks using
the training frames from all views, and test the animation
quality using the testing frames. Qualitative results are pre-
sented in Fig. 7. Compared to [54], our method can produce
more appearance details, and generate the non-rigid mo-
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Figure 6. Our results on PeopleSnapshot dataset. Given a
monocular video recording a person rotating in an A-pose (top),
our method is able to create a human avatar that supports novel
pose generation and free view synthesis (bottom).

Ground-truth Animatable NeRF Ours
Figure 7. Comparison against Animatable Nerf [54] on novel
pose synthesis.

tions of dress hems. The numeric results in Tab. 1 also prove
that our method can achieve higher-quality results than [54].

To conduct a fair comparison with Neural Body [55], we
use their dataset and follow the same protocal in their paper.
In this comparison, we train our network using only 300 im-
age frames from four views, as done in [55]. We evaluate
the quality of novel view synthesis for training frames and

Table 1. Quantitative comparison with Animatable NeRF [54] in
terms of novel pose synthesis.

PSNR (↑) SSIM (↑)

Case \ Method [54] Ours [54] Ours

Hoody 22.43 24.94 0.893 0.928
Jacket 24.30 25.24 0.909 0.927
Dress1 19.52 23.43 0.848 0.891
Dress2 20.49 22.19 0.877 0.900

Table 2. Quantitative comparison with Neural Body [55] and An-
imatable NeRF [54] on ZJU-MoCap dataset.

PSNR (↑) SSIM (↑)

ID Pose Type [55] [54] Ours [55] [54] Ours

387 Seen 25.79 24.38 28.32 0.928 0.903 0.953
Unseen 21.60 21.29 23.61 0.870 0.860 0.905

392 Seen 29.44 27.43 30.79 0.946 0.919 0.958
Unseen 25.76 24.59 26.74 0.909 0.889 0.927

Training 
pose

+
Novel 
view

Novel 
pose

+
Novel 
view

Ground-truth Neural Body Ours
Figure 8. Comparison against Neural Body [55] in terms of both
novel view synthesis and pose generation. Zoom in for better view.

unseen body poses. The results in Tab. 2 shows that our
model achieves higher accuracy than [55] in both metrics.
In fact, our method performs better not only in learning ap-
pearance details like the logo, but also in generalizing to un-
seen poses, as shown in Fig. 8. We also report the numeric
results of Animatable NeRF [54] in Tab. 2 for completeness.
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(a) (b) (c) (d) (e) (f)
Figure 9. Evaluation of our cVAE design. We replace the cVAE
with a determinstic regression network, and compare the recon-
struction results of training frames. (a,d) Ground-truth. (b,e) Re-
sults by the deterministic baseline. (c,f) Our results.

5.3. Ablation Study

In this subsection, we conduct three qualitative ablation
experiments on the main components of our method design.
We present the quantitative results as well as some addi-
tional experiments in the Supp.Mat..
Node-related variables. To understand the effect of the
node-related variables in our method, we take the trained
model for a dress sequence and conduct experiment on it.
Specifically, we render the images of training poses under
three circumstances, i.e., 1) without node residual transla-
tions or dynamic detail embeddings, 2) with node residual
translations but without dynamic detail embeddings, and 3)
with both node translations and detail embeddings. The re-
sults are shown in Fig. 3. As the figure shows, when the
node residual translations and the dynamic detail embed-
dings are both disabled, the model only recovers the artic-
ulated motions and fails to render the correct shape of the
moving character. With solely the node residual translation
enabled, the non-rigid deformation of the dress hem can be
recovered, but the shading on the facial area is not consistent
with the image evidence. Only with both the node residual
translation and the dynamic detail embeddings enabled can
all appearance details be faithfully reconstructed.
cVAE. We evaluate our choice of cVAE-based architec-
ture by replacing it with a deterministic network that di-
rectly regresses the node-related variables from body poses.
This baseline network is trained under the same setting as
our proposed model. We render the images for training
frames in order to compare the performance of data fitting,
and the results are presented in Fig. 9. Not surprisingly,
naively learning a mapping from pose parameters to the
node-related variables, without specifically account for the
potential one-to-many mapping problem, will produce av-
eraged appearance and fail to recover the dynamic garment
wrinkles even for training images. In contrast, our method
can fit to training data much better than the baseline method,
consequently enabling realistic animation and rendering.
Time stamp input. There exist other options that can
be used as the cVAE input for resolving the one-to-many
mapping problem. For instance, we can use learnable per-
frame latent embeddings. The motivation behind our choice
of time stamp is that, the low-frequency bias in MLPs can

Node of 
Interest

(a) (b) (c) (d)
Figure 10. Evaluation of the time instant input. We replace the
time stamp input with learnable per-frame latent codes and com-
pare the trajectory of nodes. (a) Training video. (b) The node of
which we visualize the trajectory. (c) Node trajectory using learn-
able latent codes. (d) Node trajectory using the proposed method.

ensure temporal smoothness of the node-related variables,
especially for node residual translations. In this way, we
avoid the need for an additional loss of temporal smooth-
ness. To validate this motivation, we conduct an ablation
study where we replace the time stamp input with learn-
able latent embeddings. Then we compare the node trajec-
tories as in Fig. 10. As shown by the results, without ex-
plicitly constraining the temporal smoothness, the baseline
method learns noisy node motions, while the trajectory of
our method is much more smooth and physically plausible.

6. Discussion

Conclusion. We introduced a novel method that uses struc-
tured local radiance fields for generation of controllable
clothed human avatars. It has expressive representation
power for both appearance and motion, as we leverage the
advantages of neural scene representation while explicitly
accounting for the motion hierarchy of clothes. Compared
to existing methods, ours can handle more general cloth
styles and generate realistic dynamic details.
Limitation. The performance of our method depends on
the pose variance in the training data, and our method may
fail to generate plausible results when the animation poses
starkly differ from the training poses; see Supp.Mat. for an
example. In addition, the dynamic deformations and wrin-
kle changes of garments involve complex physics processes,
which may be beyond the representation capability of our
model. Finally, our method assumes accurate body pose
estimation for the training images; that is why we mainly
conduct experiments on multi-view dataset. For monocu-
lar videos, erroneous pose estimation caused by ambiguity
may eventually lead to rendering artifacts.
Potential Social Impact. Our method enables automatic
creation of a digital twin of any person. It can be combined
with existing Deep Fake algorithms to generate fake videos
through character animation and reenactment, which need
to be addressed carefully before deploying the technology.
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