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Abstract

Visual relation understanding plays an essential role for

holistic video understanding. Most previous works adopt

a multi-stage framework for video visual relation detec-

tion (VidVRD), which cannot capture long-term spatio-

temporal contexts in different stages and also suffers from

inefficiency. In this paper, we propose a transformer-

based framework called VRDFormer to unify these de-

coupling stages. Our model exploits a query-based ap-

proach to autoregressively generate relation instances. We

specifically design static queries and recurrent queries to

enable efficient object pair tracking with spatio-temporal

contexts. The model is jointly trained with object pair

detection and relation classification. Extensive experiments

on two benchmark datasets, ImageNet-VidVRD and VidOR,

demonstrate the effectiveness of the proposed VRDFormer,

which achieves the state-of-the-art performance on both

relation detection and relation tagging tasks. The code is

released at https://github.com/zhengsipeng/

VRDFormer_VRD.

1. Introduction

Video visual relation detection (VidVRD) [32] aims to

detect all relation instances in the video. Each instance

contains a subject, an object and their relationship, as well

as the spatial and temporal locations of the subject and the

object. This task has attracted more and more attention in

recent years, as it serves as a bridge to connect basic vision

tasks (e.g. object detection [5, 12, 54] and tracking [11, 47])

with more complicated video semantic understanding tasks

(e.g. captioning [43] and VideoQA [25]).

One typical approach for VidVRD [30, 32, 36] is to

decompose the task in a multi-stage pipeline. These works,

as illustrated in Figure 1, firstly employ off-the-shelf object

detectors [27, 54] to detect and track objects in a video, and

then, enumerate every two object tracklets and use temporal

sliding window to obtain tracklet pairs. Finally, they filter

*Qin Jin is the corresponding author.
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Figure 1. Existing VidVRD methods adopt a multi-stage pipeline.

They suffer from limited spatio-temporal contexts, overly sampled

tracklet pairs, and independently optimized modules.

out invalid tracklet pairs, then predict relation types for

the remained ones using region-of-interests (RoI) features

cropped from pre-computed CNN feature maps [3, 27].

We consider that there are three major limitations in such

multi-stage framework. First, spatio-temporal contexts are

not well exploited in tracklet pair generation. In fact, spatio-

temporal contexts not only can enhance the model’s ability

to localize objects, but also provide valuable information to

infer the presence or absence of a relation. For example, the

detection of the subject/object when occlusion occurs can

get help from the temporal context. The relation reasoning

can benefit from the spatial context. Although context

has been widely adopted for the final relation classification

step [39, 44], it has not been well explored in the detection

of relation instances in video. Therefore, object detection

and tracking might not be very accurate in these methods,

resulting in accumulated errors to the following stages.

Second, in previous works, each module is independently

trained. However, object detection, tracking and relation

classification are highly correlated and could promote each

other through joint learning. Last but not least, since

tracklet pairs are exhaustively generated, many of them

do not have meaningful relations, which not only harms
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computational efficiency but also influences classification

performances.

To address above limitations, in this work, we propose

a unified transformer-based video visual relation detection

framework named VRDFormer. It consists of a video

encoding module and a query-based relation instance gen-

eration module to detect relations in an autoregressive

manner. Specifically, we adopt a query-based approach

to detect and track object pairs. We propose two types of

queries for object pairs generation in videos, namely static

and recurrent queries. The static queries detect new object

pairs in each frame which can aggregate the spatial contexts

via transformer attention mechanism, while the recurrent

queries aggregate the temporal contexts across frames to

track previously detected object pairs. We keep all tracklet

pairs in a memory and use a transformer-based model to

classify relations for each tracklet pair which reserves long-

term spatio-temporal history. The whole model is end-

to-end trained by the object pair detection and relation

classification tasks jointly. We conduct extensive experi-

ments on two benchmark datasets to evaluate the model.

VRDFormer achieves the state-of-the-art performance in

relation detection and relation tagging on the two datasets.

In summary, our contributions are as follows:

• We propose a unified one-stage model VRDFormer

for video visual relation detection (VidVRD), which

is able to perform tracklet pair generation and relation

classification simultaneously.

• We design static queries and recurrent queries to ag-

gregate spatio-temporal contexts, which enable more

convenient temporal association for object pairs across

frames and more effective relation classification.

• We carry out extensive experiments and analysis on

two benchmark datasets and achieve the state-of-the-

art performance on both datasets.

2. Related Work

Image Visual Relation Detection (ImgVRD). Relations

among objects play an important role in image understand-

ing, and thus the task of ImgVRD has received much

attention in recent years [6, 22, 42, 45, 46]. Earlier works

adopt a two-stage framework [16, 17, 44, 55], which first

detects objects then predicts relations for every pair of

objects in the image. They mainly focus on the second

relation prediction stage, for example, employing graph

neural networks to encode more contexts [39], fine-grained

pose features [38,50], or language priors [22,49]. However,

these approaches suffer from accumulated errors in two-

stage processing and computation inefficiency. Recently,

one-stage models [18] are emerging for ImgVRD to address

these limitations. Different from previous works which

adopt a CNN-based architecture, HOTR [14] and QPIC [35]

instead utilize transformer architectures with query-based

pairwise detection to benefit from global spatial contexts.

Video Visual Relation Detection (VidVRD): VidVRD

[7, 26, 33, 34] is a more challenging task compared to

ImgVRD, involving more diverse relation types and object

spatial-temporal localization. Most existing works follow

a multi-stage pipeline [32], such as object detection, object

tracking, tracklet pair generation and relation classification.

These works focus on improving relation classification by

leveraging contextual knowledge [26,36], inter-dependency

or long-range temporal information [20], while simply

using off-the-shelf models like Faster-RCNN [27] for object

detection or Deep-Sort [41] for tracking. 3DRN [1] is

the only one-stage model that unifies object detection,

tracking and relation classification based on I3D backbone

[3]. Though improved efficiency, 3DRN shows poor per-

formance on localization compared to multi-stage methods,

since it fails to leverage rich localization knowledge from

pre-trained object detectors or tracking models.

Transformers in Vision. Transformer [37] has achieved

significant progress [13] in vision tasks including image

classification [8], object detection [2,53] and image relation

detection [14,35]. One typical approach is DETR [2], which

decodes a set of queries into object proposals in parallel

by regarding object detection as a set prediction problem.

Recently, some works explore to extend such query-based

architecture in video domain [4, 23, 40]. Among them,

Meinhardt et al. [23] propose a new concept named track

query that can follow an object over time for tracking.

Inspired by the success of transformers in many vision

tasks, we explore the transformer architecture for VidVRD.

3. Methodology

The video visual relation detection (VidVRD) task aims

to detect all relation instances in the video. Each relation

instance is denoted as (s, r, o, T s
t1:tn , T

o
t1:tn), where s, r, o

denote the triplet classes of subject, relation and object

while T s
t1:tn , T o

t1:tn denote tracklets of the subject and the

object between the start and end timestamp t1 and tn in

the video. T s
t1:tn consists of (bst1 , · · · , b

s
tn
) where bsti is

the bounding box of subject at time ti. Similarly, T o
t1:tn

is represented as (bot1 , · · · , b
o
tn
). In the following, we first

present the overall framework of our model VRDFormer

in Sec 3.1, then introduce its key ingredient, query-based

relation instance generation in Sec 3.2. Finally, we de-

scribe training and inference algorithms for VRDFormer in

Sec 3.3 and Sec 3.4 respectively.

3.1. Overall Framework

VRDFormer consists of a video encoding module and a

query-based relation instance generation module.

The video encoding module encodes a video into a
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Figure 2. Overall framework of the query-based relation instance generation module in our VRDFormer. It consists of: (a) frame-

level object pair detection (blue module), which detects object pairs based on static or recurrent queries for each frame; (b) tracklet

pair updating (orange module), which autoregressively updates a tracklet pair memory frame by frame. (c) relation classification (grey

module), which predicts relations per frame for each detected tracklet pair with temporal aggregation to model the long-term dependencies.

sequence of frame-level feature maps. It contains a CNN

backbone and a multi-layer transformer [37]. For each

frame in the video, the CNN backbone extracts feature maps

with local spatial contexts, and then the transformer uses

self-attention to capture global spatial contexts. Positional

embeddings [24] are added to enhance spatial information.

The query-based relation instance generation module

(illustrated in Figure 2) processes the encoded feature

maps frame-by-frame and generates relation instances in

an autoregressive manner. It consists of three sub-modules:

1) frame-level object pair detection; 2) tracklet pair updat-

ing; and 3) relation classification. The first sub-module

(Sec 3.2.1) detects object pairs with a query-based approach

[2] for each frame t. For each object pair in the form of

(s, o, bst , b
o
t ), an interactiveness probability pintrt is predicted

to denote whether there is certain type of relations between

two objects. Then, the second sub-module (Sec 3.2.2)

connects object pairs along the temporal axis into tracklet

pairs. At each frame step, the module updates a tracklet

pair given current predictions then stores its current status

into a memory bank. A tracklet pair in the memory is

formulated as (s, o, T s
<t, T

o
<t), which includes all the spatio-

temporal locations and features of the same s and o instance

until frame t. The highly interactive object pair in frame t

with a large pintrt will either initialize a new tracklet pair

or expand the trajectories (T s
<t, T

o
<t) of an existing tracklet

pair. Finally, for each tracklet pair in the memory bank, the

last sub-module (Sec 3.2.3) predicts its relation class at its

every occurred frame t given temporal and spatial contexts.

The whole model can be end-to-end trained with multiple

tasks, such as object detection and relation classification.

3.2. Querybased Relation Instance Generation

3.2.1 Frame-level Object Pair Detection

This sub-module consists of three components: input

queries, a transformer decoder and prediction heads.

Static and Recurrent Queries. We utilize query vectors

to extract contextual information from the video for object

pair detection. Similar to query-based ImgVRD [35], each

query captures information to decode at most one object

pair. However, unlike ImgVRD where an object pair only

occurs in a single image, an object pair in the VidVRD task

can evolve over time in the video, so associating object pairs

across different images poses a great challenge to the model.

To support convenient and effective temporal associations

of object pairs, we propose a new type of queries inspired

by [23], which recurrently gathers spatio-temporal contexts

to track previous object pairs in subsequent frames.

To be specific, there are two types of query vectors,

namely static queries and recurrent queries. The static

queries contain a fixed number of learnable query vectors

(qst1 , · · · ) to detect new object pairs in each frame, while

the number of recurrent queries (qre1 , · · · ) is dynamic. As

can be seen in Figure 2(b), each recurrent query inherits

feature embeddings of an object pair in the previous frame,

and thus carries previous semantic and location information

to localize the same instance in the current frame. We
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will describe how to obtain and update recurrent queries in

Sec 3.2.2. The static and recurrent queries are concatenated

together as input to the decoder presented below.

Transformer Decoder. The decoder is a multi-layer trans-

former which transforms query vectors (qst1 , · · · , qre1 , · · · )
into contextualized output embeddings (dst1 , · · · , d

re
1 , · · · )

for object pair detection. There are two types of attention

per transformer layer: 1) self-attention over queries to

model their correlations, and 2) cross-attention between

queries and feature maps of the current frame to incorporate

each query with image-wide contexts of the frame.

Prediction Heads. Given the output embedding of an

input query, we utilize five prediction heads implemented

as multi-layer perceptron (MLP) to predict: 1) subject

bounding box bsi ∈ R
4; 2) object bounding box boi ∈ R

4;

3) subject class probability psi ∈ R
Nobj ; 4) object class

probability poi ∈ R
Nobj ; and 5) interactiveness probability

for each relation type pintri ∈ R
Nrel with sigmoid activation

function, where Nobj, Nrel are the total number of object

and relation classes respectively. The pintri denotes an

initial relation score during tracking. Therefore, each

query represents an object pair (si, oi, b
s
i , b

o
i ), where si =

argmax psi , oi = argmax poi . To be noted, the notations of

the queries and predictions are for each frame, whereas we

omit the subscript t for notation simplicity.

3.2.2 Tracklet Pair Updating

We keep a memory bank to store tracklet pairs as illustrated

in Figure 2(b). Thanks to our design of static and recurrent

queries, it is straightforward to initialize new tracklet pairs

or associate object pairs to existing tracklet pairs.

Initialization of New Tracklet Pairs. Object pairs pre-

dicted from static queries denote new tracklet pairs, which

firstly occur in the frame (except for the re-activated pairs

described in “Expansion of Existing Tracklet Pairs” below).

For each static query qsti , we compute a confidence score

θsti as follows:

θsti = max psi ·max pintri ·max poi . (1)

We only select static queries with confidence score larger

than a threshold θintr to filter out invalid object pairs without

interaction. We use their predictions {si, oi, b
s
i , b

o
i } together

with the corresponding output embedding dsti to initialize

new tracklet pairs in the memory. The output embedding

dsti is used as a recurrent query for the next frame.

Expansion of Existing Tracklet Pairs. A recurrent query

corresponds to an existing tracklet pair in the memory bank

by its definition. For each recurrent query qrei , we can

calculate a confidence score θrei at the current frame similar

to Eq (1). If θrei of the query is below threshold θintr, or

its object class predictions are different from the classes

of its corresponding tracklet pair, the recurrent query will

be inactivated. We only add bounding box predictions

of active recurrent queries into their aligned tracklet pairs

in the memory. For inactivated recurrent queries, we do

not discard them immediately. Instead, we wait for up to

Tre frames as in [23] because the occlusions, shadows or

other unexpected circumstances may make predictions at a

frame unstable. If a static query at one frame shares the

same subject and object classes with an inactive recurrent

query and their IoU of bounding boxes is larger than a

threshold θre, this recurrent query will be re-activated for

tracking again. We use linear interpolation to fill the

missing predictions during the inactive period. The output

embedding drei of a remained recurrent query continues

to serve as a recurrent query for the next frame. Such

autoregressive manner enables recurrent queries to record

long-term temporal contexts of previous frames.

3.2.3 Relation Classification

For each completed tracklet pair in the memory, the relation

classification module predicts its relation class for every

frame as shown in Figure 2(c). Both spatial and temporal

contexts are essential to recognize the relation of an frame-

level object pair at any frame t. To this end, we utilize

query output embedding dt for the relation classification,

which captures image-wide spatial contexts at frame t and

its previous temporal contexts. In order to further smooth

the frame-level relation prediction of a tracklet pair, we

further consider dt and query output embeddings of its

previous T frames, denoted as Dt = {dt−T+1, · · · , dt},

in prediction. We employ another transformer to aggregate

Dt. Specifically, we concatenate a learnable token [cls]

with Dt, and add temporal positional encoding to each to-

ken according to their frame index. The output embedding

of the [cls] token is fed into a MLP head to predict a relation

probability prt ∈ R
Nrel for the tracklet pair at frame t.

Compared to the initial relation score pintr
i in Sec 3.2.1, prt

can improve relation prediction with more accurate spatial-

temporal contexts.

3.3. Training VRDFormer

We jointly train VRDFormer with the object pair detec-

tion and relation classification tasks.

3.3.1 Task I: Object Pair Detection

In this task, we train video encoding and frame-level object

pair detection modules. To improve training efficiency and

reduce memory burden, we only sample two frames (t1, t2)
with a short interval in the video to mimic the tracking

procedure as [23]. For each frame, we first calculate a

bipartite matching between predictions by the model and

the groundtruth, and then compute losses for matched pairs.

Bipartite Matching. The groundtruth for each frame is a
sequence of annotated object pairs. We pad the groundtruth
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with ∅ (no interaction), so that the groundtruth sequence
has the same size as the queries to be matched. We
use Hungarian algorithm [2] to find an optimal mapping
with minimal matching cost between the groundtruth and
the predictions of queries for each frame. Assume yi =
(si, oi, b

s
i , b

o
i ) is the prediction of a query qi, and y∗j =

(s∗j , o
∗

j , b
s∗
j , bo∗j ) is the j-th object pair in groundtruth. In

addition, pintri is the interactiveness probability of qi and

pintri

∗

denotes the relation label vector of y∗j . The matching

cost Cmatch(yi, y
∗

j ) is computed as follows:

Cmatch(yi, y
∗

j ) =− p
s
i [s

∗

j ]− p
o
i [o

∗

j ]−
1

2
Cintr(p

intr
i , p

intr
j

∗

)

+ λboxCbox(b
s
i , b

s∗
j , b

o
i , b

o∗
j )

(2)

where psi [s
∗

j ], p
o
i [o

∗

j ] denote the probability of groundtruth
class s∗j and o∗j . Cintr is an interaction cost defined as:

Cintr(p
intr
i , p

intr
j

∗

) =
(pintrj

∗

)Tpintri

||pintrj
∗
||1 + ϵ

+
(1− pintrj

∗

)T(1− pintri )

||1− pintrj
∗
||1 + ϵ

(3)

Eq (3) balances the number of positive and negative relation
classes. Cbox is the box cost with a balance factor λbox to
measure the alignment of object bounding boxes:

Cbox(b
s
i , b

s∗
j , b

o
i , b

o∗
j ) = max{||bsi − b

s∗
j ||1, ||b

o
i − b

o∗
j ||1}

+max{−GIoU(bsi , b
s∗
j ),−GIoU(boi , b

o∗
j )}

(4)

where || · ||1 and GIoU denote the L1 norm and generalized

IoU [28]. Same as [35], we minimize the larger one of the

subject and object box costs to avoid undesirable matching

bias when one cost is significant small than the other.

For the first frame t1, as there is no recurrent query,

we only align the groundtruth with predictions of static

queries. For the second frame t2, each recurrent query

tracks an existing object pair detected in frame t1, and thus

it inherits the groundtruth alignment in t1. Therefore, if the

previous object pair instance still occurs in groundtruth of

frame t2, its recurrent query can be directly mapped with the

groundtruth item, otherwise the recurrent query is mapped

to ∅. The other unmatched groundtruth items are used

in bipartite matching with static queries via the Hungarian

algorithm. In this way, we obtain the matching with the

groundtruth for each query prediction at frame t1 and t2.

Prediction Loss. After we find an optimal matching σ,
the i-th groundtruth y∗i can be mapped to the σ(i)-th query
prediction, we compute a loss for (yσ(i), y

∗

i ) as follows:

Ldet(yσ(i),y
∗

i ) = −µcls

(

log p
s
σ(i)[s

∗

i ] + log p
o
σ(i)[o

∗

i ]
)

+

µintrLintr(p
intr
σ(i), p

intr
i

∗

)+

µbox■i/∈Ω

(

Lbox(b
s
σ(i), b

s
i
∗) + Lbox(b

o
σ(i), b

o
i
∗)
)

(5)

Ω denotes the set of groundtruth that corresponds to “no
interaction”, and µbox, µcls, µinter are three scaling factors.
The Lintr is the binary cross entropy loss. Lbox(b

s
σ(i), b

s
i
∗)

for the subject is computed as follows:

Lbox(b
s
σ(i), b

s
i
∗) = ||bsσ(i) − b

s
i
∗||1 −GIoU(bsσ(i), b

s
i
∗) (6)

Lbox(b
o
i , b

o
i
∗) for the object is computed similarly as Eq (6).

The final loss is the average loss of all matched pairs in

frame t1 and t2.

3.3.2 Task II: Relation Classification

In this task, we further train relation classification module

with other parameters given groundtruth object pair loca-

tions. As we have groundtruth object pairs for each frame,

we could use the exact number of queries as input per frame.

Different from the inference as described in Sec 3.4, the

input embedding of each query can be directly initialized by

the RoI aligned features [9] of groundtruth object pair in the

encoded feature maps. In this way, we reduce the number of

queries for each frame, and are able to employ more frames

with longer temporal duration for relation classification.

Given the relation prediction prt of a tracklet pair at frame t,

and its groundtruth label r∗t , the classification loss at frame t

is Lrel = − log prt [r
∗

t ]. We average the loss over all frames

and traklet pairs.

3.4. Inference

During inference, VRDFormer detects object pairs

frame-by-frame with static and recurrent queries, updates

the tracklet pair memory, and predicts frame-level relations

for each tracklet pair in the memory. Suppose there

are N tracklet pairs in the memory, where each pair

is (s, o, {prt}
tn
t=t1

, {bst}
tn
t=t1

, {bot}
tn
t=t1

). As shown in

Figure 2(c), we can plot an interactive curve over time

for each relation type of the tracklet pair. Therefore, we

decompose these N tracklet pairs into N × Nrel relation

tracklet pairs. We utilize watershed algorithm similar

to [48] to obtain relation instance proposals for each

relation tracklet pair. Finally, we select top K relation

instances according to their relation probabilities. More

details can be seen in the supplementary material.

4. Experiments

4.1. Experimental Setup

Datasets. We carry out experiments on two video relation

benchmarks: ImageNet-VidVRD [32] and VidOR [30].

ImageNet-VidVRD is a subset of ILSVRC2016-VID [29],

which contains 1,000 videos and labels of 35 object classes

and 132 relation classes and 4,835 relation instances in total.

It is split into a training set and a testing set with 800 and

200 videos respectively. VidOR is a larger dataset than

ImageNet-VidVRD. It contains 10,000 videos and 378,546

relation instances with 80 object classes and 50 relation

classes. It is split into 7,000 videos for training, 835 videos

for validation, and 2,165 videos for testing.

Evaluation Protocol. We follow the standard evalua-

tion protocol in [32] which includes two sub-tasks: rela-

tion detection and relation tagging. The relation detec-
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Table 1. Comparison with previous works on the relation detection

task. “Det Data” denotes additional datasets used by different

models for object detection: COCO (MS-COCO [19]), DET

(ILSVRC2016-DET [29]) and OPEN-IMG (OpenImage [15]).

Method Det Data
Relation Detection

mAP R@50 R@100

ImageNet-VidVRD

VIDVRD [32] COCO+DET 8.58 5.54 6.37

GSTEG [36] COCO+DET 9.52 8.67 7.05

VRD-GCN [26] COCO 14.23 7.43 8.75

3DRN [1] - 14.68 5.53 6.39

MAGUS.Gamma [34] - 6.56 6.89 8.83

VRD-STGC [20] COCO+DET 18.23 11.21 13.69

VIDVRD II [31] OPEN-IMG 29.37 19.63 22.92

VRDFormer (Ours) COCO 32.43 21.92 25.40

VidOR

RELAbuilder [51] COCO+DET 1.47 1.58 1.85

3DRN [1] - 2.47 2.58 2.75

VRD-STGC [20] COCO+DET 6.85 8.21 9.90

VIDVRD II [31] OPEN-IMG 8.65 8.59 10.69

VRDFormer (Ours) COCO 11.19 11.05 13.34

tion sub-task evaluates the precision of relation instances

(s, r, o, T s
t1:tn , T

o
t1:tn). A predicted relation instance is

considered as positive only when the vIoU (voluminal

Intersection-over-Union) between its subject/object trajec-

tory and the groundtruth subject/object trajectory is larger

than 0.5 and classifications for s, r, o are all correct. This

sub-task is evaluated by Mean Average Precision (mAP),

Recall@50 (R@50) and Recall@100 (R@100). Recall@K

denotes the fraction of positive relation instances in top K

predictions. The relation tagging sub-task instead provides

the groundtruth trajectories and only evaluates the model

on the prediction of s, r, o. We use Precision@K (P@1,

P@5 and P@10) as the metrics for relation tagging. We also

propose a tracklet pair detection task in our ablations, which

evaluates the precision of tracklet pairs (s, o, T s
t1:tn , T

o
t1:tn)

without considering the relation precision.

Implementation Details We use ResNet-101 [10] as the

CNN backbone and the same transformer encoder and

decoder architecture as Deformable-DETR [53] which con-

sists of 6 transformer layers. The VRDFormer model is

initialized from Deformable-DETR [53] pre-trained on MS-

COCO dataset [19]. We train VRDFormer with AdamW

[21] optimizer. The learning rate is set to 10−5 for CNN

backbone and 10−4 for remaining modules in Task I train-

ing. The learning rate is divided by 10 in Task II training.

The dimension of hidden layers in transformer is set to

256. We set the number of static queries and the maximum

number of recurrent queries as 100. We adopt the full two-

task training strategy for relation detection by alternately

using one mini-batch to train Task I and then another mini-

batch to train Task II, and we only train Task II for the

relation tagging task. It takes 32 hours to train on VidOR

Table 2. Comparison results with previous state-of-the-art works

on the relation tagging task.

Method Det Data
Relation Tagging

P@1 P@5 P@10

ImageNet-VidVRD

VIDVRD [32] COCO+DET 43.0 28.9 20.8

GSTEG [36] COCO+DET 51.5 39.5 28.23

3DRN [1] - 57.89 41.80 29.15

VRD-GCN [26] COCO 59.5 40.5 27.85

VRD-STGC [20] COCO+DET 60.0 43.1 32.24

VIDVRD II [31] OPEN-IMG 70.4 53.88 40.16

VRDFormer (ours) COCO 73.0 57.1 44.75

VidOR

RELAbuilder [51] COCO+DET 33.05 35.27 -

VRD-STGC [20] COCO+DET 48.92 36.78 -

MAGUS.Gamma [34] - 51.20 41.73 -

3DRN [1] - 52.59 42.33 29.89

VIDVRD II [31] OPEN-IMG 57.4 44.54 33.3

VRDFormer (ours) COCO 63.71 51.07 39.89

using 8 V100 GPUs and the inference speed is 18.2 FPS.

More details are presented in the supplementary material.

4.2. Comparison with State of the Art

Table 1 compares our VRDFormer with state-of-the-art

methods on the relation detection task. Our model achieves

the best performance under all the three evaluation metrics.

Compared with VidVRD II [31], we use much less data

for object detection but still achieve +3.06%, +2.29% and

+2.48% improvements for mAP, R@50 and R@100 respec-

tively on the ImageNet-VidVRD dataset. We obtain similar

improvements on the large-scale VidOR dataset as well,

with +2.54%, +2.46% and +2.65% for the three metrics

respectively. We also compare VRDFormer with some

graph-based methods such as VRD-STGC [20] or VRD-

GCN [26], which focus on learning from contextualized

information as well. Our performance is more encouraging,

which shows more than +10% improvement on ImageNet-

VidVRD and +3% improvement on VidOR using similar

collection of data for object detection. Such results indicate

that our model is more effective and efficient for local-

ization of relation instance by leveraging both spatial and

temporal contexts. Table 2 presents the comparison results

for the relation tagging task. VRDFormer achieves state-of-

the-art results on both datasets as well.

Please note that we also compare VRDFormer with

another end-to-end method 3DRN [1]. VRDFormer out-

performs 3DRN significantly in both relation detection

and relation tagging tasks on both datasets. For example,

VRDFormer achieves +17.75%, +16.39% and +19.01%
improvement for relation detection on metrics mAP, R@50

and R@100 respectively on ImageNet-VidVRD. It achieves

+15.11%, +15.3% and +15.6% improvement for relation
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Table 3. Ablations of recurrent queries and re-activate strategies.

Re-

Activate

Recurrent

Query

Relation Detection Tracklet Pair Detection

mAP R@50 R@50 R@100

1 × × 27.25 17.04 26.91 30.13

2 × ✓ 30.67 20.33 29.62 31.98

3 ✓ ✓ 32.43 21.92 30.47 34.25

tagging on metrics P@1, P@5 and P@10 on ImageNet-

VidVRD. Similar performance improvement trend is ob-

tained on VidVRD as well. We believe these performance

differences are mainly due to the fact that 3DRN directly

generates object tracklets from the I3D backbone [3], there-

fore it abandons the knowledge to localize an object from

the off-the-shell models like Faster-RCNN [27]. Instead,

VRDFormer learns from such knowledge by pre-training

it on object detection data. Additionally, VRDFormer

leverages auxiliary contexts to help localization, while

3DRN localizes each tracklet independently.

4.3. Ablation Study

We carry out extensive ablation studies on ImageNet-

VidVRD to evaluate different components in our model.

1) Recurrent queries. Recurrent queries enable our model

to conveniently employ temporal contexts to associate ob-

ject pairs in different frames. We compare our model with

a variant without recurrent queries in Table 3. Row 1

only utilizes static queries to detect object pairs for each

single frame, and we employ a greedy approach [48, 52]

to associate predicted object pairs across frames in post-

processing. We see that recurrent queries largely improve

the performance to generate tracklet pairs (row 1 vs. 2).

2) Re-activate strategy for recurrent queries. We adopt

a re-activate strategy to alleviate the influence of missing

tracking results in a few frames. In Table 3, we further

evaluate the effectiveness of the re-activate strategy as

shown in row 2 and row 3. The results demonstrate that

such strategy is beneficial for tracking.

3) Joint training of object pair detection and relation

classification tasks. Previous works [20, 32] utilize in-

dependent modules for VidVRD. Nevertheless, relation

classification can benefit the detection of interactive object

pairs with relations, and vice versa. Table 4 compares

models with and without such joint training. The model in

row 1, without relation confidence score to select positive

object pairs in frames, achieves much worse performance

in both tracklet pair detection and relation detection.

4) Number of queries. Table 5 compares the influence

of different numbers of static queries. A small number

of static queries such as 20 in row 2 drastically decrease

the performance especially for recalls, because it limits the

generation of relation tracklets and may miss some positive

Table 4. Ablations of joint training of object detection and relation

classification.

joint train
Relation Detection Tracklet Pair Detection

mAP R@50 R@50 R@100

1 × 29.85 19.36 28.11 31.85

2 ✓ 32.43 21.92 30.47 34.25

Table 5. Ablations of different number of queries, where Nq

denotes the number of static queries. Row 1 shows the results

using the VidVRD baseline [32].

Nq
Relation Detection Tracklet Pair Detection

mAP R@50 R@50 R@100

1 - 5.54 6.37 10.87 12.18

2 20 21.67 13.48 20.58 22.50

3 50 30.12 17.05 25.56 27.94

4 100 32.43 21.92 31.35 35.14

5 200 28.62 20.50 30.47 34.25

6 300 24.68 19.44 28.75 33.65

Table 6. Ablations of different strategies to aggregate temporal

contexts of tracklets pairs in the video.

Aggregation
Relation Detection Relation Tagging

mAP R@50 P@1 P@5

1 Mean 31.17 20.39 71.13 55.82

2 LSTM 31.85 21.45 72.53 56.77

3 Self Att 32.43 21.92 73.11 57.19

relation pairs in groundtruth. On the contrary, a too large

number of static queries such as 200 or 300 is harmful to the

performance especially for precision (mAP) due to overly

sampling the proposals. It decreases the performance of

mAP with −3.81% when Nq = 200 and −7.75% when

Nq = 300. The recalls also decrease a bit because when we

increase Nq , it will be more challenging to capture positive

proposals from the top ranks. Comparing different scales of

the query set, we set Nq=100 in this work.

5) Temporal aggregation strategy in relation classifica-

tion. In Table 6, we compare different strategies to

aggregate the temporal contexts of tracklet pairs for relation

classification. Using the mean pooling, VRDFormer has

achieved encouraging performance. In addition, using

a LSTM for temporal aggregation brings slight improve-

ment. The best performance is achieved by adopting the

transformer with self-attention. Comparing row 1 and 3,

VRDFormer obtains +1.26% and +1.53% improvement on

mAP and R@50 for the relation detection task. We think

the limited improvement may relate to the limitation of

datasets, as many relations such as “kiss” or “behind” in

both datasets do not show complicated temporal variations.

Therefore, a naive aggregation strategy could be good

enough for these relation types.
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Table 7. Ablations of different length for temporal aggregation.

T length
Relation Detection Relation Tagging

mAP R@50 P@1 P@5

1 1 30.57 19.92 70.55 55.37

2 4 30.82 20.14 70.84 55.68

3 8 31.25 20.48 71.25 56.03

4 32 32.43 21.92 73.11 57.19

Table 8. Ablations of transformer components, where “Cross” and

“Self” denote the cross- and self-attention in transformer decoder.

Decoder Relation Detection Relation Tagging

Cross Self mAP R@50 P@1 P@5

1 × ✓ 28.38 18.84 69.60 53.49

2 ✓ × 26.03 16.38 67.46 51.68

3 ✓ ✓ 32.43 21.92 73.11 57.19

6) Length for temporal aggregation. In Table 7, we

further explore a suitable length T to reserve the em-

bedding memories of tracklet pairs for long-term relation

prediction. When T equals to 1, our model directly uses

the current recurrent query to predict the relation, which

only contains short-term memory for relation classification.

To our surprise, performance in this case is comparable

with performance using T=32, showing both efficiency and

effectiveness of the recurrent queries to model the short-

term temporal contexts. While the long-term memory of

temporal contexts is still beneficial comparing row 1 and 4.

7) Transformer architectures. Table 8 ablates different

attentions in our transformer decoder for object pair gener-

ation. Row 1 utilizes the decoder without cross-attention.

In such case, the query is initialized same as the two-stage

version of [53] to obtain image cues. Adding the cross-

attention (Row 3) brings stable significant improvement

on both tasks, which proves that the external information

beyond the cropped bounding box regions indeed help

enhance the queries. Row 2 uses the transformer decoder

without self-attention, which is much worse than results in

row 3. It shows that the contextual relationships between

different relation tracklets are beneficial to improve the

localization and relation prediction. Combining cross-

and self-attention in the decoder, we achieve the best

performance on relation tagging and detection in row 3.

4.4. Quality Analysis

Some visualization examples are illustrated in Figure 3

for comparison between our model and the VidVRD base-

line. In Figure 3(a), VRDFormer correctly detects the

“adult-next to-guitar relation instead of “adult-play(instr)-

guitar” by considering the useful context of the adult.

Besides, in Figure 3(b), our model is able to successfully

localize the occluded relation pair “adult-watch-laptop”

1. adult-behind-guitar

2. adult-next_to-guitar

3. adult-next_to-guitar

4. adult-play-guitar

5. adult-in_front_of-adult

1. adult-play(instr)-guitar

2. adult-play(instr)-guitar

3. adult-next_to-guitar

4. adult-next_to-adult

5. adult-next_to-adult






1. adult-watch-laptop

2. adult-next_to-cup

3. adult-next_to-adult

4. adult-next_to-adult

5. adult-no_inter-laptop

1. adult-next_to-laptop

2. adult-next_to-laptop

3. adult-watch-laptop

4. adult-next_to-adult

5. adult-watch-laptop



VidVRD

VRDFormer

VRDFormer

VidVRD

(a)

(b)



























Figure 3. Visualization of two pairs of comparison in relation

detection between VidVRD (Bottom) and our model VRDFormer

(Top). The ✓ and × represent correct and false detection

respectively. The figure is best viewed in color.

which is however missed by VidVRD baseline. Befit-

ting from relation instances generation through aggregating

contexts, our model is able to localize and predict some

relations that cannot be detected in isolation.

5. Conclusion

In this paper, we propose VRDFromer for video visual

relation detection. VRDFormer is a transformer-based

model to unify previous multi-stage components for Vid-

VRD in an end-to-end manner. By first introducing the

contextually enriched queries into VidVRD, our model can

localize and predict a relation instance more precisely. In

addition, modeling spatio-temporal contexts also provides

auxiliary information to infer the negative relation status

of queries to avoid exhaustive sampling. The experiments

demonstrate that VRDFormer significantly surpasses state-

of-the-art methods on two benchmark datasets. However,

due to imbalanced class distribution in VidVRD datasets,

there is a large gap for different relation classes. In the fu-

ture, we will address the long-tail issue in our VRDFormer.
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