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Abstract

Temporal sentence grounding aims to detect the most
salient moment corresponding to the natural language
query from untrimmed videos. As labeling the temporal
boundaries is labor-intensive and subjective, the weakly-
supervised methods have recently received increasing atten-
tion. Most of the existing weakly-supervised methods gen-
erate the proposals by sliding windows, which are content-
independent and of low quality. Moreover, they train their
model to distinguish positive visual-language pairs from
negative ones randomly collected from other videos, ignor-
ing the highly confusing video segments within the same
video. In this paper, we propose Contrastive Proposal
Learning(CPL) to overcome the above limitations. Specifi-
cally, we use multiple learnable Gaussian functions to gen-
erate both positive and negative proposals within the same
video that can characterize the multiple events in a long
video. Then, we propose a controllable easy to hard neg-
ative proposal mining strategy to collect negative samples
within the same video, which can ease the model opti-
mization and enables CPL to distinguish highly confusing
scenes. The experiments show that our method achieves
state-of-the-art performance on Charades-STA and Activi-
tyNet Captions datasets. The code and models are available
at https://github.com/minghangz/cpl.

1. Introduction
Temporal sentence grounding aims at localizing the start

and end time of the moment described by a given free-
form natural language query in untrimmed videos. Au-
tomatic temporal sentence grounding enables us to effi-
ciently find the video moment of interest rather than going
through the whole video, which has broad application po-
tential in video surveillance [6], video summarization [20],
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Figure 1. (a) Existing methods generate proposals by sliding win-
dow and focus on distinguishing negative proposals from other
videos. (b) We use multiple learnable Gaussian functions to gen-
erate both positive and negative proposals to characterize the tem-
poral structure of events. Our negative proposals are in the same
video and collected from easy to hard.

etc. Fully supervised temporal sentence grounding has
witnessed tremendous achievements recently, however, it
needs laborious manual annotations of temporal boundaries
for every query thus limiting its scalability and practicabil-
ity in real-world applications. Therefore, the weakly super-
vised learning schemes, where only the video and natural
language query are required during training, have gained
more attention due to their low annotation cost and reason-
able efficiency.

Existing weakly supervised solutions employ either the
multiple instance learning (MIL) based or reconstruction-
based paradigms. Specifically, MIL-based methods [11,
12,19,21] normally define matched and mismatched video-
language pairs as positive and negative samples, and learn
the latent cross-modal semantic space by aligning the video-
level visual-textual relationships. Reconstruction-based
method [18, 24, 39] solves the task through joint learning
with the reconstruction loss, assuming that the proposals
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that match the text should best reconstruct the entire query.
However, both paradigms have the following limitations:

Firstly, most existing methods generate the same propos-
als for all samples via sliding window (shown in Fig. 1(a)),
regardless of their contents and difficulty, which is ineffi-
cient and of low quality. CNM [39] proposes to use sin-
gle learnable Gaussian mask as the positive proposal which
can characterize the inherent temporal structure of an event.
However, an untrimmed long video usually comprises sev-
eral events and these events often contain similar charac-
ters and backgrounds. This makes the model easy to op-
timize on some sub-optimal solutions when only predict-
ing one positive proposal, resulting in a reduction in the
recall rate. CNM [39] directly uses one minus the posi-
tive Gaussian mask as negative mask, which is unrealistic
to describe the temporal structure of negative events and is
easily distinguished by the model. Secondly, most exist-
ing methods heavily depend on the quality of randomly se-
lected negative samples (other unpaired videos), as shown
in Fig. 1(a), which are often easy to distinguish and can-
not provide strong supervision signals. However, what the
model needs for temporal sentence grounding is to distin-
guish the highly confusing video segments within the same
video (e.g. a man in gloves and a man puts on gloves as
shown in Fig. 1(b)). However, directly using the video seg-
ments outside the positive proposals as negative proposals
will harm the model training during early training stage due
to some misidentified negative proposals.

To address the above limitations, we introduce a novel
weakly supervised method namely Contrastive Proposal
Learning(CPL), by generating multiple content-dependent
proposals and mining negative samples from easy to hard
within the same video. On the one hand, to characterize the
multiple events in a long video, we use multiple learnable
Gaussian functions to generate both positive (green curve
in Fig. 1(b)) and negative (orange curves in Fig. 1(b)) pro-
posals, where the negative proposals should be out of the
positive ones and do not cover the corresponding positive
proposals 1. Moreover, to distinguish the positive from neg-
ative proposals in each video, we introduce the entire video
as a reference point, as it contains both the ground truth
and a large amount of redundant information. We require
that the semantic alignment between the positive proposal
and the query is expected to be higher than that of the en-
tire video, while the semantic alignment of negative pro-
posals should be lower. On the other hand, in contrast to
learning from randomly selected negative samples from un-
paired videos, we propose a controllable easy-to-hard neg-
ative proposal mining strategy. We collect negative propos-
als within the same video and enforce the negative propos-

1We plot a single positive proposal in Fig. 1(b) as an example, prac-
tically, we generate multiple positive proposals via Gaussian functions to
improve the recall rate.

als further away from the positive ones at the early training
stages while proposals closer to the positive are learned at
later stages. Because we observe that the negative propos-
als closer to the positive proposal are often harder to dis-
tinguish than those further away, mainly due to the smooth
transition of events (similar background and semantics as
shown in Fig. 1(b)). This dynamic curriculum strategy to
mine samples can gradually reduce the ambiguity and thus
facilitate to learn reliable intra-video samples and ease the
model optimization.

Our contributions are summarized as follows: (1) We
propose to use multiple Gaussian functions to generate both
positive and negative proposals from the same video. By
introducing the entire video as a reference point, our pro-
posal generation is content-dependent and efficient. (2) We
propose a controllable Easy to Hard Negative sample min-
ing strategy to collect negative proposals within the video
and ease the model optimization. This enables our net-
work to distinguish highly confusing scenes. (3) Exper-
iments on Charades-STA [10] and ActivityNet Captions
datasets [2, 15] demonstrate our method significantly out-
performs existing weakly supervised methods.

2. Related Work
Fully Supervised Temporal Sentence Grounding. In

the fully supervised setting, the precise start and end times-
tamps annotations for each video and query pair are re-
quired in training [10, 22, 30, 31, 38, 40]. Specifically,
TALL [10] makes the first attempt to integrate the query
and video feature to predict the start and end timestamps
directly. The Structured Multi-Level Interaction Network
(SMIN) [31] constructs a structured multi-level interac-
tion module to optimize the use of the logic relationship
between query and video segment. However, the fully su-
pervised methods need laborious manual annotation of tem-
poral boundaries thus limiting its scalability and practica-
bility. Moreover, as studied in [22], the temporal boundary
annotation is sometimes subjective and, possibly, not con-
sistent across different annotators. And such issues are not
adequately considered by many of the existing approaches.

Weakly Supervised Temporal Sentence Grounding.
Different from the fully supervised setting, the start and end
timestamps are inaccessible during training for weakly su-
pervised temporal sentence grounding.

Firstly, the methods proposed in [5, 12, 18, 21, 26, 32]
use sliding windows to generate proposals. The proposals
are content-independent and heavily rely on prior knowl-
edge to the length distribution of ground truth for the spe-
cific datasets and bring much extra computational cost for
pre-processing. [13] proposes to use a learnable network to
generate gate-shape masks as proposals for the action local-
isation task. However, the gate-shape mask assumes that all
frames in the proposal are equally important, which is not
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optimal for sentence localization, as the events described
in free-form natural language queries have more complex
temporal structure. CNM [39] proposes to use single learn-
able Gaussian mask as the positive proposal and use one
minus the Gaussian mask as negative proposal. However,
an untrimmed long video usually comprises several events
with similar characters and backgrounds, which makes pre-
dicting only single proposal easy to optimize on a sub-
optimal solution. In addition, such method does not reflect
the temporal structure of negative proposals, which is easy
for the model to distinguish them from positive ones. In our
method, we utilize multiple Gaussian functions to gener-
ate both positive and negative content-dependent proposals
with learnable parameters efficiently, and design a diversity
loss to require these Gaussian functions to focus on differ-
ent events in the video. These proposals will jointly partici-
pate in the inference process, from which the most relevant
proposal is selected.

Secondly, some methods like the weakly supervised Se-
mantic Completion Network (SCN) [18] assume that a
video segment paired with the query could reconstruct the
sentence better. However, they do not consider the informa-
tion contained in unpaired videos and queries, which could
be used for contrastive learning. In our method, we also
use the reconstruction mechanism to measure the seman-
tic alignment, but utilize the negative proposals to perform
contrastive learning. Further, other works [12, 21, 35] train
the model to distinguish aligned video-query pairs and non-
aligned ones collected from other videos. However, their
video-query samples are often easy to distinguish, ignoring
what the model really needs to distinguish is the highly con-
fusing segments in the same video. Moreover, RTBPN [36]
and CNM [39] consider the confrontment of the intra and
inter samples made up of video-query pairs. However, if a
mistake is made in the early stage of training, as training
continues, the correct video segments would be suppressed,
which will harm the training of the model. In our algorithm,
we collect negative proposals outside the positive proposal,
and introduce the whole video as a reference. Our negative
proposals are more difficult to distinguish, enabling our net-
work to distinguish highly confusing scenes. Additionally,
in the early stage of training, our negative proposals are far
from the positive ones, which reduces the negative impact
of introducing negative proposals when the accuracy of pos-
itive proposal is not high in the early training stage.

Curriculum learning. The curriculum learning method
emulates the learning behavior of humans [1, 25]. It has
many applications (e.g. image classification [27], object de-
tection [16], et al.). As far as we know, we make the first
attempt to explore a curriculum-style easy to hard nega-
tive proposals mining strategy and verify its effectiveness
in temporal sentence grounding.

3. Proposed Method
3.1. Overall Framework

CPL comprises the proposal generation module and the
mask conditioned reconstruction module (In Fig. 2).

For the proposal generation module, we use Gaussian
masks to represent both positive and negative proposals
within the same video. The frame features within each pro-
posal will be aggregated based on the weight in the Gaus-
sian curve, which characterizes the inherent temporal struc-
ture of events. To distinguish positive and negative propos-
als, we introduce the entire video as a reference, requiring
the semantic similarity between the positive proposals and
the query should be higher than that of the reference and
the semantic similarity of the negative proposals should be
lower. To ease the model optimization, we mine the nega-
tive proposals in the same video, collecting them from easy
to hard (gradually close to the positive proposal but never
overlap, as shown in Fig. 3). Note that we generate mul-
tiple positive proposals and try to make them diverse via a
diversity loss Ldiv to improve the recall rate.

For the mask conditioned reconstruction module, we use
the video frames in each proposal to reconstruct the origi-
nal query by a transformer to measure the proposal-query
alignment, assuming that the better-aligned proposals can
reconstruct the query better. Since the negative proposals
do not contain any frames in the ground truth, we should not
require them to reconstruct the query. Therefore, the recon-
struction loss Lrec consists only of the cross-entropy loss of
the positive proposal and the reference. Finally, we intro-
duce an intra-video contrastive loss LIV C to ensure that the
reconstruction results of positive proposals are better than
that of the entire video, while the reconstruction results of
negative proposals should be worse.

3.2. Multiple Positive Proposals Generation

In this module, we fuse the information of video and text
to generate multiple positive proposals, which depend on
the content of video and query. Following CNM [39], we
use the Gaussian masks as the proposals, which can char-
acterize the inherent temporal structure of events. Unlike
CNM [39] which only generates single positive proposal,
we predict multiple positive proposals at the same time and
encourage these proposals to be different through a diver-
sity loss. Since a long untrimmed video usually contains
multiple events, our method can efficiently find the poten-
tial event of interest and improve the recall rate.

Feature Extraction. Given an untrimmed video and a
natural language query, we firstly encode them into fea-
ture vectors. To be specific, each word of the query is em-
bedded using GloVe [23] and the query is represented as
T = {t1, t2, ..., tM} ∈ RM×DT , where M is the number of
words and DT is the word feature dimension. The video is
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Figure 2. The framework of our method. The proposal generation module uses Gaussian masks to represent both positive and negative
proposals within the same video. To distinguish the positive and negative proposals, we introduce the entire video for each sample as a
reference. Note that we generate multiple positive proposals and try to make them diverse via Ldiv to improve the recall rate. The mask
conditioned reconstruction module uses the frame features conditioned on the proposal masks to reconstruct the query, as a measurement
of the similarity between the proposal and query. Lrec is used to optimize our networks for a better reconstruction, and LIV C performs
a contrast between proposals, requiring the semantic similarity between the proposals and the query from large to small are positives,
reference, and negatives.

encoded with pre-trained 3D convolutional network [3, 28],
and represented as V = {v1, v2, ..., vN} ∈ RN×DV , where
N is the number of extracted video features and DV is the
feature dimension.

Proposal Generation. We use transformer [29] to
handle the multi-modal interaction of the video and text.
Firstly, to pool the frame features and obtain the video rep-
resentation, we append an additional learnable [CLASS]
token vcls [7] at the end of the video features: V̂ =
{v1, v2, ..., vN , vcls}. We use transformer to conduct cross-
modal interaction between the embedded texts T and
video features V̂ and obtain the hidden features H =
{h1, h2, ..., hN , hcls} that incorporates semantic and vision
information: H = D(V̂ ,E(T )) ∈ RN×DH , where E(·) is
the transformer encoder, D(·) is the transformer decoder,
and DH is the dimension of the hidden features. More de-
tails about E(·) and D(·) will be provided in Sec. 4. To en-
sure the end-to-end training of our model, we adopt Gaus-
sian functions as proposals. As hcls combines all the frame
and word features, we predict the center cp ∈ RK and
width wp ∈ RK of our positive proposals through hcls with
a fully connected layer activated by Sigmoid function. To
improve the recall rate, we will predict K Gaussian masks
mp ∈ RK×N as potential positive proposal candidates:

mp
ki =

1√
2π(wp

k/σ)
exp(−

(i/N − cpk)
2

2(wp
k/σ)

2
),

k = 1, ...,K; i = 1, ..., N

(1)

where cpk, w
p
k are the center and width of the k-th positive

proposal which are learnable, and σ is a hyperparameter
which controls the width of the Gaussian curve.

In order to make the K proposals as different as possible,
we apply a diversity loss Ldiv introduced in [17] to mp:

Ldiv = ||mpmp⊤ − λI||2F (2)

where || · ||F denotes Frobenius norm of a matrix, and
λ ∈ [0, 1] is a hyperparameter which controls the extent
of overlap between proposals. The loss encourages propos-
als to have less overlap, prevents them from converging to
the same center and width, and improves the recall rate.

3.3. Negative Proposal Mining

Unlike CNM [39] which directly uses one minus the
Gaussian mask of positive sample as negative samples, we
point out that negative proposals should have the same tem-
poral structure of events as positive proposals, but are not so
semantically relevant to the query. Thus we also use Gaus-
sian functions to represent the them. Inspired by curriculum
learning, we collect negative proposals from easy to hard to
ease the optimization. We observe when the negative pro-
posals are close to the positive ones, they are more confus-
ing due to the similar background and semantics. Thus, we
enforce the negative proposals further away from the posi-
tive ones at the early training stages while proposals closer
to the positive are learned at later stages. Finally we use
the mask conditioned reconstruction module to measure the
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Figure 3. We mine the difficulty of negative proposals, assum-
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more difficult to distinguish. We learn them from easy to hard to
ease the model optimization.

semantic similarity between proposals and query, and con-
trast between the positive and negative proposals to train our
model.

Negative Proposal Mining. As shown in Fig. 3, we gen-
erate two negative proposals (before and after the positive
proposal). We fix one end of the two negative proposals at
the boundary of the video, and represent the distance η be-
tween the negative proposals and the positive proposal by
the ratio of negative proposal’s width wn1 , wn2 to the width
of the corresponding side of the positive proposal w1, w2:

w1 = cp − wp

2
, w2 = 1− cp − wp

2
(3)

wn1

w1
=

wn2

w2
= η (4)

As the training progresses, η will gradually increase to make
the negative proposals approach the positive proposal:

η = (
e

emax
)0.5 ∈ [0, 1] (5)

where e is the current training epoch and emax is the total
number of training epochs. Since one end of the negative
proposal is fixed, the center cn1 , cn2 of negative proposals
can be calculated by: cn1 = wn1

2 , cn2 = 1 − wn2

2 . Then,
similar to Eq.(1), we can get the Gaussian mask of the neg-
ative proposals mn1 ,mn2 respectively.

To help the model distinguish the positive and negative
proposals, we introduce the entire video as a per sample
reference mr:

mr = [1, 1, ..., 1] ∈ RN (6)

Since the entire video contains the ground truth segment as
well as lots of redundant information, the semantic similar-
ity of the proposals and the query should satisfy:

R(mp, Q) > R(mr, Q) > R(mn, Q) (7)

where R(·) is a function that measures the semantic similar-
ity between the query Q and the proposal specified by the
mask m.

Mask Conditioned Semantic Completion. To con-
trast between the positive and negative proposals, we use
the mask conditioned reconstruction completion module in-
spired by SCN [18] and CNM [39] to measure the seman-
tic relevance between the proposal and the query, assum-
ing that the most relevant proposal should be able to best
reconstruct the query using only the visual features in the
proposal.

We randomly mask 1/3 of the words in the original query
with a specific symbol, and require the model to predict
the next word given a prefix of the query and visual fea-
tures within the proposal. We embed the masked query us-
ing GloVe [23] and reconstruct the original query based on
the visual features within each positive and negative pro-
posal using the mask conditioned transformer proposed in
CNM [39]. The mask conditioned transformer will multi-
ply the mask by the attention map before aggregating con-
textual information to prevent the leakage of vision features
outside the proposal and keep the entire module differen-
tiable to the proposal. Finally, we use the cross-entropy
loss to measure the similarity of the reconstructed query and
the original query. We denote the cross-entropy loss of the
positive proposals, negative proposals, and the reference as
Lp
ce,Ln1

ce ,Ln2
ce ∈ RK , and Lr

ce ∈ R respectively.
Although we predicted K positive proposals, only one

video segment corresponds to the query. Therefore, we only
keep the k∗-th positive proposal with the smallest loss Lp

ce,
because it is most semantically related to the query:

k∗ = argmin
k

(Lp
ce[k]) (8)

As only the positive proposal and the reference contain the
segment related to the query, only Lp

ce[k
∗] and Lr

ce will par-
ticipate in the optimization of our reconstruction network.
The final reconstruction loss Lrec is formulated as:

Lrec = Lp
ce[k

∗] + Lr
ce (9)

As shown in (7), the semantic similarity between the pos-
itive proposal, negative proposal, and the reference should
satisfy a certain relationship. Following CNM [39], we use
the Intra-video Contrastive loss LIV C to contrast between
positive and negative proposals:

LIV C =max(Lp
ce[k

∗]− Lr
ce + β1, 0)+

max(Lp
ce[k

∗]− Ln1
ce [k

∗] + β2, 0)+

max(Lp
ce[k

∗]− Ln2
ce [k

∗] + β2, 0)

(10)

where β1 and β2 are hyperparameters satisfying β1 < β2.
LIV C requires the loss Lce of the positive proposal should
be at least β1 smaller than that of the reference, and at least
β2 smaller than that of the negative proposals.
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3.4. Model Training and Inference

In this section, we describe the loss function we optimize
to train our network and the model inference process.

Training. Our network includes three parts of loss: the
reconstruction loss Lrec in Eq.(9) is used to help the model
to reconstruct query through the video features within our
proposals, serving as a measurement of the alignment be-
tween the proposal and query; the Intra-video Contrastive
loss LIV C in Eq.(10) is used to train the model to gener-
ate the most semantically relevant positive proposals for the
query; the diversity loss Ldiv in Eq.(2) is used to encourage
the model to produce multiple different positive proposals.
Finally, we compute a multi-task loss to train our network
in an end-to-end manner, denoted by:

L = Lrec + α1LIV C + α2Ldiv (11)

where α1, α2 are hyperparameters to balance the losses.
Inference. Firstly, we can obtain the center cp and width

wp in Eq.(1) of our predicted K positive proposals. To se-
lect the top-1 prediction from our K proposals, we design
two selection strategies: loss-based strategy and vote-based
strategy.

For the loss-based strategy, the cross-entropy loss Lp
ce of

reconstructed query serves as the measurement of the reli-
ability of each proposal. Thus, we select the positive pro-
posal with the smallest loss as our final prediction. For the
vote-based strategy, every positive proposal will participate
in the selection. Inspired by the ensemble learning [41], we
use the K positive proposals to vote with each other to de-
cide which one is our final top-1 prediction. Specifically,
for each positive proposal, we calculate the IoU with the re-
maining K − 1 positive proposals and the sum of IoUs is
the number of votes it obtained. And finally we choose the
one with the highest number of votes as the final prediction.

Finally, for the selected k∗-th positive proposal, our pre-
dicted start st and end en timestamps are:

st = max(cpk∗ − wp
k∗/2, 0) ∗ Duration

en = min(cpk∗ + wp
k∗/2, 1) ∗ Duration

(12)

To obtain the top-k predictions, we sort all the positive
proposals by Lp

ce from small to large, and output the start
and end timestamps by Eq.(12) for the top-k positive pro-
posals.

4. Experiments
4.1. Datasets

In order to evaluate the effectiveness of our method,
we perform experiments on two publicly available datasets:
Charades-STA [10], and ActivityNet Captions [2, 15].

Charades-STA. Charades-STA dataset contains
5338/1334 videos and 12,408/3720 video-query pairs for
training/testing. We report our results on the test split.

Table 1. Evaluation Results on the Charades-STA dataset (n ∈
{1, 5} and m ∈ {0.3, 0.5, 0.7}). The numbers in bold are the
best result, and the underlined ones are the second best result. Our
CPL uses the loss-based strategy during inference and CPL∗ uses
the vote-based strategy during inference.

Method R@1 R@5
IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.7

TGA [21] 32.14 19.94 8.84 86.58 65.52 33.51
CTF [5] 39.8 27.3 12.9 - - -

SCN [18] 42.96 23.58 9.97 95.56 71.80 38.87
WSTAN [32] 43.39 29.35 12.28 93.04 76.13 41.53

BAR [34] 44.97 27.04 12.23 - - -
VLANet [19] 45.24 31.83 14.17 95.70 82.85 33.09
LoGAN [26] 48.04 31.74 13.71 89.01 72.17 37.58
MARN [24] 48.55 31.94 14.81 90.70 70.00 37.40
WSRA [9] 50.13 31.20 11.01 86.75 70.50 39.02
CCL [37] - 33.21 15.68 - 73.50 41.87
CRM [12] 53.66 34.76 16.37 - - -
VCA [33] 58.58 38.13 19.57 98.08 78.75 37.75

LCNet [35] 59.60 39.19 18.87 94.78 80.56 45.24
RTBPN [36] 60.04 32.36 13.24 97.48 71.85 41.18
CNM [39] 60.39 35.43 15.45 - - -

CPL (ours) 66.40 49.24 22.39 96.99 84.71 52.37
CPL∗ (ours) 65.99 49.05 22.61 96.99 84.71 52.37

ActivityNet Captions. ActivityNet Captions contains
10,009/4917/5044 videos and 37,417/17,505/17,031 video-
query pairs for training/validation/testing. We report our
results on the val 2 split.

4.2. Evaluation Metric

In order to test our method, similar to what have done
in the previous work [12, 18], we choose the computation
result of ‘R@n, IoU=m’ as our evaluation metric, where
m is the predefined temporal Intersection over Union (IoU)
threshold, and n refers to the recall rate of top-n predic-
tions. In particular, this metric means that the percentage of
predicted moments that have the IoU value larger than m in
our top n predictions. We report results for R@1 and R@5
on both Charades-STA and ActivityNet Captions datasets.

4.3. Implementation Details

Data Preprocessing. We downsample each video ev-
ery 8 frames and pre-extract it’s vision feature using the
C3D [28] model for ActivityNet Captions and I3D [3]
model for Charades-STA. We use the pre-trained GloVe
[23] word2vec for each word token to extract word embed-
dings. We set the maximum description length to 20, and
the vocabulary size is 8000.

Model Settings. For the transformer and the mask con-
ditioned transformer, there are 3 layers with 4 attention
heads for both the encoder and decoder. The dimension of
their hidden state is 256. For the number of positive propos-
als, we set K to 8 for Charades-STA and 5 for ActivityNet
Captions. For the hyperparameters, we set σ = 9, λ = 0.15,
β1 = 0.1, β2 = 0.15, α1 = 1 for both datasets. We find
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Table 2. Evaluation Results on the ActivityNet Captions dataset
(n ∈ {1, 5} and m ∈ {0.1, 0.3, 0.5}). The numbers in bold are
the best result, and the underlined ones are the second best result.
Our CPL uses the loss-based strategy during inference and CPL∗

uses the vote-based strategy during inference.

Method R@1 R@5
IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.1 IoU=0.3 IoU=0.5

WS-DEC [8] 62.71 41.98 23.34 - - -
VCA [33] 67.96 50.45 31.00 92.14 71.79 53.83
EC-SL [4] 68.48 44.29 24.16 - - -

MARN [24] - 47.01 29.95 - 72.02 57.49
SCN [18] 71.48 47.23 29.22 90.88 71.56 55.69
BAR [34] - 49.03 30.73 - - -

RTBPN [36] 73.73 49.77 29.63 93.89 79.89 60.56
CTF [5] 74.2 44.3 23.6 - - -

WSLLN [11] 75.4 42.8 22.7 - - -
LCNet [35] 78.58 48.49 26.33 93.95 82.51 62.66
CCL [37] - 50.12 31.07 - 77.36 61.29

WSTAN [32] 79.78 52.45 30.01 93.15 79.38 63.42
CRM2 [12] 81.61 55.26 32.19 - - -
CNM [39] 78.13 55.68 33.33 - - -

CPL, α2 = 0.1 79.86 53.67 31.24 87.24 63.05 43.13
CPL∗,α2 = 0.1 82.55 55.73 31.37 87.24 63.05 43.13
CPL, α2 = 1 71.23 50.07 30.14 94.28 81.32 65.79

our model is sensitive to α2. We set α2 to 1 on Charades-
STA, and to 0.1 or 1 on ActivityNet Captions (Details are
in Sec.4.4). For the model training, we use Adam [14] opti-
mizer with learning rate set to 0.0004.

4.4. Comparisons to the State-Of-The-Art

Tab. 1 and Tab. 2 compare the overall performance of
CPL with previous works, where CPL uses the loss-based
inference strategy and CPL∗ uses the vote-based inference
strategy. We can draw the following conclusions: (1)
On Charades-STA dataset, compared with previous meth-
ods, our CPL achieves 10.05% absolute gain on ‘R@1,
IoU=0.5’. Our loss-based strategy and vote-based strategy
have similar performance on Charades-STA dataset. (2) On
ActivityNet Captions dataset, for R@1 we outperform all
existing methods with vote-based strategy. We find that the
accuracy of reconstruction on ActivityNet Captions is rel-
atively lower, and choosing the final prediction by voting
is more reliable. For R@5, by carefully selecting α2 = 1
to encourage more diversity among multiple proposals, our
model performs best. (3) In practical applications, α2 can
be set flexibly under different application requirements. The
main reason is that the queries containing a complex rela-
tionship of multiple events are more difficult to reconstruct,
resulting in less reliable measurement when choosing the
best one from those positive proposals with a large diver-
sity.

2Directly comparing CRM with others (including our CPL) is not fair.
CRM requires a paragraph description annotation (multiple events de-
scribed sequentially) per video in training, which is not always available.

Table 3. The ablation study of our different losses.

Loss Used R@1
Lrec LIV C Ldiv IoU=0.3 IoU=0.5 IoU=0.7 mIoU

! % % 54.24 20.49 6.74 33.99
! ! % 60.39 32.08 12.95 37.98
! ! ! 66.40 49.24 22.39 43.48

Table 4. The ablation study of positive and negative proposal gen-
eration processes.

Positive
Proposal

Negative
Proposal

R@1
IoU=0.3 IoU=0.5 IoU=0.7 mIoU

Fixed None 55.07 28.97 10.13 34.06
Learnable None 61.68 45.47 20.14 40.43
Learnable Other video 65.64 47.56 21.37 42.34
Learnable Intra-video 66.40 49.24 22.39 43.48

Table 5. The ablation study of our training strategy that only the
positive proposal with the smallest Lp

ce participates in the opti-
mization.

Strategy R@1
IoU=0.3 IoU=0.5 IoU=0.7 mIoU

All (equally) 54.84 36.16 18.49 36.28
All (weighted) 54.94 37.49 17.48 36.44

One w/ smallest Lp
ce 66.40 49.24 22.39 43.48

(a) (b)

Figure 4. Fig. 4a shows the effectiveness of learning negative pro-
posals from easy to hard. Fig. 4b shows the ablation study of dif-
ferent number of positive proposals.

4.5. Ablation Study

To prove the effectiveness of different components of
our CPL, we perform ablation studies on the Charades-STA
with our loss-based strategy.

Effectiveness of different losses. As Tab. 3 shows, we
evaluate the effectiveness of Lrec, LIV C , and Ldiv . The
model with all these three losses performs best, indicating
that the design of all of them is significant for our network.
We also find that the diversity loss can significantly improve
the performance of the model, which proves that generating
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multiple different positive proposals is beneficial to more
accurately locating the event of interest in long videos.

Effectiveness of Proposal Generation. (1) As the first
two rows in the Tab. 4 show, we evaluate the effectiveness
of our learnable positive proposals. The ‘Fixed’ means that
we use sliding windows and policy gradient algorithm used
by SCN [18] to select positive proposals, and the ‘None’
means no negative proposals are used. We can see that our
learnable proposals are of high quality. (2) As the last two
rows in the Tab. 4 show, we evaluate the effect of our neg-
ative proposals in the same video. It reveals the fact that
mining negative proposals within the video plays an impor-
tant role in improving the performance of our method. (3)
Moreover, as shown in the Fig. 4a, we evaluate the effective-
ness of introducing negative proposals from easy to hard.
When negative proposals are always far away from positive
proposals (i.e. η = 0.2), they are easy to distinguish and
provide little information. When they are always close to
the positive proposal (i.e. η = 1), they may bring wrong
information especially at the early training stage where the
accuracy of positive proposals is low. Dynamically adjust-
ing η and learning from easy to hard can effectively balance
these two situations.

Effect of multiple Positive Proposals. (1) As Fig. 4b
shows, we evaluate the effectiveness of the number of posi-
tive proposals. We can see that the more the number of pos-
itive proposals, the higher the mIoU in general. But when
the number of positive proposals is greater than 8, the gain
is very small. Continuing to increase the number of positive
proposals will increase the computational cost. (2) Tab. 5
shows the effectiveness of our training strategy that only
the positive proposal with the smallest Lp

ce participates in
optimization. The ‘equally’ means all the positive propos-
als participate equally, and ‘weighted’ means positive pro-
posals with smaller Lp

ce will participate more. We can see
that it’s helpful to only optimize the positive proposal with
the smallest Lp

ce (encourage one-to-one correspondence be-
tween positive proposals and query).

4.6. Qualitative Results

Fig. 5 shows some qualitative examples. P1 and P2 (in
blue) are our positive proposals with the lowest top-2 loss
Lp
ce. (1) As shown in Fig. 5(a) and (b), our method can

achieve better results than SCN, proving that our negative
proposals and references can provide more information. (2)
As shown in Fig. 5(a), (b) and (c), comparing P1 and P2,
the higher the ranking, and the more relevant the semantic
meaning with the ground truth’s. (3) Fig. 5(c) shows that the
performance of CPL is relatively poor when the query con-
tains complex relationships of multiple events. This may be
caused by the low reconstruction accuracy in this situation.

(a)

Query: Person reads through some pages in a book.

GT0.00s 8.70s
SCN11.09s 19.50s

Ours (P1)0.00s 8.88s
Ours (P2)0.33s 11.49s

(b)

Query: A person runs around the house.

GT0.00s 10.80s
SCN3.34s 11.3s

Ours (P1)0.02s 10.73s
Ours (P2)0.00s 8.3s

(c)

Query: The first guy drinks a beer then passes out and  the second guy puts a pong ball 
on his chest before leaving.

GT120.69s 151.81s
SCN7.95s 140.42s

Ours (P1)65.16s 151.81s
Ours (P2)21.04s 128.87s

Figure 5. Qualitative examples of our top-2 predictions. Fig. 5 (a)
and (b) are from the Charades-STA dataset, and Fig. 5 (c) is from
the ActivityNet Captions dataset respectively.

5. Conclusion

In this work, we propose a novel weakly supervised
video moment localization method, called Contrastive Pro-
posal Learning(CPL). Our CPL generates several learnable
Gaussian masks as proposals, which are effective and of
high quality. We propose a novel method to mine the neg-
ative proposals within the same video, and introduce the
entire video as the reference, which enables the network
to distinguish highly confusing scenes. Inspired by the
curriculum learning, the difficulty of the negative propos-
als increases as the training continues, benefiting the opti-
mization. Experiments on the Charades-STA and Activi-
tyNet Captions datasets show the outstanding performance
of CPL. Extensive ablation studies also verify the effective-
ness of the components in CPL.
Limitation Discussion: In this work, we focus on explor-
ing how to learn high-quality proposals through the contrast
of positive and negative proposals within the video. How-
ever, we find that when the query describes several events
with complex relationship (with specified chronological or-
der), our method may fail. How to better explore and repre-
sent the complex relationship between different events can
be studied in future work.
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