This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Faithful Extreme Rescaling via Generative Prior
Reciprocated Invertible Representations

Zhixuan Zhong!  Liangyu Chai'

Yang Zhou!

1+

Bailin Deng? Jia Pan®  Shengfeng He

1 School of Computer Science and Engineering, South China University of Technology
2 School of Computer Science and Informatics, Cardiff University
3 Department of Computer Science, The University of Hong Kong

(¢) GLEAN [3]

(a) Input LR

(b) GPEN [30]

(e)‘Ours (f) GT

(d) IRN [28]

Figure 1. We propose a faithful rescaling method that enables pixel-accurate upscaling with an extreme factor (64 x). Previous generative
prior approaches (b) & (c), or invertible approach (d) suffer from the mapping ambiguity between the extreme low-resolution input and GT.
We embed high-resolution information both into the invertible low-resolution output as well as the generative prior, reciprocally enhancing

upscaling results.

Abstract

This paper presents a Generative prior ReciprocAted
Invertible rescaling Network (GRAIN) for generating faith-
ful high-resolution (HR) images from low-resolution (LR)
invertible images with an extreme upscaling factor (64 x).
Previous researches have leveraged the prior knowledge of
a pretrained GAN model to generate high-quality upscal-
ing results. However, they fail to produce pixel-accurate
results due to the highly ambiguous extreme mapping pro-
cess. We remedy this problem by introducing a reciprocated
invertible image rescaling process, in which high-resolution
information can be delicately embedded into an invertible
low-resolution image and generative prior for a faithful HR
reconstruction. In particular, the invertible LR features not
only carry significant HR semantics, but also are trained
to predict scale-specific latent codes, yielding a preferable
utilization of generative features. On the other hand, the
enhanced generative prior is re-injected to the rescaling pro-
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cess, compensating the lost details of the invertible rescal-
ing. Our reciprocal mechanism perfectly integrates the ad-
vantages of invertible encoding and generative prior, lead-
ing to the first feasible extreme rescaling solution. Exten-
sive experiments demonstrate superior performance against
state-of-the-art upscaling methods. Code is available at
https://github.com/cszzx/GRAIN.

1. Introduction

Due to the explosive growth of image data, image down-
scaling is a typical way for fast data processing and effi-
cient storage. Therefore, the capability of rescaling a low-
resolution image to a high-resolution one is of great impor-
tance for many multimedia applications. However, due to the
highly underspecified mapping process from low-resolution
(LR) to high-resolution (HR), different image priors have to
be introduced to reduce the learning ambiguity, especially
for an extreme upscaling setting (e.g., 64 %).
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Large-scale data prior is typically used in deep learning
based super-resolution to mimic the transformation from LR
to HR [6,8, 13]. Due to the dominated pixel-wise constraints,
these methods can smoothly recover the overall structure.
For the same reason, small scale details cannot be “synthe-
sized” from scratch and therefore these methods are typically
limited to 8 x upscaling.

Recent advances in generative adversarial networks
(GANs) demonstrate that the generative prior [3,22,30,35]
derived from a pretrained GAN model provides rich and
diverse supplementary representations for the extreme up-
scaling process. The basic principle is that a small LR image
can be mapped to the input latent code of a pretrained GAN
model, such that a perceptually similar output can be pro-
duced by the generator. Although the inherent knowledge
of a pretrained GAN enables a plausible extreme upscaling
(64 x), the vague LR input prevents them from locating a
perfect latent code and therefore cannot preserve the original
characteristics (see Fig. 1b and Fig. 1c).

The above issue raises a question: can we enrich the in-
formativeness of an extremely downscaled image to better
incorporate with the generative prior? To answer this ques-
tion, we turn to the alternative invertible prior. Previous
invertible rescaling [17,28] embeds the high-resolution input
image into inconspicuous and reconstructible patterns ap-
pended on the LR image, such that it can be easily rescaled
to the original resolution. In the scenario of extreme upscal-
ing, however, the LR image (16x16) is too small to embed
sufficient hints for recovery (see Fig. 1d). To activate differ-
ent upscaling priors under extreme scenarios, we propose in
this paper a Generative prior ReciprocAted Invertible rescal-
ing Network (GRAIN), which maximizes the potential of
invertible and generative priors. In particular, it consists
of three reciprocal components, i.e., an invertible extreme
rescaling module, a scale-specific generative prior module,
and an upscaling priors decoding module. The rescaling
module is trained for two purposes. On one hand, it embeds
the HR information to an extreme LR form that can be re-
verted back to the original. On the other hand, the invertible
features are optimized to produce scale-specific latent codes
of the pretrained GAN model. In this way, the HR infor-
mation is maximally entangled with the rescaling process
in image-level as well as the generative latent space. The
enhanced generative features are then reciprocated back to
the invertible representations for decoding the final upscaling
result. Extensive experiments demonstrate faithful and supe-
rior upscaling performance against state-of-the-art upscaling
methods using different types of image priors. Our proposed
method is the first feasible extreme rescaling solution that
can be beneficial for storing and transferring data due to
our perceivable yet invertible extremely downscaled LR re-
sults (Fig. le). We show that our method can break through
the limitation of the pretrained GAN data distribution and

recover outlier inputs, while being also applicable to other
domains by switching to different pretrained models.

Our contributions can be summarized as follows:

* We propose the first invertible extreme rescaling frame-
work that allows perceivable downscaling and faithful
upscaling with an extreme scaling factor (64 x).

* We design a reciprocal strategy that elegantly connects
the invertible prior with the generative prior. It maximizes
the advantages of these two priors, largely mitigating the
ill-posed nature of the image upscaling process.

* The proposed model sets new state-of-the-art in extreme
image rescaling. We also explore and analyze the image
invertibility with respect to different influencing factors
like network structure, scaling factor, and data domain.

2. Related Work
2.1. Image Super-Resolution

CNN-based Methods. Super-Resolution (SR) aims to re-
construct a realistic HR image from its LR version. Early
works [8, 11, 18,20,25,29,34] learn a direct mapping be-
tween LR and HR, which perform well for small upscaling
factors (2% or 4x) but produce blurry results when the up-
scaling factor increases. WSRNet [12] proposes a wavelet-
based CNN approach with additional wavelet coefficients
prediction that can handle a scaling factor of up to 16x.
RFB-ESRGAN [24], based on ESRGAN [26], employs re-
ceptive field blocks to achieve 16 x SR. A main application
of SR is face restoration, and some works utilize the extra
facial priors to improve the quality of recovery. For exam-
ple, [4] introduces a parsing map and facial landmarks as
prior knowledge, and [19] designs an attribute-guided face
transfer and enhancement network.

GAN Inversion Methods. The purpose of GAN inversion
is to search for a latent code in the GAN latent space which
can generate the closest result to a given input image. Thanks
to the powerful generative priors inherent in large-scale GAN
models, SR methods based on GAN inversion are able to
achieve extreme upscaling (32 or 64 x), while maintaining
a good fidelity. For example, PULSE [22] and its extension
Pro-PULSE [35] iteratively optimize the latent code of Style-
GAN [15, 16] to narrow the gap between input and output.
pSp [23] introduces a ResNet encoder to extract pyrami-
dal features which are further mapped to the latent space.
GPEN [30] builds a U-Net framework and finetunes the
StyleGAN for blind face restoration. GLEAN [3] proposes
an encoder-bank-decoder architecture with multi-resolution
skip connections to upscale images from various categories.
Although GAN inversion can recover a high-quality result,
the characteristics of the original input cannot be well pre-
served due to the limited details of LR input.
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Figure 2. Overview of the GRAIN framework. GRAIN is composed of three modules, invertible extreme rescaling module, scale-specific
generative prior module and upscaling priors decoding module. With a pre-trained StyleGAN capturing the image prior, the invertible
encoder-decoder and reciprocal design learns both recovery and naturalness of images.

2.2. Invertible Image Restoration

Different from ordinary image restoration works that di-
rectly reconstructs an image from its degraded version, in-
vertible image restoration aims to embed significant informa-
tion into the degraded image to aid the process of restoration.
Invertible grayscaling [9, 27] proposes a encoder-decoder
framework to embed the original color information into a
synthesized grayscale image which is further used to recover
its corresponding color image. Zhu et al. [36] embeds the
spatio-temporal information of a video into a “live” image,
which can be converted back to a video preview. Recently,
Cheng et al. [5] proposes an Invertible Image Conversion
Net (IICNet) for various tasks including spatio-temporal
video embedding, dual-view images embedding, and monon-
izing binocular images embedding. As for the SR category,
TAR [17] proposes an auto-encoder-based framework that
enables joint learning of downscaling and upscaling to max-
imize the restoration performance. IRN [28] captures the
distribution of the lost information during downscaling us-
ing a latent variable and then upscales by inversely passing
a randomly-drawn latent variable with the low-resolution
image. In the extreme setting, however, the LR image is too
small to embed sufficient details, leading to over-smoothed
reconstructions. We effectively resolve this problem by in-
troducing generative priors in the loop.

3. Approach
3.1. Overview of GRAIN

We describe the GRAIN framework in this section. Our
main aim is to generate high-resolution images from extreme
low-resolution ones. Given a high-resolution image y, and

compressed to a low-resolution (16x16) image as input,
GRAIN estimates a high-resolution image y that is as similar
as possible to the ground-truth image y in terms of pixel-level
accuracy and visual perception.

The overall framework of GRAIN is depicted in Fig. 2.
GRAIN is composed of three complementary modules: an
invertible extreme rescaling module (encoder-decoder), a
scale-specific generative prior module (code prediction lay-
ers and a pretrained StyleGAN [15, 16]), and an upscaling
priors decoding module. Specifically, the invertible extreme
rescaling module is designed to encode an HR ground-truth
image y as an extreme LR image, and decode it to restore
an HR image y,,, that is as close to y as possible. The
features produced by the decoder provides an invertible rep-
resentation f;,,,, of the ground-truth HR image. Then in the
scale-specific generative prior module, f;,,,, is mapped to the
corresponding latent codes for modulating the StyleGAN
features f,,. After that, the upscaling priors decoding mod-
ule can reciprocate the enhanced generative features fg.,,
back to the invertible features f;,, for decoding the final
faithful and realistic HR results.

3.2. Invertible Extreme Rescaling Module

Most downscaling methods are intended to save the data
transfer cost while maintaining moderate image qualities.
However, the downscaling process makes super-resolution
(SR) highly ill-posed and causes a blurry high-resolution
restoration result. To reduce the loss of information when
downscaling, we adopt a encoder-decoder scheme, invertible
rescaling, to find a semantically reasonable LR image that
also benefits the HR restoration performance. Our Invertible
Extreme Rescaling Module consists of three parts:
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(1) An encoder that embeds necessary information into the
LR image (16x16) to help restore the HR image. We
use an RRDB-Net [26] to extract features and embed
them into the RGB image space.

(2) A quantization operation is unavoidable when saving
the embedding PNG-format image for end-to-end train-
ing. We employ the approach in [2] to add uniform noise
when training, and perform integer rounding to quantize
the embedding image during inference. The quantized
image is clamped between 0 and 255.

(3) A decoder which is an upscaling network, composed
of a stack of RRDB blocks [26] and upsampling layers,
to generate an HR image y;,,,. Each block produces a

feature vector f;,,, (which is of dimension 16x16x 64,

32x32x64, ..., 1024x1024 x64 respectively for dif-

ferent blocks) that represents the image feature for a

particular scale. The vectors are combined into the in-

vertible features f;,,,, as a multi-scale representation that
can be decoded for follow-up generation.

3.3. Scale-specific Generative Prior Module

The scale-specific generative prior module maps the in-
vertible features f;,,,, to the StyleGAN W+ latent space, and
utilizes the pretrained StyleGAN to generate faithful and
realistic HR results. StyleGAN has a strong representation
ability to generate lifelike images from a code in its latent
space. Inspired by [23], we propose the scale-specific latent
code prediction layers to embed the hierarchical invertible
features f;,,,, into 18 different 512-dimensional latent vectors,
which form a latent code in YW+-. These latent vectors are
fed into the generator according to their scales to produce
generative features fy.,, and an HR image y;, .-

It has been noted that the input latent vectors to Style-
GAN correspond to different levels of details in the output
image [23]. To better utilize such relations, our code pre-
diction layers generate each latent vector from an invertible
feature vector !, with a corresponding resolution. Follow-
ing the StyleGAN, the 18 latent vectors can be divided into
nine pairs, with each pair corresponding to a resolution 4 x4,
8x8, 16x16, ..., 1024x 1024, respectively. As shown in
Fig. 3, for a latent vector pair corresponding to a resolution
of 16x 16 and upwards, we take the invertible feature £’ of
the matching resolution, aggregate it with a downsampled in-
vertible feature from a higher resolution to incorporate more
semantics information, and then downsample the feature to
16 x16x64 through a series of convolution operations. The
16x 16 x 64 feature is then fed into two branches of convo-
lutional layers to obtain a pair of latent vectors. For the
latent vector pairs corresponding to 4 x4 and 88 resolu-
tions, there is no invertible feature of matching resolutions,
and we simply reuse the input features for the 16x 16 latent
vector branches to predict the 4 x4 and 88 ones. Finally,
the 18 latent vectors form a style latent code that is sent to
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Figure 3. The details of scale-specific latent code prediction layers
for mapping the invertible features to style vectors which form a
style latent code for further generation in StyleGAN.

StyleGAN to further generate fyc, and y..;,;..-

3.4. Upscaling Priors Decoding Module

The upscaling priors decoding module is introduced to re-
ciprocate the StyleGAN prior features fg.,, to combine with
the invertible features f;,,,, to generate a faithful and realistic
final result. As shown in Fig. 2, the module takes three pairs
of corresponding features from f,.,, and f;,,,, at the resolu-
tions of 256256, 512x512 and 1024 x 1024 respectively,
for integrating and decoding. For each resolution, the pair of
features are first concatenated and fed to a separate Squeeze-
and-Excitation (SE) Module [10] and several convolutional
layers with activation. Then we upsample all of them to
1024 x 1024 resolution. Finally, the resulting features for the
three resolutions are concatenated again and fed to another
SE module followed by convolutional layers, to obtain the
final HR output image at 1024 x 1024 resolution.

3.5. Training Objectives and Strategy

We adopt a multi-stage strategy to stabilize the training
of GRAIN. First in Stage 1, we train the invertible extreme
rescaling module alone for several epoches to generate f;,,,,
and y,,,,.. Next in Stage 2, we send f;,,,, to the scale-specific
generative prior module and train it alone to generate fg.,,
and ystyle. Stage 3 takes both f;,,,, and f,.,, as input, and
the upscaling priors decoding module is trained alone to
generate y ;o In the Final Stage, all three modules are
trained together in an end-to-end manner. The pretrained
StyleGAN model is fixed all the time. The loss functions
used in different training stages share a common component
Lpase, Which is a weighted sum of the following terms:

(1) A pixel-wise reconstruction Lo loss for the {5 distance
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Figure 4. Qualitative comparisons with GAN inversion based methods. Our method outperforms the others in fidelity and details. (Zoom in

for better view.)

between the generated image ¥ and the ground truth y:
Lo =y —¥ll2- 6]

Here y represents y,,,, for Stage 1,y . for Stage 2,
and y ¢, for both Stage 3 and the Final Stage.

(2) The LPIPS loss L}, p;pg from [32] to learn perceptual
similarities.

Lrpips = |F(y) — F(¥)l2- (2)

where F' denotes a fixed perceptual feature extractor.

(3) For human face images, an identity loss that requires
the generated image to have the same identity as the
ground-truth image:

Eid =1- COS(R(y)a R(y))v 3

where R denotes the face recognition feature produced
by the pre-trained ArcFace network [7], and Cos(-, -)
denotes the cosine similarity.

In summary, the base loss function is defined as

Liase = MLa + X Lrprps + AsLid, (€]

where A1, A2, A3 are the weights. In addition, in Stage 1, the
loss function also includes the Relativistic GAN loss [14]
for injecting fine details. For other stages, the loss function
also includes the adversarial WGAN loss [ 1], which adopts
the pre-trained StyleGAN discriminator to guide the genera-
tion of ;.. and y ¢,,,,; for better image quality and faster
convergence. In order to produce semantically reasonable
LR images, a Lo loss between the generated LR image and
ground-truth LR image is used in Stage I and Final Stage.

4. Experiments

We adopt the pre-trained StyleGANv2 model [16] to pro-
duce generative prior, and train existing state-of-the-art meth-
ods based on the publicly available codes in the same training

settings for fair comparison. All experiments are run on a
PC with an Nvidia GeForce RTX 3090 GPU.

Datasets. For face super-resolution tasks, we use the
CelebA-HQ dataset [ 16] which contains 30,000 human face
images of resolution 1024 x1024. We follow the original
splitting, with 24,183 images used for training and 5,817
images for testing. To evaluate the generalization capacity
in various domains of GRAIN, we also train our model on
the Cat dataset [33] and the LSUN-Church dataset [3 1], both
of which are of resolution 256 x256. As for the input im-
ages, we resize these datasets to the resolution of 16x16
with bilinear downsampling, while invertible methods utilize
primary images to get the 16x 16 resolution images.

Evaluation Metrics. For quantitative evaluation, we adopt
the widely-used pixel-wise metrics, PSNR and SSIM. We
also employ the LPIPS metric [32] to measure the percep-
tual distance. It should be noted that LPIPS is resolution-
dependent. Thus we upscale all results to the ground-truth
resolution of 1024 x 1024 with bilinear interpolation espe-
cially for the methods that are unable to generate 1024 x 1024
images when evaluating the LPIPS metirc.

4.1. Comparisons with State-of-the-art Methods

We compare our GRAIN framework with several state-
of-art methods, including GAN inversion based face up-
scaling methods (PULSE [22], pSp [23], GPEN [30], and
GLEAN [3]), CNN-based face super-resolution methods
(WSRNet [12], DIC [21], and ESRGAN [26]), and invert-
ible image restoration methods (TAR [17] and IRN [28]).
We train all these methods with their maximal upscaling
factor except for GPEN [30] (for which we fine-tune its pub-
lic 512512 pretrained model due to the lack of released
training code) and IRN [28] (which is out of memory when
upscaling to the resolution of 1024 x1024).
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Figure 5. Qualitative comparisons with CNN-based SR methods. They cannot produce high-resolution upscaling results. (Zoom in for better

view.)
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Figure 6. Qualitative comparisons with invertible image restoration
methods. The bottom-right image is the invertible LR version.

GAN Inversion Methods. Fig. 4 compares our method
with the GAN inversion based methods. Guided by the ordi-
nary LR input image, these methods are unable to generate
plausible details and maintain a good fidelity. In particu-
lar, PULSE and pSp restore a face image with a different
identity, and the results of GPEN and GLEAN have slight
improvements in the quality but still with notable differences
in the hair, eyebrows, eyeballs and facial expressions. This is
because PULSE and pSp only search for the corresponding
latent code that generates a result similar to the ground-truth.
Although GPEN and GLEAN try to modify the GAN prior
by fine-tuning StyleGAN and training a feature-connected
decoder respectively, they are still restricted by the input with
deficient information. With the integration of invertible prior
and generative prior, our method succeeds in both verisimil-
itude and lifelikeness, including lively facial expressions,
flying hair and realistic eyes in Fig. 4e.

CNN-based Methods. Fig. 5 presents a visual comparison
with CNN-based SR methods. As discussed in Sec. 2.1, these
methods have limited ability in conducting 64 x SR and they
produce results that are over-smoothed and lack details. In
comparison, our method can generate faithful and realistic
images with plausible details, such as correct pose, clear
eyebrow and closed lips in Fig. Se.

Invertible Image Restoration Methods. The invertible
methods have a similar setting to our task, i.e., they produce
an embedded LR image in addition. Results are illustrated

Table 1. Quantitative comparisons with state-of-the-art methods.

Methods PSNRT SSIMT LPIPS |
PULSE [27] (64%) | 1920 05515  0.4867
pSp [23] (64x) 1770 0.5900  0.4456
GLEAN [3] (64x) | 2024  0.6354  0.3891
GPEN [30] (32x) 2040 05919 03714
Bilinear (64x) 1992  0.6840  0.6027
WSRNet [12] (16x) | 2291  0.6201  0.5432
DIC [21] (8%) 2555 07574  0.5526
ESRGAN [26] (16x) | 21.01 05959  0.4464
TAR [17] (64x) 2515 07397 0.4733
IRN [28] (32%) 2441 06943 0.5238
Ours (64%) 2230 0.6467  0.2686

in Fig. 6. We can observe that these methods fail to generate
legible HR images with faithful facial details. On the other
hand, besides producing realistic HR results, our method is
able to output a perceivable LR image, compared to IRN
(bottom-right corner in Fig. 6¢ and Fig. 6b). As our invertible
network embeds both information for rescaling and produc-
ing generative priors, the LR images are not as faithful as the
ones produced by TAR; nevertheless, they still capture the
main perceptual features in such an extreme low resolution.

Quantitative Scores. Table 1 presents a quantitative eval-
uation measuring different methods. It is not surprising that
CNN-based methods report the best PSNR and SSIM, as
they tend to produce blurry results that follow the overall
structure. Our method achieves the lowest LPIPS value,
which indicates that its result is perceptually similar with the
ground-truth. It is understandable that our method is unable
to achieve the best PSNR and SSIM, since they focus on
image pixel-wise distance instead of a good fidelity.

4.2. Ablation Studies

Direct Invertible Prior Output. As shown in Fig. 7b,
when we only utilize the invertible extreme rescaling mod-
ule without generative prior, the restored images maintain
the face structure well but lack details, and it is easy to
spot the artifacts when zooming in. This is the drawback of
CNN-based super-resolution methods without GAN prior
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Figure 7. Qualitative comparisons of different variants of our
method with a 64 X upscaling factor.

Table 2. Quantitative comparisons of different variants of our
method with a 64 x upscaling factor.

Methods PSNR1 SSIM1 LPIPS |
Invertible Only 21.93 0.5807  0.3379
pSp [23] 17.70 0.5900  0.4456

w/ Our Codes 18.33 0.5962  0.3591

w/o Invertible Encoder 19.99 0.6214  0.3299
Image-level Fusion 22.17 0.6389  0.2843
Ours 22.30 0.6467  0.2686

especially for large upscaling factors as discussed above.

Scale-specific Generative Prior Output. We compare
our scale-specific latent code prediction layers with the pSp
encoder module [23], collaborating with a pretrained Style-
GAN which provides rich and diverse prior. We can observer
in Fig. 7c that pSp can generate an HR image with a sim-
ilar face profile, but the identity is significantly different
from the ground-truth. This is because that the deficient
input information is insufficient for guiding the encoder to
produce a result with desired details. On the other hand,
with one-to-one corresponding feature mapping, our code
prediction layers can generate a faithful and superior result,
e.g., Fig. 7d can better capture facial expressions and restore
realistic details.

Effects of Invertible Encoder. We discard the invertible
encoder and apply ordinary LR images as input to investigate
the contribution of information embedding mechanism. A
performance drop is observed in Fig. 7e compared with
Fig. 7g, especially for the eyes, mustache and hair. This is
because the restoration capacity is limited after removing
the encoder with embedding mechanism.

Effects of Upscaling Priors Decoding Module. To inves-
tigate the effects of the upscaling priors decoding module,
we replace it with a simple image-level fusion module which
concatenates the final invertible output and the GAN prior
output and further sends them to a stack of convolutional

(a) LR (b) Ours i (¢) GT -

Figure 8. Results of our method on cat [33] domain and church [31]
domain with a 16 upscaling factor.

Table 3. Quantitative comparisons on different domains.

Methods PSNRT SSIM T LPIPS |
Cat [33] (16%) 2197 05250 0.1945
Church [31] (16x) | 18.48 04421  0.1860

layers. The result tends to copy the output of invertible prior
directly while the image-level generative prior constrained
in StyleGAN space has less similarity with ground-truth as
shown in Fig. 7f. With the multi-scale intermediate features
from both invertible and generative priors, the upscaling de-
coding module is able to extract and integrate rich informa-
tion in a coarse-to-fine manner, further generating plausible
details to enhance the output quality.

Quantitative Scores. Quantitative ablation results are pre-
sented in Table 2. Our final setting receives the best perfor-
mance in all three metrics than its variants.

4.3. Discussions and Analysis

Images in Different Domains. We demonstrate the gener-
alization capacity of our network to reconstruct images from
different domains by switching StyleGANs trained on vari-
ous categories as shown in Fig. 8 and Table 3. This is due
to the carefully designed invertible network which produces
faithful prior of diverse data domains and further guides the
StyleGAN to generate lifelike prior accurately, helping to
achieve the final realistic results.

Invertibility of Different Scaling Factors. We extend our
method using different LR resolutions to investigate the in-
vertibility of diverse scaling factors, i.e., our method pro-
duces a LR image of a resolution different from 16x 16 and
then upscales it to 1024x1024. The results are presented
in Fig. 9, where we conduct experiments with LR resolu-
tions of 16x 16, 32x32, 64 x64 and 128 x 128, respectively.
It shows that an LR image of higher resolution can embed
more information and lead to more a faithful reconstructed
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Figure 9. Invertibility of different scaling factors. The left annota-
tion is the resolution of LR image and the LR image is depicted in
bottom-right.

Table 4. Quantitative comparisons on different LR resolution sizes.

LR PSNRT SSIMT LPIPS

16 x 16 | 2230  0.6467  0.2686
32x32 | 2560 06932 0.1828
64x64 | 28.13  0.7451  0.1031
128 x 128 | 32.60  0.8757  0.0719

image. For example, the 64 x 64 variant is able to restore
an authentic background with clear textures which is out of
face domain, which indicates the powerful invertibility of
our method. Quantitative results are shown in Table 4.

Comparison with JPEG Compression. JPEG is a widely
used image compression standard with a controllable image
quality range from 1 to 100 (where a higher value indicates
better quality). Fig. 10 and Table 5 show a comparison in
compression performance (in terms of the average PSNR and
compressed storage size over the CelebA-HQ test set) be-
tween our method (with different LR resolutions) and JPEG
(with different image quality values). We can see that for
comparable PSNR values, our method requires significantly
lower storage than JPEG. It shows the good potential of our
method for image storage compression. Qualitative results
can be found the supplementary material.
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Figure 10. Scatter diagram of PSNR and compressed storage results
using our method and JPEG respectively under diverse settings.

Table 5. Quantitative comparison with JPEG compression technol-
ogy in storage size.

LR Resolution | 16x16 32x32 64x64 128x128
PSNR 1 2230  25.60  28.13 32.60
Storage(B) | 724 978 1731 4103
JPEG Quality 1 5 10 40 70

PSNR 1 23.64 2694 3121 3899 46.89
Storage(B) | | 18803 21511 27933 52979 89799

5. Conclusion and Limitations

We proposed the GRAIN framework for generating faith-
ful high-resolution images from low-resolution invertible
images with a challenging upscaling factor (64 x). Our recip-
rocal mechanism utilizes both invertible prior and generative
prior, allowing us to achieve a fine balance between pixel
accuracy and fidelity. Extensive experiments demonstrate su-
perior performance of GRAIN against state-of-the-art rescal-
ing methods, even showing a better compression ratio than
JPEG in high-resolution face image.

Limitations. Due to the StyleGAN generative prior, our
framework may not perform well for images located outside
the pretrained StyleGAN space. The issue can be addressed
by fine-tuning the StyleGAN model. In addition, due to
the setting of invertible rescaling, our method requires the
HR version of image to encode information. It will be an
interesting future work to extend our framework to directly
perform super-resolution on ordinary LR images.
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