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Abstract

With the rise of powerful pre-trained vision-language
models like CLIP, it becomes essential to investigate ways
to adapt these models to downstream datasets. A recently
proposed method named Context Optimization (CoOp) in-
troduces the concept of prompt learning—a recent trend in
NLP—to the vision domain for adapting pre-trained vision-
language models. Specifically, CoOp turns context words
in a prompt into a set of learnable vectors and, with only a
few labeled images for learning, can achieve huge improve-
ments over intensively-tuned manual prompts. In our study
we identify a critical problem of CoOp: the learned con-
text is not generalizable to wider unseen classes within the
same dataset, suggesting that CoOp overfits base classes
observed during training. To address the problem, we pro-
pose Conditional Context Optimization (CoCoOp), which
extends CoOp by further learning a lightweight neural net-
work to generate for each image an input-conditional token
(vector). Compared to CoOp’s static prompts, our dynamic
prompts adapt to each instance and are thus less sensitive
to class shift. Extensive experiments show that CoCoOp
generalizes much better than CoOp to unseen classes, even
showing promising transferability beyond a single dataset;
and yields stronger domain generalization performance as
well. Code is available at https://github.com/
KaiyangZhou/CoOp.

1. Introduction

Recent research in large-scale vision-language pre-
training has achieved striking performance in zero-shot im-
age recognition [13,24,33,40], demonstrating a potential in
learning open-world visual concepts for such a paradigm.
The key design lies in how visual concepts are modeled.
In traditional supervised learning where labels are dis-
cretized, each category is associated with a randomly initial-
ized weight vector that is learned to minimize the distance
with images containing the same category. Such a learning
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method focuses on closed-set visual concepts, limiting the
model to a pre-defined list of categories, and is unscalable
when it comes to new categories unseen during training.

In contrast, for vision-language models' like CLIP [40]
and ALIGN [24], the classification weights are diametri-
cally generated by a parameterized text encoder (e.g., a
Transformer [48]) through prompting [34]. For instance, to
differentiate pet images containing different breeds of dogs
and cats, one can adopt a prompt template like “a photo of
a {class}, a type of pet” as input to the text encoder, and
as a result, class-specific weights for classification can be
synthesized by filling in the “{class}” token with real class
names. Compared to discrete labels, vision-language mod-
els” source of supervision comes from natural language,
which allows open-set visual concepts to be broadly ex-
plored and has been proven effective in learning transferable
representations [24,40].

With the rise of such powerful vision-language models,
the community has recently started to investigate potential
solutions to efficiently adapt these models to downstream
datasets [14, 53,56, 62]. To fit web-scale data, such as the
400 million pairs of images and texts used by CLIP, vision-
language models are purposefully designed to have high ca-
pacity, entailing that the model size would be enormous,
typically with hundreds of millions of parameters or even
billions. Therefore, fine-tuning the entire model, as often
adopted in deep learning research [18], is impractical and
might even damage the well-learned representation space.

A safer approach is to tune a prompt by adding some
context that is meaningful to a task, like “a type of pet” for
the pet dataset mentioned above, which has been found ef-
fective in improving performance [40]. However, prompt
engineering is extremely time-consuming and inefficient as
it has to be based on trial and error, and does not guaran-
tee an optimal prompt either. To automate prompt engi-
neering, Zhou et al. [62] have recently explored the concept
of prompt learning—a recent trend in NLP [15, 25, 30,32,
44, 60]—for adapting pre-trained vision-language models.
Their approach, Context Optimization (CoOp), turns con-

I'We follow existing studies [13,24,33,40] to refer to CLIP-like models
as vision-language models.
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Zero-shot CoOp CoCoOp
| [a] [photo] [of] [a] [arrival gate]. | | [v1] [v2] ... [va] [arrival gate]. | | [v1(z)] [v2(z)] ... [vam(z)] [arrival gate]. |
| [a] [photo] [of] [a] [cathedral]. | | [v1] [v2] ... [var] [cathedral]. | | [v1(x)] [v2(@)] ... [var(@)] [cathedral]. |

Accuracy: 69.36 @

Accuracy: 80.60 @ Accuracy: 79.74 @

&
w
=)
=
Q
g
@)
&S]
f=
5
a
Q

0CoOp work well on the base classes observed during training and beat manual prompts by a significant margin.

Zero-shot CoOp CoCoOp
| [a] [photo] [of] [a] [wind farm]. | | [1] [v2] ... [oa] [wind farm]. | | [v1(x)] [v2(x)] ... [var(x)] [wind farm]. |
| [a] [photo] [of] [a] [train railway]. | | [v1] [wa] ... [UM] [train railway]. | | [v1(x)] [va()] ... [UM(:c)] [train railway]. |

Accuracy: 75.35 @

Accuracy: 65.89 ® Accuracy: 76.86 @

(b) The instance-conditional prompts learned by CoCoOp are much more generalizable than CoOp to the unseen classes.

Figure 1. Motivation of our research: to learn generalizable prompts. The images are randomly selected from SUN397 [55], which is

a widely-used scene recognition dataset.

text words in a prompt into a set of learnable vectors, taking
advantage of the differentiable nature of neural networks.
With only a few labeled images for learning, CoOp achieves
huge improvements over intensively-tuned manual prompts
across a wide range of image recognition datasets.

In our study, we identify a critical problem of CoOp: the
learned context is not generalizable to wider unseen classes
within the same task. Figure 1 illustrates the problem: the
context learned by CoOp works well in distinguishing the
base classes like “arrival gate” and “cathedral” but suffers a
significant drop in accuracy when it is transferred to the new
(unseen) classes, such as “wind farm” and “train railway”—
even though the task’s nature remains the same, i.e., recog-
nizing scenes. The results suggest that the learned context
overfits the base classes, thus failing to capture more gen-
eralizable elements that are vital for broader scene recog-
nition. We argue that such a problem is caused by CoOp’s
static design: the context, which is fixed once learned, is
optimized only for a specific set of (training) classes. On
the contrary, the manually-designed prompts adopted by the
zero-shot method are relatively generalizable.

To address the weak generalizability problem, we intro-
duce a novel concept: conditional prompt learning. The key
idea is to make a prompt conditioned on each input instance
(image) rather than fixed once learned. To make the model
parameter-efficient, we introduce a simple yet effective im-
plementation of conditional prompt learning. Specifically,
we extend CoOp by further learning a lightweight neural
network to generate for each image an input-conditional to-
ken (vector), which is combined with the learnable con-
text vectors. We call our approach Conditional Context
Optimization (CoCoOp).> An overview is shown in Fig-
ure 2. Interestingly, the paradigm of CoCoOp is analogous
to image captioning [49], which explains why instance-

2Pronounced as /kau ku:p/.

conditional prompts are more generalizable: they are op-
timized to characterize each instance (more robust to class
shift) rather than to serve only for some specific classes.

We present comprehensive experiments on 11 datasets
covering a diverse set of visual recognition tasks. Specifi-
cally, we design a base-to-new generalization setting where
a model is first learned using base classes and then tested
on completely new classes. Compared with the zero-shot
method [40] and CoOp [62], our approach achieves the best
overall performance (Table 1). Importantly, CoCoOp gains
significant improvements over CoOp in unseen classes (Fig-
ure 3(a)), allowing the gap between manual and learning-
based prompts to be substantially reduced.

In a more challenging scenario where the context learned
for one task is directly transferred to other tasks with dras-
tically different classes, CoCoOp still beats CoOp with a
clear margin (Table 2), suggesting that instance-conditional
prompts are more transferable and have the potential to suc-
ceed at larger scale. CoCoOp also obtains stronger domain
generalization performance than CoOp (Table 3), further
justifying the strengths of dynamic prompts.

In summary, our research provides timely insights into
the generalizability problem in prompt learning, and cru-
cially, demonstrates the effectiveness of a simple idea in
various problem scenarios. We hope our approach and the
findings presented in this work can pave the way for future
research in generalizable—and transferable—prompt learn-
ing.

2. Related Work

Vision-Language Models = We mainly review studies fo-
cused on aligning images and texts to learn a joint embed-
ding space [24, 40, 59]. The idea of cross-modality align-
ment is certainly not new and has been investigated since
nearly a decade ago—though with dramatically different
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technologies than today.

A typical vision-language model consists of three key el-
ements: two for image and text encoding while the third is
related to the design of loss functions. In early days, mod-
els for processing images and texts are often designed and
also learned independently, with their outputs connected by
extra modules (losses) for alignment. Images are often en-
coded using hand-crafted descriptors [10,45] or neural net-
works [12,29], while texts are encoded using, for instance,
pre-trained word vectors [12, 45] or the frequency-based
TF-IDF features [10,29]. In terms of cross-modality align-
ment, common approaches include metric learning [12],
multi-label classification [16, 26], and n-gram language
learning [31]. Recently, a study suggests that training the
vision part with an image captioning loss can make the vi-
sual representation more transferable [7].

Recent vision-language models [13,24,33,40] bridge the
two modalities by learning two encoders jointly. Also, the
models are now built with much larger neural networks. As
discussed in Zhou et al. [62], recent successes in vision-
language models are mainly attributed to the developments
in 1) Transformers [48], ii) contrastive representation learn-
ing [4, 17,20], and iii) web-scale training datasets [24, 40].
A representative approach is CLIP [40], which trains two
neural network-based encoders using a contrastive loss to
match pairs of images and texts. After consuming 400 mil-
lion data pairs, the CLIP model demonstrates a remark-
able zero-shot image recognition capability. Similar to
CoOp [62], our approach is orthogonal to the research of
CLIP-like models [13,24,33,40], aiming to offer an efficient
solution for adapting pre-trained vision-language models to
downstream applications.

Prompt Learning This topic originates from the NLP
domain. The motivation was to view pre-trained language
models, such as BERT [8] or GPT [41], as knowledge
bases from which information useful to downstream tasks
is elicited [39]. Concretely, given a pre-trained language
model, the task is often formulated as a “fill-in-the-blank”
cloze test, such as asking the model to predict the masked
token in “No reason to watch. It was [MASK]” as either
“positive” or “negative” for sentiment classification. The
key lies in how to design the underlined part, known as
prompt (template), in such a format familiar to the model.
Instead of manually designing a prompt, research in
prompt learning aims to automate the process with the help
of affordable-sized labeled data. Jiang et al. [25] use text
mining and paraphrasing to generate a group of candidate
prompts, within which the optimal ones are chosen to have
the highest training accuracy. Shin et al. [44] propose Au-
toPrompt, a gradient-based approach that selects from a vo-
cabulary the best tokens that cause the greatest changes in
gradients based on the label likelihood. Our research is most
related to continuous prompt learning methods [30, 32, 60],
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Figure 2. Our approach, Conditional Context Optimization (Co-
CoOp), consists of two learnable components: a set of context
vectors and a lightweight neural network (Meta-Net) that gener-
ates for each image an input-conditional token.

where the main idea is to turn a prompt into a set of contin-
uous vectors that can be end-to-end optimized with respect
to an objective function. See Liu et al. [34] for a more com-
prehensive survey.

In computer vision, prompt learning is a nascent research
direction that has only been explored very recently [27,42,
56,58,62]. Our research is built on top of CoOp [62], which
is the earliest work to bring continuous prompt learning
to the vision domain for adaptation of pre-trained vision-
language models. Crucially, our approach solves the weak
generalizability problem of CoOp [62], based on a simple
idea of conditional prompt learning—which to our knowl-
edge is also novel in the context of NLP and thus could be
of interest to the NLP community as well.

Zero-Shot Learning (ZSL)  is another relevant research
area where the goal is similar to ours, i.e., to recognize novel
classes by training only on base classes [3,51,54,57]. More-
over, the generalization problem where a model trained on
base classes often fails on novel classes is also linked to
the “seen-class bias” issue raised in the ZSL literature [54].
The most common approach to ZSL is to learn a semantic
space based on auxiliary information such as attributes [23]
or word embeddings [12,52]. Different from existing ZSL
methods, our work addresses the emerging problem of
adapting large vision-language models and uses drastically
different techniques based on prompting.

3. Methodology

An overview of our approach is shown in Figure 2. Be-
low we first provide brief reviews on CLIP [40], which is
the base model used in this paper, and CoOp [62]. Then, we
present the technical details of our approach as well as the
rationale behind the design. Same as CoOp, our approach
is applicable to broader CLIP-like vision-language models.
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3.1. Reviews of CLIP and CoOp

Contrastive Language-Image Pre-training known as
CLIP [41], has well demonstrated the potential of learning
open-set visual concepts. CLIP is built using two encoders,
one for image and the other for text, as shown in Figure 2.
The image encoder can be either a ResNet [18] or a ViT [9],
which is used to transform an image into a feature vector.
The text encoder is a Transformer [48], which takes as input
a sequence of word tokens and again produces a vectorized
representation.

During training, CLIP adopts a contrastive loss to learn
a joint embedding space for the two modalities. Specifi-
cally, for a mini-batch of image-text pairs, CLIP maximizes
for each image the cosine similarity with the matched text
while minimizes the cosine similarities with all other un-
matched texts, and the loss is computed in a similar fashion
for each text too. After training, CLIP can be used for zero-
shot image recognition. Let « be image features generated
by the image encoder and {w;}¥ | a set of weight vectors
produced by the text encoder, each representing a category
(suppose there are K categories in total). In particular, each
w; is derived from a prompt, such as “a photo of a {class}”
where the “{class}” token is filled with the i-th class name.
The prediction probability is then

exp(sim(z, w,)/7)

Zfil exp(sim(x, wi)/T)7

plylz) = ()

where sim(+, -) denotes cosine similarity and 7 is a learned
temperature parameter.

Context Optimization (CoOp) aims to overcome the
inefficiency problem in prompt engineering for better adapt-
ing pre-trained vision-language models to downstream ap-
plications [62]. The key idea in CoOp is to model each con-
text token using a continuous vector that can be end-to-end
learned from data. Concretely, instead of using “a photo
of a” as the context, CoOp introduces M learnable context
vectors, {v1,va, ..., v}, each having the same dimension
with the word embeddings. The prompt for the i-th class,
denoted by t;, now becomes t; = {v1,v2,...,0p,¢;i}
where c¢; is the word embedding(s) for the class name. The
context vectors are shared among all classes.’ Let g(-) de-
note the text encoder, the prediction probability is then

exp(sim(z, g(t,))/7)
T) = . 2
plyle) SF exp(sim(, g(t:)/7)

To adapt CLIP to a downstream image recognition
dataset, a cross-entropy loss can be used as the learning ob-
jective. Since the text encoder g(-) is differentiable, gradi-

3CoOp has an alternative version that learns class-specific context,
which is not considered here because it is not straightforward to transfer
class-specific context to unseen classes.

ents can be propagated all the way back to update the con-
text vectors. Note that the base model of CLIP is frozen in
the entire training process (ours too).

3.2. CoCoOp: Conditional Context Optimization

CoOp is a data-efficient approach allowing the context
vectors to be trained with only a few labeled images in a
downstream dataset. However, as discussed CoOp is not
generalizable to wider unseen classes within the same task.
We argue that instance-conditional context can generalize
better because it shifts the focus away from a specific set of
classes—for reducing overfitting—to each input instance,
and hence to the entire task.

A straightforward way to implement CoCoOp is to build
M neural networks to get M context tokens. However, such
a design would require M X the size of a neural network,
which is much larger than having M context vectors as in
CoOp. Here we propose a parameter-efficient design that
works very well in practice. Specifically, on top of the M
context vectors, we further learn a lightweight neural net-
work, called Meta-Net, to generate for each input a condi-
tional token (vector), which is then combined with the con-
text vectors. See Figure 2 for a sketch of the architecture.

Let hg(+) denote the Meta-Net parameterized by 6, each
context token is now obtained by v, (x) = v, + 7™ where
w = hg(x) and m € {1,2,...,M}. The prompt for the
i-th class is thus conditioned on the input, ie., t;(x) =
{v1(x),va(x),...,vp(x), ¢;}. The prediction probability
is computed as

exp(sim(x, g(t,(x)))/T)
T) = . (3)
PUIR) =S xp(sim(, (6 @))/7)
M

During training, we update the context vectors {v, } o,
together with the Meta-Net’s parameters 6. In this work,
the Meta-Net is built with a two-layer bottleneck structure
(Linear-ReLU-Linear), with the hidden layer reducing the
input dimension by 16x. The input to the Meta-Net is sim-
ply the output features produced by the image encoder. We
leave exploration of more advanced designs for future work.

4. Experiments

Our approach is mainly evaluated in the following three
problem settings: 1) generalization from base to new classes
within a dataset (Section 4.1); 2) cross-dataset transfer (Sec-
tion 4.2); 3) domain generalization (Section 4.3). All mod-
els used in our experiments are based on the open-source
CLIP [40].* Before discussing the results, we provide the
details of the experimental setup below.

Datasets  For the first two settings, i.e., base-to-new gen-
eralization and cross-dataset transfer, we use the 11 image

4https ://github.com/openai/CLIP.
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Table 1. Comparison of CLIP, CoOp and CoCoOp in the base-to-new generalization setting. For learning-based methods (CoOp and
CoCoOp), their prompts are learned from the base classes (16 shots). The results strongly justify the strong generalizability of conditional
prompt learning. H: Harmonic mean (to highlight the generalization trade-off [54]).

(a) Average over 11 datasets. (b) ImageNet. (c) Caltech101.
Base New ‘ H Base New ‘ H Base New H
CLIP 69.34 74.22 | 71.70 CLIP 7243  68.14 | 70.22 CLIP 96.84 94.00 | 95.40
CoOp 82.69 6322 | 71.66 CoOp 7647 67.88 | 71.92 CoOp 98.00 89.81 | 93.73
CoCoOp 80.47 71.69 | 75.83 CoCoOp 7598 7043 | 73.10 CoCoOp 9796 93.81 | 95.84
(d) OxfordPets. (e) StanfordCars. (f) Flowers102.
Base New | H Base New | H Base New | H
CLIP 91.17 97.26 | 94.12 CLIP 63.37 74.89 | 68.65 CLIP 72.08 77.80 | 74.83
CoOp 93.67 95.29 | 94.47 CoOp 78.12 60.40 | 68.13 CoOp 97.60 59.67 | 74.06
CoCoOp 9520 97.69 | 96.43 CoCoOp 70.49 73.59 | 72.01 CoCoOp 94.87 71.75 | 81.71
(g) Food101. (h) FGVCAircraft. (i) SUN397.
Base New ‘ H Base New ‘ H Base New ‘ H
CLIP 90.10 91.22 | 90.66 CLIP 27.19 36.29 | 31.09 CLIP 69.36 75.35 | 72.23
CoOp 88.33 82.26 | 85.19 CoOp 40.44 22.30 | 28.75 CoOp 80.60 65.89 | 72.51
CoCoOp 90.70 91.29 | 90.99 CoCoOp 3341 23.71 | 27.74 CoCoOp 79.74 76.86 | 78.27
(j) DTD. (k) EuroSAT. (1) UCF101.
Base New ‘ H Base New H Base New ‘ H
CLIP 5324 59.90 | 56.37 CLIP 56.48 64.05 | 60.03 CLIP 70.53 77.50 | 73.85
CoOp 7944 41.18 | 54.24 CoOp 92.19 54.74 | 68.69 CoOp 84.69 56.05 | 67.46
CoCoOp 77.01 56.00 | 64.85 CoCoOp 87.49 60.04 | 71.21 CoCoOp 8233 7345 | 77.64

recognition datasets as in Zhou et al. [62], which cover a di-
verse set of recognition tasks. Specifically, the benchmark
includes ImageNet [6] and Caltech101 [11] for classifica-
tion on generic objects; OxfordPets [38], StanfordCars [28],
Flowers102 [36], Food101 [2] and FGVCAircraft [35] for
fine-grained classification; SUN397 [55] for scene recogni-
tion; UCF101 [46] for action recognition; DTD [5] for tex-
ture classification; and finally EuroSAT [19] for satellite im-
agery recognition. For domain generalization experiments,
we use ImageNet as the source dataset and four other vari-
ants of ImageNet that contain different types of domain shift
as the target datasets, namely ImageNetV2 [43], ImageNet-
Sketch [50], ImageNet-A [22] and ImageNet-R [21].

Following Zhou et al. [62], we randomly sample for each
dataset a few-shot training set while using the original test
set for testing. We only evaluate the highest shot number
studied in Zhou et al. [62], i.e., 16 shots, which is sufficient
to justify our approach. For learning-based models, the re-
sults are averaged over three runs.

Baselines  The direct rival to our approach is CoOp [62],
which essentially learns static prompts (in comparison
to our dynamic prompts). The zero-shot method, i.e.,
CLIP [40] is also compared, which is based on manual

prompts. It is worth mentioning that the manual prompt
for each dataset was intensively tuned using all classes in
the test data [40].

Training Details Our implementation is based on
CoOp’s code.” Throughout the experiments, we use the best
available vision backbone in CLIP, i.e., ViT-B/16. Zhou et
al. [62] have suggested that a shorter context length and
a good initialization can lead to better performance and
stronger robustness to domain shift. Therefore, we fix the
context length to 4 and initialize the context vectors using
the pre-trained word embeddings of “a photo of a” for both
CoOp and CoCoOp. Due to the instance-conditional de-
sign, our approach is slow to train and consumes much more
GPU memory than CoOp. Therefore, to ensure the model
can fit into a GPU and meanwhile reduce the training time,
we train CoCoOp with batch size of 1 for 10 epochs. Such
a limitation is discussed in more detail in Section 5.

4.1. Generalization From Base to New Classes

Solving the weak generalizability problem of CoOp is
the main focus in this research. On each of the 11 datasets,

Shttps://github.com/Kaiyangzhou/CoOp.
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CoCoOp vs. CoOp in Unseen Classes

UCF101

DTD
StanfordCars
Flowers102
SUN397
Food101
EuroSAT
Caltech101
ImageNet
OxfordPets

FGVCAircraft

T T T
0.0 25 5.0 7.5 10.0 125 15.0 175

Absolute improvement (%)

(a)

CoCoOp vs. CoOp in Base Classes

OxfordPets -+1.53

-0.04] caltech101

-0.49. ImageNet

-0.86 [ sunzo7

-2.43 DTD

-2.73 Flowers102

EuroSAT

StanfordCars

2

|
EN

|
N
o4

Absolute change (%)

(b)

Figure 3. Comprehensive comparisons of CoCoOp and CoOp in the base-to-new generalization setting. (a) CoCoOp is able to gain
consistent improvements over CoOp in unseen classes on all datasets. (b) CoCoOp’s declines in base accuracy are mostly under 3%, which

are far outweighed by the gains in generalization.

we split the classes equally into two groups, one as base
classes and the other as new classes. Learning-based mod-
els, i.e., CoOp and CoCoOp, are trained using only the base
classes while evaluation is conducted on the base and new
classes separately to test generalizability. The detailed re-
sults are shown in Table 1.

Failures of CoOp in Unseen Classes  The split does not
guarantee that the two class groups are equally difficult, as
evidenced in CLIP’s bumpy results: the base and new ac-
curacy numbers are dramatically different.® Nonetheless,
CoOp’s new accuracy is consistently much weaker than the
base accuracy on nearly all datasets, leaving a huge gap of
almost 20% on average (82.69% vs 63.22%). Despite main-
taining an advantage over CLIP in terms of average perfor-
mance, CoOp’s gains in the base classes are nearly zeroed
out by the catastrophic failures in the new classes, highlight-
ing the need to improve generalizability for learning-based
prompts.

CoCoOp Significantly Narrows Generalization Gap
As shown in Table 1(a), CoCoOp improves the accuracy
in unseen classes from 63.22% to 71.69%, which largely
reduces the gap with manual prompts. The results confirm
that instance-conditional prompts are more generalizable.
A more detailed breakdown of per-dataset improvement is
visualized in Figure 3(a) where we observe more than 10%
increases in accuracy on 5 out of 11 datasets. Notably, on
the challenging ImageNet dataset, CoCoOp’s surge from
67.88% to 70.43% represents a non-trivial progress (the
70.43% accuracy even surpasses CLIP’s 68.14%).

©For convenience, we refer to base accuracy as the performance in base
classes; and similarly for new accuracy.

CoCoOp’s Gains in Generalization Far Outweigh
Losses in Base Accuracy In comparison to CoOp, per-
formance drops in the base classes occur for CoCoOp on
most datasets (see Figure 3(b)). This is reasonable because
CoOp optimizes specifically for base classes whereas Co-
CoOp optimizes for each instance in order to gain more
generalization over an entire task. But it is worth noting
that on the 9 datasets where CoCoOp’s base accuracy drops
below CoOp’s, most losses are under 3% (precisely on 6
out of 9 datasets), which are far outweighed by the gains in
unseen classes shown in Figure 3(a); even for those where
CoCoOp suffers the biggest losses, the boosts in generaliza-
tion are mostly significant enough to turn the averages into
positives, e.g., StanfordCars sees the worst base accuracy
drop of -7.63% but has the third-highest accuracy gain of
+13.19% in the new classes, which together bring a 5.56%
positive improvement for CoCoOp.

CoCoOp Is More Compelling Than CLIP  When tak-
ing into account both the base and new classes, CoCoOp
shows a gain of more than 4% over CLIP (75.83% vs
71.70), suggesting that instance-conditional prompts have
a better potential in capturing more generalizable elements
that are relevant for a recognition task. Theoretically,
learning-based prompts have a much higher risk of overfit-
ting base classes than manual prompts. Therefore, CLIP is a
strong competitor to beat in unseen classes. Different from
CoOp, we obtain promising results for CoCoOp: the new
accuracy is even better than CLIP’s on 4 out of 11 datasets
(i.e., ImageNet, OxfordPets, Food101 and SUN397) and not
too far away from CLIP’s on the rest except FGVCAircraft
where the gap between manual and learning-based prompts
is generally large. In the ablation study on context length,
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Table 2. Comparison of prompt learning methods in the cross-dataset transfer setting. Prompts applied to the 10 target datasets are
learned from ImageNet (16 images per class). Clearly, CoCoOp demonstrates better transferability than CoOp. A denotes CoCoOp’s gain

over CoOp.
Source Target
&
«n £ N E
5 § % & § & § 2 5 S %
S 2 S 5 2%z oz g §oE
& S S & I £ o > A @ 5 =
CoOp [62] 71.51 93.70 89.14 64.51 6871 8530 1847 64.15 4192 46.39 6655 63.88
CoCoOp 71.02 9443 90.14 65.32 71.88 86.06 2294 67.36 45.73 4537 6821 65.74
A -0.49 +0.73 +1.00 +0.81 +3.17 +0.76 +4.47 +3.21 +3.81 -1.02 +1.66 +1.86

Table 3. Comparison of manual and learning-based prompts in domain generalization. CoOp and CoCoOp use as training data 16
images from each of the 1,000 classes on ImageNet. In general, CoCoOp is more domain-generalizable than CoOp.

Source Target
Learnable?  ImageNet ImageNetV2  ImageNet-Sketch  ImageNet-A  ImageNet-R
CLIP [40] 66.73 60.83 46.15 47.717 73.96
CoOp [62] v 71.51 64.20 47.99 49.71 75.21
CoCoOp v 71.02 64.07 48.75 50.63 76.18

we find that FGVCAircraft benefits from longer context,
which is aligned with the findings in Zhou et al. [62].
To close or even overturn the gaps between manual and
learning-based prompts in unseen classes, more efforts are
required and we hope the insights presented in this research
can help the community tackle the generalizability issue in
prompt learning.

4.2. Cross-Dataset Transfer

Having demonstrated CoCoOp’s generalizability within
a dataset, we further show that CoCoOp has the potential to
transfer beyond a single dataset, which is a much more chal-
lenging problem because the fundamentals can be totally
changed across different datasets (e.g., from object recog-
nition to texture classification). We only consider prompt
learning methods in this setting.

We compare CoCoOp with CoOp by transferring con-
text learned from ImageNet, with all 1,000 classes used, to
each of the other 10 datasets. The results are detailed in
Table 2. On the source dataset, the two models perform
similarly. Whereas on the target datasets, CoCoOp mostly
outperforms CoOp by a clear margin. Since the ImageNet
classes mainly contain objects, as well as a fair amount of
dog breeds, it is reasonable to see high accuracy for both
models on the relevant target datasets including Caltech101
and OxfordPets.

By comparison, the performance on other datasets with
distant—and more fine-grained or specialized—categories

is much lower, such as FGVCAircraft and DTD (contain-
ing various textures) where the accuracy numbers are well
below 50%. Nonetheless, CoCoOp exhibits much stronger
transferability than CoOp on the two mentioned datasets as
well as on most other fine-grained or specialized datasets.

4.3. Domain Generalization

Generalization to out-of-distribution data is a capability
essential for machine learning models to succeed in prac-
tical applications [47,61]. Zhou et al. [62] have revealed
that their learnable prompts are more robust than manual
prompts to domain shift. We are also interested to know if
instance-conditional prompts still maintain the advantages
as in previous experiments.

Following Zhou et al. [62], we evaluate CoCoOp’s do-
main generalization performance by transferring the con-
text learned from ImageNet to the four specially designed
benchmarks. We also include the comparison with CLIP.
Table 3 shows the results. Both prompt learning methods
clearly beat CLIP on all target datasets. Compared to CoOp,
CoCoOp performs slightly worse on ImageNetV2 but bet-
ter on the other three. The results confirm that instance-
conditional prompts are more domain-generalizable.

4.4. Further Analysis

Class-Incremental Test We consider a practical prob-
lem scenario where the recognition targets originally com-
posed of base classes are expanded to include completely
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Table 4. Recognition accuracy (average over 11 datasets) on a
combination of base and new classes. The learnable models only
have access to training data from base classes.

Learnable? Accuracy
CLIP [40] 65.22
CoOp [62] v 65.55
CoCoOp v 69.13

Average over 11 datasets Average over 11 datasets

= CoCoOp w/ init
= CoCoOp w/o init

mmm CoCoOp (w/o init, M=4)
mmm CoCoOp (w/o init, M=8)
CoCoOp (w/o init, M=16)

801 o 80

7935

78

76

74

72

Base New H Base New H

(a) Ablation on initialization. (b) Ablation on context length.

Figure 4. Ablation studies.

Table 5. CoCoOp (last row) vs a bigger CoOp on ImageNet.

Model # params Base New | H

CoOp (ctx=4) 2,048 76.47 67.88|71.92
CoOp (ctx=60) 30,720 76.16 65.34|70.34
CoOp (ctx=4) + Meta-Net 34,816 75.98 70.43 | 73.10

new classes. This problem is relevant to the existing
continual learning literature [37] but different in that the
model here does not have access to any training data from
new classes and needs to perform zero-shot recognition on
them. We compare CLIP, CoOp and CoCoOp using the
11 datasets. The average results are reported in Table 4.
Clearly, CoOp loses competitiveness against CLIP as their
performance is similar but the former needs training data.
Again, CoCoOp beats the two competitors with a signifi-
cant margin.

Initialization =~ We compare word embeddings-based ini-
tialization with random initialization, which samples from a
zero-mean Gaussian distribution with 0.02 standard devia-
tion. Figure 4(a) suggests that a proper initialization is more
beneficial to both the base and new classes.

Context Length  Following Zhou et al. [62], we study 4,
8 and 16 context tokens. For fair comparison, we use ran-
dom initialization for all context tokens. Figure 4(b) sum-
marizes the results on the 11 datasets. The differences in the
base classes are fairly small whereas in the new classes the
models with a longer context length clearly perform better.

CoCoOp vs a Bigger CoOp  Since CoCoOp introduces
more parameters than CoOp, namely the Meta-Net, one

might question if the improvements simply come from an
increased learning capacity. To clear the doubt, we remove
the Meta-Net part and increase the number of context tokens
in CoOp to the maximum such that CoOp’s and CoCoOp’s
sizes are similar. The results in Table 5 show that increasing
the parameter size is not the key.

5. Limitations

The first limitation is about training efficiency: CoCoOp
is slow to train and would consume a significant amount
of GPU memory if the batch size is set larger than one.
The reason is because CoCoOp is based on an instance-
conditional design that requires for each image an indepen-
dent forward pass of instance-specific prompts through the
text encoder. This is much less efficient than CoOp that only
needs a single forward pass of prompts through the text en-
coder for an entire mini-batch of any size.

The second limitation is that on 7 out of the 11 datasets
(see Table 1), CoCoOp’s performance in unseen classes still
lags behind CLIP’s, indicating that more efforts are needed
from the community to fully close or overturn the gaps be-
tween manual and learning-based prompts.

6. Discussion and Conclusion

Our research addresses an important issue that arises
with the availability of large pre-trained Al models, i.e.,
how to adapt them to downstream applications. These mod-
els, also called foundation models [1], have received in-
creasing attention from academia and industry in both the
vision and NLP communities because they are so powerful
in terms of their capabilities for diverse downstream tasks.
However, foundation models are costly to pre-train in terms
of data scale and compute resources; and typically contain
an enormous number of parameters in order to develop suf-
ficient capacity. For instance, the CLIP model [40] based
on ViT-B/16 used in our experiments has a whopping 150M
parameter size. These factors together highlight the need for
research of efficient adaptation methods for democratizing
foundation models.

Our studies, which follow the line of parameter-efficient
prompt learning [62], provide timely insights into the gen-
eralizability issue of static prompts, and more importantly,
demonstrate that a simple design based on conditional
prompt learning performs superbly in a variety of prob-
lem scenarios, including generalization from base to new
classes, cross-dataset prompt transfer, and domain general-
ization.
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