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Figure 1: Left (illustration): We build a hybrid imaging system consisting of a rolling shutter (RS) sensor and an event sensor.

The event sensor encodes motion and intensity change information, which are well explored by the proposed EvUnroll

network to correct the edge distortion (e.g., rotating blades) and restore the intra-frame region occlusion (e.g., occluded logo)

in RS images. Right (example result): RS correction results comparison among DSUN [26], JCD [54], and our method.

Abstract

This paper proposes to use neuromorphic events for cor-
recting rolling shutter (RS) images as consecutive global
shutter (GS) frames. RS effect introduces edge distortion
and region occlusion into images caused by row-wise read-
out of CMOS sensors. We introduce a novel computa-
tional imaging setup consisting of an RS sensor and an
event sensor, and propose a neural network called EvUn-
roll to solve this problem by exploring the high-temporal-
resolution property of events. We use events to bridge
a spatio-temporal connection between RS and GS, estab-
lish a flow estimation module to correct edge distortions,
and design a synthesis-based restoration module to restore
occluded regions. The results of two branches are fused
through a refining module to generate corrected GS images.
We further propose datasets captured by a high-speed cam-
era and an RS-Event hybrid camera system for training and
testing our network. Experimental results on both public
and proposed datasets show a systematic performance im-
provement compared to state-of-the-art methods.
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1. Introduction

CMOS imaging sensors are the mainstream choice for

mobile phones and machine vision cameras due to low

power consumption and cost [15]. However, commonly

row-by-row readout scheme of CMOS sensors will always

cause the rolling shutter (RS) effect (also known as the jelly

effect) for captured images in scenes with camera or local

object motion. Compared with the global shutter (GS) sen-

sor that synchronizes the exposure period of each pixel, RS

effects limit the applicability of CMOS sensors in consumer

or industrial applications due to edge distortion and region

occlusion [14, 22, 24, 54]. As such, the RS correction is a

way to make up for such deficiencies.

A well-known challenge for RS correction is to estimate

the transformation between RS and GS images [22, 26, 54].

Unlike many image restoration tasks (such as video frame

interpolation [16, 32, 36] and image deblurring [17, 23])

which assume that the edge structures of local areas remain

unchanged, RS correction needs to deal with the edge dis-

tortion. To address this problem, geometric model based

methods [2, 12, 12, 29, 39] simplify the RS to GS (RS2GS)

transformation via different assumptions, such as the scene

is static [29, 30] and straight lines keep straight [43], and

employ homography mixture or camera pose estimation to
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achieve RS correction [12]. However, these simplified as-

sumptions lead to poor compatibility with complex mo-

tions, and the computational cost of such optimization prob-

lems is expensive [26]. Deep neural network since firstly

demonstrated in [42] have revealed its effectiveness in RS

correction by learning camera motion parameters [42, 57],

optical flow maps [7], or direct mappings of RS2GS [26,54]

from single or multiple consecutive RS frames. Nonethe-

less, even multi-frame images lack the ability to provide

motion within the inter-frame period, which makes the

problem still ill-posed.

Another bottleneck for RS correction is the intra-frame

region occlusion, which is caused by hybrid models of

global and local motion, or depth differences in 3D scenes.

The depth-dependent RS distortion could be handled by

modeling a 3D scene as layers of planar, and jointly esti-

mating the depth and camera motion from more than three

frames [49] at the cost of solving a complicated optimiza-

tion problem. Deep neural networks could also be em-

ployed to learn the underlying camera motion properties

and depth maps to restore intra-frame occluded regions

[57], but it mainly deals with small occlusion artifacts due

to the challenging nature of the single-image problem.

Neuromorphic event cameras are novel visual sensors

that enable each pixel to work asynchronously to com-

pare current/subsequent light intensity states and trigger a

binary event whenever the log-intensity variation exceeds

the preset thresholds [1, 10, 25, 47]. Thanks to their high-

temporal-resolution property with microseconds-level sen-

sitivity, event cameras are able to address several limita-

tions of traditional frame-based tasks for dynamic scenes

with fast motion. A particular body of the past methods

have attended to event-based image reconstruction tasks

[3, 5, 6, 35, 40, 51], and a branch of literatures prove the

benefit that events could bring to high-frame rate video re-

construction [13,48]. Hence, the bottlenecks of image-only

based RS correction and the benefits of events motivate us to

think about: Can we synergize the RS frame and event sig-

nals and make use of the high-speed characteristic of events

to assist RS correction?

To answer this question, we propose EvUnroll, a neural

network that synchronizes and fuses event signals to cor-

rect RS images as well as recover consecutive GS frames.

Events encode the pixel-wise motion information and in-

tensity change, so we use them to bridge a flow-based con-

nection and a synthesis-based connection between RS and

GS frames, and correspondingly establish a flow estimation

module to correct edge distortions and a restoration module

to restore occluded regions. These two branches are paral-

lel and their outputs are fused through a refinement module

to finally restore the GS image at any timestamp in the ex-

posure period of the input RS image. An optional module

for dealing with blurry RS images is designed to handle real

scenes with blurs. We further collect a new training dataset

generated from real videos captured at 5700 fps, and a test-

ing dataset captured with an RS-event hybrid camera sys-

tem. Overall, this paper makes the following contributions:

• EvUnroll is the first trial to improve RS correction with

motion estimation and occlusion region restoration by

involving event signals.

• We build a GS-event-RS triplet dataset called Gev-

RS using RS-distortion-free frames from a high-speed

camera to train the network, and build an RS-event hy-

brid camera (Fig. 1 left) to collect a real testing dataset.

• EvUnroll outperforms state-of-the-art RS correction

methods on commonly used datasets, and obtains a nu-

merical gain of 2.98 dB for PSNR, accompanied by

visual quality improvements (Fig. 1 right).

2. Related work

Geometric model based RS correction. Existing geo-

metric model based methods apply different assumptions to

simplify the problem of RS correction, such as by assuming

camera motion is simple rotational or translational [21, 29],

or straight lines keep straight [43]. Meingast et al. [29] first

develop the geometric model for translational-motion based

RS effect. Grundmann et al. [12] propose a parameterized

homography mixed model. Cho et al. [2] take into account

the zooming motion, and Purkait et al. [39] utilize the un-

derlying scene geometry with the Manhattan world assump-

tion. To accurately estimate the camera motion [21, 27, 38],

RANSAC [9] could be applied.

Learning based RS correction. RowColCNN [42] is the

first deep learning based RS correction method by learning

camera motion parameters. Zhuang et al. [57] further pro-

poses the SMARSC network to correct a single RS image

by learning to predict both the camera scanline velocity and

depth map. Liu et al. [26] take two adjacent RS frames as

input and learn a dense displacement field via a motion esti-

mation network. To bridge gaps between synthetic and real

data, JCD [54] collects a real captured dataset by setting

up a GS-RS hybrid camera system, and proposes a network

to handle both RS distortion and image blurring. More re-

cently, Fan et al. propose an end-to-end RS correction net-

work called SUNet [8], which is built up with a context-

aware undistortion flow estimator and a symmetric consis-

tency enforcement module. They also design a network

called RSSR [7] to predict a GS video from two consec-

utive RS images based on scanline-dependent nature.

Event-based image enhancement. Thanks to the high-

speed characteristic of the event camera, it is recently used

to improve the performance of image enhancement tasks by
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Figure 2: Two latent blocks are moving opposite each other

in one dimension. Their time-space trajectory, event trig-

gering, RS and GS frame imaging procedures are recorded

along the timeline. We represent the intensity value by dif-

ferent colors (green<yellow<white). Note the RS image

cannot precisely record the scene information due to edge

distortion (incorrect edge position of the yellow pixels) and

occluded region (missing the green pixels). We explore

events-encoded optical flow and intensity change to build

flow-based connection and synthesis-based connection be-

tween RS and GS frames to achieve RS correction.

an events-only or image + events fusion manners. By us-

ing only the event stream as input, Reinbacher et al. [41]

use manifold regularization to reconstruct high-frame-rate

videos, and Scheerlinck et al. [45] tackle the same prob-

lem by proposing a complementary filter. E2VID [40] pro-

poses to learn a video frame synthesis network with LSTM

modules. Pan et al. [34] make use of the high-speed advan-

tage of events to deblur motion images via jointly optical

flow estimation. Mostafavi et al. [31] and Han et al. [13]

also attempt using the learning-based method to solve im-

age super-resolution reconstruction task. Time Lens [48]

sets up a hybrid camera system and uses events to assist an

RGB camera to achieve video frame interpolation.

3. Methods
In this section, we briefly review the RS imaging and

event sensing preliminaries in Sec. 3.1, demonstrate the

relationship between the event formation model and its

RS/GS frame-based counterpart in Sec. 3.2, and introduce

EvUnroll network framework in Sec. 3.3. Implementation

details are recorded in Sec. 3.4

3.1. RS imaging and event sensing preliminaries

Let’s consider a 3D latent space-time volume (Ω ∈ R
3)

that records the scene we want to capture in the time range

[0, T ], and a virtual GS image IGS
t=ts is formed at any mo-

ment ts ∈ [0, T ]. For the case of row-by-row readout RS

imaging, we assume the readout direction is from top to

bottom, and the resolution is H×W ; the exposure time de-

lay between consecutive rows is T
H . Then the RS image can

be formulated as:

IRS =
∑H

y=1
M(IGS

t=y T
H
, y), (1)

where y is the vertical coordinate, t = y T
H means the scan

moment of each row, and M(I, y) is an operator to mask

the yth row from an image I .

On the event side, the event-triggered output at t = ts
can be formulated as:

pk = Γ
{
log(

It=ts(xk, yk) + b

It=ts−1(xk, yk) + b
), ε

}
, (2)

where Γ{θ, ε} is an event-triggering function, ε is the con-

trast threshold, and b is an infinitesimal positive number to

prevent log(0). Events are triggered when |θ| ≥ ε. Polarity

pk ∈ {1,−1} indicates the direction (increase or decrease)

of intensity change. The event stream output at this space-

time volume can be described as a set {ek}Nk=1, where N
denotes the number of events, and each event can be ex-

pressed as a four-attribute tuple ek = (xk, yk, ts, pk).

3.2. Connect RS and GS image via events

We show in Fig. 2 that the RS and GS imaging are con-

nected by events via two ways: flow-based and synthesis-

based connections, which are correspondingly formed by

event-encoded motion information and intensity changes.

These two connections are key constraints for us to link the

GS and RS images via events and to achieve RS correction

for removing edge distortion and fulfilling intra-frame oc-

cluded regions.

Flow-based connection We estimate an RS2GS flow map

to warp a GS image at time ts ∈ [0, T ] from an RS one. The

inverse operation of Eq. (1) can be formulated as:

IGS
t=ts(p) = IRS(p+ V (x, y, t =

yT

H
)S(y, ts)), (3)

where p = (x, y) is the pixel position, V ∈ R
H×W×T×2

is defined as the velocity vector of each pixel at each mo-

ment with unit as pixel/s, and S(y, ts) = y T
H − ts repre-

sents the time offset between the yth row and the target GS

frame timestamp ts. Then V (·)S(·) becomes the flow map

of RS2GS that represents a coordinate translation.

We use events to assist in estimating the velocity vector

via V (x, y, t) = F ({ek}), where F (·) is the event-based

flow estimation function that were previously formulated

as a supervision network [55] or a photometric consistency

formulation [34]. We propose a flow-based module to learn

the velocity vector by events and use a warping-based con-

straint to correct edge distortions for each moving object.
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Figure 3: Network architecture of EvUnroll. It consists of three modules: flow-based connection module, synthesis-based

connection module, and refine module. An optional deblurring module could be embedded before the flow-based connection

module to handle motion blurs in the input RS image.

Synthesis-based connection For each pixel between the

paired RS and GS images, intensity variations are encoded

as an event stream by log-space thresholding operation. Fol-

lowing the events-to-image synthesis model such as EDI

[35], we represent the synthesis-based connection as:

log(IGS
t=ts(x, y)) = log(IRS(x, y)) + ε

∑ts

i= yT
H

pt=i, (4)

where the sum operation for each pixel refers to the integra-

tion of events triggered between the RS2GS time interval.

We propose a synthesis-based module to learn a mapping to

fulfill intra-frame occluded regions for each timeline.

3.3. EvUnroll framework

EvUnroll consists of three modules to accomplish the RS

image correction task, which contains the flow-based con-

nection module, synthesis-based connection module, and

refine module, as shown in Fig. 3. A deblurring module

handling motion blur in the input RS image can be option-

ally added. The EvUnroll network takes as input an RS

image IRS, the corresponding spatio-temporal events {ek},

and a target time ts ∈ [0, T ], to generate the corresponding

GS image. Our network is able to output consecutive GS

frames by setting different target time. The backbone of our

network is build upon U-Net [44].

Flow-based connection module This module aims to

learn an RS2GS mapping, which warps the RS image to

a corrected GS image. In order to fully explore the motion

priors carried in the event stream, the input {ek} is split

into two intervals [0, ts] and [ts, T ], and both event subsets

are binned into an 8-channel event stack by pixel-wisely ac-

cumulating the event polarity. We first learn two velocity

vectors Vt=0 and Vt=T from the corresponding event sub-

sets via the GS to GS (GS2GS) flow-Net, and then translate

them to label the velocity vector for each pixel of the RS im-

age, i.e. the time-varying velocity vector V (x, y, t = y T
H )

described in Eq. (3). Following the optical flow assump-

tion, one element V (x0, y0, t = y0
T
H ) can be expressed as a

vector mean of the {Vt=0(x
′, y′)}, a set collecting elements

of Vt=0 whose velocity direction pass through the spatio-

temporal position (x0, y0, t = y0
T
H ). The proof is included

in the supplementary material. Through the same process,

we can also calculate another result of V (x, y, t = y T
H )

from Vt=T . Then the network performs warping process

with the input RS image IRS through Eq. (3), and outputs

two roughly corrected GS images, which are subsequently

fed into the RS2GS flow estimation network together with

event subsets to further predict a refined RS2GS optical flow

map. Finally, a flow-based GS image prediction IGS F
t=ts is

warped by the refined RS2GS flow map.

Synthesis-based connection module This module ap-

plies the synthesis-based connection to restore a corrected

GS image, with special focus on handling occluded regions.

We learn log-domain residuals between RS and GS images

from events. The input event stream {ek} is first binned

into a 16-channel event stack through the same accumu-

lation process as above and sent to a feature extractor to

perform local event feature extraction. We employ the Bi-

directional ConvLSTM (Bi-LSTM) [11, 46] architecture to

correlate features of adjacent time periods, and fuse tem-

poral information into the feature Flstm. In order to allow

the network to perceive the row-specific readout time differ-

ences in the RS image, an attention block is adopted to as-

sign time-offset y T
H to the Flstm, and further obtain the fea-
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ture Fattn that encodes the connection between the RS/GS

image pair as shown in Eq. (4). Finally, we concatenate and

feed Fattn and the input RS image into a fusion network,

and obtain the log-domain residual to predict the synthesis-

based GS image IGS S
t=ts , as shown in Fig. 3.

Refine module An attention U-Net [33] based module is

introduced to fuse rough prediction results IGS F
t=ts and IGS S

t=ts .

We use the generated mask m and residual image Irt=ts to

blend the final GS result IGS
t=ts by

IGS
t=ts = m · IGS F

t=ts + (1−m) · IGS S
t=ts + Irt=ts . (5)

Deblurring module This module aims to recover the RS

clear image corresponding to the midpoint of the exposure

time of each row. We clip events triggered between the ex-

posure time of each row, and offset the timestamp of events

to make events of all rows fall into the same time interval.

In this way, the deblurring of RS images is exactly the same

as that of GS images.

3.4. Implementation details

Instead of end-to-end training, we empirically find train-

ing each module independently works better in our context.

A pre-trained image deblurring module to handle motion

blur accompanied with the RS effect could be optionally in-

serted between the input RS image and the flow-based con-

nection module, as a preprocessing to enhance the quality of

input images. The flow-based and synthesis-based connec-

tion modules are subsequently trained and the refine module

is finally trained with the weights of the previous modules

fixed. We define the loss between the ground truth and the

predicted result as a hybrid of Charbonnier loss [20], per-

ceptual loss [18], and total variation (TV) loss [28]:

L = λ1Lc + λ2Lp + λ3Ltv. (6)

We employ the perceptual loss to preserve details of pre-

dictions, and add TV loss to encourage smoothness in the

estimated flow map. The hyperparameters {λ1, λ2, λ3} are

set as: {1, 0.05, 0.05} for the flow-based connection mod-

ule and {1, 0.05, 0} for others. Our network is implemented

in PyTorch [37] with an NVIDIA TITAN RTX. The Adam

optimizer [19] is used for minimizing the loss with an ini-

tial learning rate of 0.001, decayed by a factor of 0.2 every

10 epochs. Each module is trained for 30 epochs. The data

augmentation is applied by 256×256 random crop for both

RS images and corresponding events.

4. Experiment
In this section, we introduce our collected dataset in

Sec. 4.1, and qualitatively and quantitatively compare our

method with state-of-the-art RS correction methods on pub-

lic dataset Fastec-RS [26] (Sec. 4.2), our collected dataset

Gev-RS (Sec. 4.3), and our real-captured data (Sec. 4.4).

In Sec. 4.5, ablation studies are conducted to evaluate the

effectiveness of the proposed modules.

4.1. Gev-RS dataset collection

While the majority of existing RS correction datasets

have effectively improved the performance of RS correc-

tion, there are still unrealistic cases. As a popular RS cor-

rection dataset, Fastec-RS [26] collects GS images at a res-

olution of 640 × 480 and the frame rate of 2400 fps, and

then synthesizes simulated RS images. Although Fastec-

RS [26] dataset shows great improvement over previous

datasets such as [56], the captured images suffer from qual-

ity issues. JCD [54] releases the BS-RSCD dataset captured

by a GS-RS hybrid camera system, but the frame rate is only

15 fps, which are not suitable for simulating event stream.

To this end, we use a high-speed camera (Phantom VEO

640, F/1.8 85mm lens) to collect high-quality GS frame se-

quences with 1280×720 resolution at 5700 fps. We capture

a total of 29 sequences for both indoor and outdoor scenar-

ios from camera (global) motion to object (local) motion, to

cover real challenging scenarios with object occlusion and

high-speed motion. The original resolution was downsam-

pled to half (640×360) to suppress the noise level of ground

truth. Then we feed the captured videos into the event sim-

ulator V2E [4] to generate corresponding event streams un-

der the default parameter settings, and apply the same RS

effect simulation process as Fastec-RS [26] to generate RS

frames. Eventually, we obtain 3700 “GS-event-RS” triplet

clips, and we refer to this dataset as “Gev-RS”.

4.2. Comparison on Fastec-RS dataset

We compare EvUnroll with recent RS correction meth-

ods DSUN [26], JCD [54], RSSR [7], and SUNet [8] on

Fastec-RS [26] dataset. The input settings of the above

methods are shown in Fig. 4. For a fair comparison, we set

a target time t for testing samples and each method outputs

a corrected GS image at this time. We evaluate DSUN [26]

and JCD [54] with their released testing code, and obtain

the results of RSSR [7] and SUNet [8] from the authors.

We simulate the corresponding events stream by V2E [4]

and EvUnroll is also retrained using the same Fastec-RS

Target time 

Ours

DSUN [26]

SUNet [8]
JCD [54]

RSSR [7]

Figure 4: Input settings for comparison methods. The or-

ange two-way arrows represent the total imaging time of an

RS frame. Each method outputs a corrected GS image at

the target time t.
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(a) RS Frame (b) DSUN [26] (c) JCD [54] (d) SUNet [8] (e) Ours (f) GS Frame

Figure 5: Rolling shutter correction results on Fastec-RS [26] dataset. Objects in color boxes (red: lamp pole; yellow:

balcony) indicate regions with noticeable differences. (a) Frames with rolling shutter effect. (b)-(e) Correction results for (a)

by different methods. (f) Global shutter frames corresponding to (a).

(a) RS Frame

(b) RSSR [7]

(c) Ours

(d) GS Frame

(a)

(b)

(c)

(d)

Figure 6: Multi-frame GS correction results on Fastec-RS [26] dataset.

Table 1: Quantitative comparison in PSNR, SSIM, and

LPIPS on the Fastec-RS [26] dataset. Lower LPIPS and

higher PSNR/SSIM values mean better performance.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
Zhuang et al. [56] 21.44 0.71 0.218

DSUN [26] 26.52 0.79 0.122

ESTRNN [53] 27.41 0.84 0.189

JCD [54] 24.84 0.78 0.107

RSSR [7] 21.26 0.78 0.142

SUNet [8] 28.34 0.84 -

EvUnroll (Ours) 31.32 0.88 0.084

[26] training data as above. Visual quality comparisons are

shown in Fig. 5 and Fig. 6. In Fig. 5, EvUnroll corrects the

distorted poles of the input RS frame (red boxes) in both

two examples due to its capability to correct edge distor-

tion and also effectively restores the occluded balcony (yel-

low boxes) in the second example. Note that we only use a

single RS frame as well as the corresponding event stream

as input, while others use at least two frames. In Fig. 6,

we compare the multi-frame output of our method with a

high-frame-rate GS frame reconstruction method RSSR [7];

EvUnroll corrects the distorted edges and restores occluded

regions without generating distortion or black edges like

RSSR [7] does. The quantitative comparison results are

listed in Table 1 (the results of Zhuang et al. [57] and ES-

TRNN [53] are from JCD [54]). We evaluate the average

Peak Signal-to-Noise Ratio (PSNR), Structural Similarity

(SSIM) [50], and Learned Perceptual Image Patch Similar-

ity (LPIPS) [52] between GS frame and the restoration re-

sults of each method. EvUnroll outperforms other methods
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(a) RS Frame (b) DSUN [26] (c) JCD [54] (d) Ours (e) GS Frame

Figure 7: Rolling shutter correction results on our Gev-RS dataset. (a) Frames with rolling shutter effect. (b)-(d) Correction

results for (a) by different methods. (e) Global shutter frames corresponding to (a).

Table 2: Quantitative comparison in PSNR, SSIM, and

LPIPS on our simulation dataset.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
DSUN [26] 23.10 0.70 0.166

JCD [54] 24.90 0.82 0.105

EvUnroll (Ours) 30.14 0.91 0.061

in all three metrics and has a gain of at least 2.98 dB for

PSNR.

4.3. Comparison on Gev-RS dataset

We use our collected Gev-RS dataset to evaluate EvUn-

roll by comparing with DSUN [26] and JCD [54] whose

testing codes are available. We divide the Gev-RS dataset

into the training, and testing datasets at a ratio of 7 : 3.

We train EvUnroll and retrain DSUN [26] and JCD [54]

with the divided training data. Figure 7 shows the qualita-

tive comparison results on some challenging scenarios. The

first example is a roadside street scene taken on a moving

vehicle in parallel directions and the second one is a build-

ing severely distorted by the RS effect. It can be seen that

EvUnroll restores the textures and shapes at different depths

in the first example and rectifies the vertical edges of the

building in the second example. The right region of Fig. 1

also shows a high-speed train example shot by a still camera

and our method restores the train compartment intra-frame

occluded by the street light. Our deblurring module han-

dles the widespread motion blur in real scenes effectively,

outperforming JCD [54], which also deals with simultane-

ous RS correction and deblurring for dynamic scenes. The

quantitative comparison results listed in Table 2 show that

EvUnroll outperform DSUN [26] and JCD [54] across all

metrics on average. Additional results are included in the

supplementary material.

4.4. Comparison on real-captured data

To test EvUnroll for real-world scenarios, we build a

hybrid camera system consisting of an RS machine vi-

sion camera (LUCID TRI054S IMX490, with 2880× 1860
resolution at 20 fps) and an event camera (PROPHESEE

GEN4.0, with 1280×720 resolution and about 1μs latency)

via a beam splitter (Thorlabs CCM1-BS013) mounted in

front of the two cameras with 50% optical splitting (de-

tails can be found in the supplementary material). We cap-

ture both indoor and outdoor scenarios with global or local

motion. We compare our method with the state-of-the-art

methods DSUN [26] and JCD [54], and the visual compar-

isons are shown in Fig. 8. We correct the distorted stick

in the first example and recover the background scene oc-

cluded by the distorted area, and restore the shape of square

color checkers as well as the building edge in the last two

examples. In comparison, DSUN [26] introduces recovery

errors and partially distorted edges, and the correction effect

of JCD [54] is not obvious due to the challenging motion

scenes of our test data.

4.5. Ablation

In this section, we evaluate the effectiveness of the pro-

posed flow-based connection module and synthesis-based

connection module and also validate the optional deblur-

ring module by respectively adding it to the above two mod-

ules. Therefore, we consider four baseline cases with each

of them disabling one/two modules. The minimal loss val-

ues during training are used as the evaluation metric, as

summarized in Table 3. The qualitative ablation results and
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(a) Event Frame (b) Input RS Frame (c) DSUN [26] (d) JCD [54] (e) Ours

Figure 8: Rolling shutter correction results on our real-captured test dataset. (a) Event frames binned in the total readout time

of the input RS images (b). (c)-(e) Correction results for (b) by different methods. The red dashed curves (with the same

position and shape in (b)-(e)) indicate the distorted edges in the RS images as a reference.

Table 3: Ablation study on different module combinations

in EvUnroll.

Case Flow Syn. Deblur PSNR ↑ SSIM ↑ LPIPS ↓
#1 � × × 23.45 0.805 0.139

#2 × � × 29.02 0.898 0.066

#3 � × � 26.02 0.832 0.082

#4 × � � 29.50 0.903 0.065

EvUnroll � � � 30.14 0.912 0.061

(a) RS frame (b) DSUN [26] (c) JCD [54] (d) Ours

Figure 9: Failure case: Recovering the blades of the high-

speed rotating fan from an RS image.

analysis are presented in the supplementary material.

5. Conclusion

This paper proposes to use neuromorphic events for cor-

recting RS images as consecutive GS frames. We intro-

duce a novel imaging setup consisting of an RS sensor

and an event sensor, and propose a neural network called

EvUnroll to solve this problem. We use events to bridge a

spatio-temporal connection between RS and GS, establish

a flow estimation module to correct edge distortions, and

design a synthesis-based connection module to restore oc-

cluded regions. The intermediate results of two branches

are fused through a refine module to generate corrected

GS images. Results on newly collected Gev-RS and real-

captured datasets demonstrate the advantage of EvUnroll.

Limitations With our current prototype of a simple hy-

brid camera system, it is difficult to ensure the microsecond-

level synchronization of the RS image with the event stream

when shooting high-speed motion scenes, which affects the

RS correction performance. A failure case is shown in

Fig. 9. Although EvUnroll recovers the blade shape and

position with a closer appearance to the real situation than

other state-of-the-art methods, there are still obvious arti-

facts caused by a misalignment between frames and events.

Besides, we do not consider the dynamic range gap between

RS and event cameras, which may affect the effectiveness

of our method in over- or under-exposed regions in images.
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