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Abstract

Human-Object Interaction Detection tackles the problem
of joint localization and classification of human object in-
teractions. Existing HOI transformers either adopt a sin-
gle decoder for triplet prediction, or utilize two parallel de-
coders to detect individual objects and interactions sepa-
rately, and compose triplets by a matching process. In con-
trast, we decouple the triplet prediction into human-object
pair detection and interaction classification. Our main mo-
tivation is that detecting the human-object instances and
classifying interactions accurately needs to learn represen-
tations that focus on different regions. To this end, we
present Disentangled Transformer, where both encoder and
decoder are disentangled to facilitate learning of two sub-
tasks. To associate the predictions of disentangled de-
coders, we first generate a unified representation for HOI
triplets with a base decoder, and then utilize it as input fea-
ture of each disentangled decoder. Extensive experiments
show that our method outperforms prior work on two pub-
lic HOI benchmarks by a sizeable margin. Code will be
available.

1. Introduction

Human-object interaction(HOI) detection [11] aims at
detecting all the <human, verb, object> triplets in an image.
It has attracted increasing attention in the computer vision
community in recent years [8, 10]. Accurate estimation of
human-object interactions can benefit multiple downstream
tasks, such as human action recognition [38], scene graph
generation [25], and image caption [4].

Recent advances show that HOI detection can be for-
mulated as set prediction problem [3, 17, 30, 44]. Existing
HOI transformers can be categorized into two types: single-
branch transformer and parallel-branch transformer. Single-

*Equal contribution.
†Work done when Zhichao and Leshan were interns at VIS, Baidu.

Figure 1. Architecture comparison of different HOI transformers.
(a) Single-branch transformer [30, 44] adopts a single decoder to
directly detect HOI triplets. (b) Parallel-branch transformer [3,17]
utilizes separate decoders detect individual objects and interac-
tions, and then compose triples by a matching process, which
might introduce additional grouping errors. (c) Ours disentangles
the task of triplet prediction into human-object pair detection and
interaction classification via an instance stream and an interaction
stream, where both encoder and decoder are disentangled.

branch transformer [30, 44] adopts multi-task strategy, in
which one query is responsable for predicting a <human,
verb, object> triplet within a single decoder. In contrast,
parallel-branch transformer [3, 17] adopts parallel decoders
for instance detection and interaction classification sepa-
rately. Specifically, one instance decoder follows DETR [1]
and detects individual objects, and the other interaction de-
coder estimates the interactions in the image. To compose
HOI triplets, it generates additional associative embeddings
to match the interactions and instances. Since HOI detec-
tion is a composition problem [13, 15], the latter decom-
posing strategy has several advantages compared with uni-
fied multi-tasking strategy. First, two sub-task decoders
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might attend to different regions via cross attention to facil-
itate learning and also results in better interpretability. In
addition, it has better generalizability, especially for rare
categories due to long-tail distribution of triplet composi-
tions. However, existing parallel-decoder transformers suf-
fer from two crucial drawbacks under complex scenarios:
i) the interaction predictions have to find their correspond-
ing human and object instances in instance decoder, which
might introduce additional errors due to mis-grouping; ii)
regardless of the shared encoder, the decoding sub-tasks
are relatively independent and the joint configurations of in-
stances and interactions are not considered.

To overcome above limitations, we present Disentan-
gled Transformer(DisTR). We decouple the triplet predic-
tion into human-object pair detection and interaction clas-
sification via an instance stream and an interaction stream,
where both encoder and decoder are disentangled. An illus-
tration of architecture comparison between ours and prior
HOI transformers is shown in Fig.1. Our encoder mod-
ule extracts different contextual information for two sub-
tasks. During decoding process, the task decoder decodes
its representation based on the corresponding task encoder.
Different from prior parallel-decoder transformers [3, 17]
that the instance decoder predicts individual objects, our in-
stance decoder predicts a set of interactive human-object
pairs. To associate the predictions of task decoders, we
adopt a base decoder to first generate a unified representa-
tion for HOI triplets, following QPIC [30], and then utilize
it as input feature of each task decoder. The task decoder
then refines its representation based on the unified represen-
tation, resulting in a coarse-to-fine process. We further de-
sign an attentional fusion block to pass information between
task decoders help them communicate with each other.

We evaluate our proposed method on two public bench-
marks: V-COCO [11] and HICO-DET [2]. Our method out-
performs current state-of-the-art by a sizeable margin. We
further visualize the cross attentions in our task decoders,
and observe that our task decoders indeed attend to differ-
ent spatial regions, demonstrating the effectiveness of our
proposed disentangled strategy.

The contributions of this paper are three folds:

• We propose a disentangled strategy for HOI detection,
where the triplet prediction is decoupled into human-
object pair detection and interaction classification via
an instance stream and an interaction stream.

• We develop a new transformer, where both encoder
and decoder are disentangled. We also propose a
coarse-to-fine strategy to associate the predictions of
instance decoder and interaction decoder, and an at-
tentional fusion block for communication between task
decoders.

• We achieve new state-of-the-art on both V-COCO and
HICO-DET benchmarks.

2. Related Work

2.1. Two-stage Methods

A classical branch of research to HOI detection are
based on the hypothesis-and-classify strategy, which first
detects object instances via object detectors [9,29], and then
perform interaction classification on the grouped pairwise
human-object proposals [8, 10, 21, 22, 26, 32]. Some works
also exploit graph structure to enhance object dependen-
cies [27, 28, 31, 33, 40]. Another bunch of two-stage meth-
ods is the compositional approaches [13–15,20], which dis-
entangle HOI representations by learning from fabricated
compositional HOIs. In contrast, our method disentangles
representations by disentangled task encoders and decoders
and its one-stage framework does not rely on pre-computed
object proposals.

2.2. One-stage Methods

Recently, one-stage or parallel HOI has caused exten-
sive concern which transforms the interaction target as a
center point or interaction object, and then adopt a detec-
tion pipeline. PPDM [23] which is based on CenterNet [5]
detects the interaction centers as well as objects, and then
perform grouping as its post-process. IP-Net [35] is sim-
ilar. UnionDet [16] use a novel union-level detector that
eliminates this additional inference stage by directly captur-
ing the region of interaction. DIRV [6] concentrates on the
densely sampled interaction regions across different scales
for each human-object pair and introduce a novel voting
strategy to replace Non-Maximal Suppression(NMS).

HOI Transformer Recent HOI transformers follow
DETR [1], but separate into two types: entangled trans-
former and disentangled transformer. The entangled trans-
former, QPIC [30] and HOITrans [44] directly generate
multiple <human,object,action> triples of given image with
a single decoder. On the contrary, disentangled transform-
ers, HOTR [17] and ASNet [3] predict the objects and in-
teractions in parallel decoders, and then perform matching
between objects and interaction targets to generate final pre-
dictions. Recently, Zhang et.al [39] propose to disentangle
the instance decoder and interaction decoder in a cascaded
process, which treats the instance decoder as proposal gen-
erator to interaction decoder. In contrast, our sub-tasks are
parallelly decoded, hence the communication can be ap-
plied. In addition, our disentanglement is more complete
due to encoder disentanglement.
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Figure 2. Overview of our framework. Encoder module extracts global contexts at three levels for different decoding sub-tasks. Decoder
module disentangles the representations of instances and interactions in a coarse-to-fine manner: the base decoder extracts unified HOI
representation of HOI triplets, then the instance decoder and interaction decoder refines the unified HOI representation in disentangled
feature spaces. Our instance decoder directly estimates interactive human-object instance pairs, which are associated with interaction
predictions. The Attentional fusion blocks are further inserted at each output layer(excluding the last layer) of two task decoders to perform
communication between them.

3. Method
3.1. Overview

We adopt the one-stage transformer framework, which
directly estimates all the <human,verb,object> triplets
given an image. To achieve this, we first group the HOI
triplets with the same human and object instances. Then,
the ground truth of an image can be represented as a tuple
set {(x̃8

ℎ
, x̃8>, c̃8 , ã8) |8 = 1, 2, ..., "}, where " is the number

of ground truth human-object interaction pairs, x̃8
ℎ
, x̃8> ∈ R4

denote the bounding boxes of human instance and object in-
stance, c̃ ∈ {0, 1}C indicates the one-hot encoding of object
category and C is the number of object classes, ã8 ∈ {0, 1}A
denotes the labels of A interaction classes. We then deploy
our transformer network to predict such tuple set. Formally,
given image �, our goal is to define a transformer network
F that performs the mapping:

�
F−→ {(x8ℎ , x

8
>, c8 , a8) |8 = 1, 2, ..., #@}, (1)

where 8 is the query index and #@ is the number of queries
pre-defined in our transformer network. x8

ℎ
, x8> ∈ R4 denote

the predicted bounding boxes of human instance and object
instance respectively, c8> ∈ (0, 1)C+1 is estimated probabil-
ity of object classification, which is normalized by softmax
function. The additional dimension indicates background
non-object class. a8 ∈ (0, 1)A indicates the interaction
probabilities, which are normalized by sigmoid function.

We adopt a coarse-to-fine strategy to disentangle the in-
stance detection and interaction classification, to resolve

the matching problem between predictions. Specifically,
we first generate a unified HOI representation to represent
the HOI triplets {(x8

ℎ
, x8>, c8 , a8)}, then an instance decoder

is utilized to refine the representation in instance space
and predict the human-object instance pairs, indicated by
{(x8

ℎ
, x8>, c8)}. And the interaction decoder is responsable

for interaction disentanglement and prediction, indicated by
{a8}. During inference, the predictions of the same query
index in two head decoders are directly grouped together.
Below we introduce our detailed implementation of above
coarse-to-fine disentangling strategy.

3.2. Network Architecture

Similar to existing HOI transformers [3, 30] and DETR
[1], our network consists of three main modules: back-
bone module computes image features; encoder module ex-
ploits self-attention mechanism to further extract higher re-
lational contexts between different spatial regions; and de-
coder module extracts representations from encoder module
for the disentangled sub-tasks of instance detection and in-
teraction classification. An overview of our framework is
shown in Fig.2.

3.2.1 Backbone module

A CNN backbone is used to extract the high level semantic
feature map with shape (�,,,�), and then a 1 × 1 convo-
lution layer is used to reduce the channel dimension from
� to �. We flatten the feature map of shape (�,,, �) to
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(�,, �). We utilize ResNet50 [12] as our backbone, and
reduce the feature map in conv-5 using 1 × 1 convolution
from � = 2048 to � = 256, the backbone visual features
are represented as Γ102: ∈ R�,×� .

3.2.2 Encoder module

Our encoder module aims at modeling relationships at dif-
ferent spatial regions to enhance global contexts for back-
bone representation Γ102: . Prior parallel-decoder trans-
formers [3, 17] utilize shared encoder for instance detec-
tion and interaction classification. However, we assume
that the relations in image representations of different sub-
tasks are different and the encoder representations better
be designed for specific sub-tasks. Hence we disentangle
our encoder at three levels for different decoding sub-tasks:
human-object pair detection, interaction classification and
unified representation generation. Specifically, it consists
of a base encoder and three head encoders. The base en-
coder, which consists of !14= layers, enhances Γ102: to gen-
erate a base encoder representation Γ14=. Then, three differ-
ent head encoders with !ℎ4= layers refine the base encoder
representation separately. We denote the refined head rep-
resentations as Γℎ>84= , Γ

3
4=, Γ

0
4=, which are used for comput-

ing cross attentions in different decoders: Γℎ>84= for base de-
coder, Γ34= for instance decoder and Γ04= for interaction de-
coder. All the encoder representations share the same shape:
Γ14=, Γ

ℎ>8
4= , Γ

3
4=, Γ

0
4= ∈ R�,×� .1

3.2.3 Decoder module

Our decoder module adopts attention mechanism to extract
representations from encoder for sub-task decoding. We
disentangle the representations of instances and interactions
in a coarse-to-fine manner, which first utilizes a base de-
coder to generate a unified representation for a HOI triplet,
and then exploits another two disentangled decoders to re-
fine the unified representation in the spaces of instances and
interactions. Different from previous transformers [3, 17]
that the instance decoder predicts individual objects re-
gardless of their interactiveness, our instance decoder es-
timates interactive human-object instance pairs associated
with the interaction prediction. Hence it requires no addi-
tional matching process. To further help two task decoders
communicate with each other, we propose an attentional fu-
sion block to pass information between them. Below we
describe the detailed structures of above components.

Base decoder Our base decoder has !1
34

layers and gen-
erates unified HOI representations for the disentangled de-
coders to facilitate feature refinements and associate pre-

1In this section, ‘b’ is short for base, ‘d’ indicates detection/instance,
‘a’ indicates action/interaction, ‘h’ indicates head.

dictions. Formally, the base decoder F 1
34

transforms a set
of learnable HOI queries &ℎ>8 ∈ R#@×� into a set of base
HOI representations Γ1

34
∈ R#@×� from HOI encoder head:

Γ134 = F
1
34 (0, Γ

ℎ>8
4= , p4=, &ℎ>8), (2)

where the zero matrix 0 = {0}#@×� indicates the input fea-
ture of base decoder. p4= ∈ R�,×� is the position embed-
ding of the encoder representations.

Instance decoder Our instance decoder aims at refining
the unified HOI representation Γ1

34
to generate a disentan-

gled representation for interactive human-object instance
pairs. To achieve this, we utilize a MLP to embed the uni-
fied representation to generate input feature of instance de-
coder. Our instance decoder F 3

34
has !ℎ

34
layers, and takes

the input feature, together with a set of learnable instance
queries &3 ∈ R#@×3 to perform feature refinement. We
found that inputting the unified representation as decoder
feature is better than directly utilizing it as queries, because
the disentangled decoders will have a powerful initial fea-
ture. The output of the instance decoder is a set of interac-
tive human-object instance pairs:

{(x8ℎ , x
8
>, c8)} = F 334 (MLP(Γ134), Γ

3
4=, p4=, &3). (3)

Interaction decoder Similar to the instance decoder, our
!ℎ
34

-layer interaction decoder refines the unified HOI rep-
resentation to the disentangled interaction feature space and
generate a set of interaction predictions:

{a8} = F 034 (MLP(Γ134), Γ
0
4=, p4=, &0), (4)

where &0 ∈ R#@×� indicates the query set, Γ04= is the rep-
resentation of interaction encoder. Similar to instance de-
coder, during decoding, the estimated interactions are as-
sociated with unified HOI representation, as well as the
human-object pairs in instance decoder.

Attentional fusion block Our disentangled task decoders
perform sub-tasks separately. However, two functional
modules are not sufficiently communicated due to early de-
composition of unified representations.2 To make the sub-
tasks better benefit from each other, we perform message
passing between the instance decoder and interaction de-
coder. Specifically, in the output of each layer in disentan-
gled decoders, we fuse the instance representation to the in-
teraction representation if they are associated with the same
query index. The design of our fusion block is inspired
by [37] which utilizes the object representation and action
representation to estimate a channel attention. Formally, we

2In our model, the instance decoder and interaction decoder have more
layers than the base decoder.
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Figure 3. The structure of attentional fusion block.

denote the instance representation and interaction represen-
tation for query 8 as W8

3
, W80 ∈ R� . As shown in Fig.3, our

attentional fusion block first concatenates the W8
3

and W80 and
compute a channel attention V ∈ R� with a MLP:

V = f(MLP(Concat( [W80; W83]))), (5)

where f is the sigmoid function to constrain the elements in
V to range (0, 1). The channel attention is used to enhance
the interaction representation with element-wise multipli-
cation. During practice, we found that adding instance fea-
tures provides additionally improvement. Hence, the output
interaction representation W̃80 ∈ R� has the form:

W̃80 = W
8
0 + V � W80 +MLP(W83), (6)

where � indicates the element-wise multiplication. In the
last layer of disentangled decoders, we do not apply atten-
tional fusion, in order to make the final representations more
discriminative.

3.3. Model Learning

We adopt similar losses with previous HOI Transformer
[30, 44]. Specifically, the instance decoder and interaction
decoder generates set predictions {(x8

ℎ
, x8>, c8)} and {a8},

where c8 ∈ (0, 1)C+1, a8 ∈ (0, 1)A indicate the object
class probabilities and interaction class probabilities, which
are normalized by softmax and sigmoid respectively. Then
the predictions with the same query index are grouped to-
gether to a triplet set {(x8

ℎ
, x8>, c8 , a8)}. The rest process is

the same as previous HOI transformers [30] that first ex-
ploit the combined triplet predictions to compute a Hungar-
ian Matching to the ground truth triplets, and then adopt
different loss functions to the matched triplets. We denote
L1 ,LD ,L2 ,L0 as bounding box !1 losses, GIoU loss, ob-
ject classification loss and interaction classification loss, the
overall loss given by:

L = _1L1 + _DLD + _2L2 + _0L0, (7)

where _1 , _D , _2 , _0 denote the weights to balance the dif-
ferent loss components.

Auxiliary loss Inspired by DETR [1], we add prediction
FFNs and adopt auxiliary losses to each decoder layer to

extract better representations. Our base decoder decodes
unified HOI representations and predicts HOI triplets. The
disentangled decoders predict instances and interactions re-
spectively. Since the representations in disentangled de-
coders are refined from unified representation, we adopt
different prediction FFNs to the disentangled decoders and
base decoder. While in the same decoder, FFN parameters
are shared.

3.4. Model Inference

Given HOI prediction set {(x8
ℎ
, x8>, c8 , a8)}, where c8 ∈

(0, 1)�+1, a8 ∈ (0, 1)A denote the classification probabil-
ities of object class and action classes, the predicted ob-
ject class and its detection score is given by argmax:c8:
and max:c8: , the output HOI of 9-th action in 8-th query
is given by (x8

ℎ
, x8>, argmax:c8: , 9) with a prediction score

max:c8: · a
8
9
. Similar to prior work [30], we only keep a

prediction if its confidence score is above a threshold.

4. Experiments
4.1. Experimental Setup
Dataset We conducted experiments on two HOI detection
datasets: HICO-DET [2] and V-COCO [11]. V-COCO is
derived from MS-COCO [24] and contains 5400 and 4946
images in trainval subset and test subset respectively. V-
COCO is annotated with 80 object categories and 29 ac-
tion classes including 25 HOI triplets and 4 human body
actions. HICO-DET contains 38118 and 9658 images for
training and testing respectively. The HICO-DET has 80
object categories which is same as MS-COCO and 117 verb
categories, all objects and verbs consist of 600 HOI triplets.

Evaluation Metrics Following prior work [3, 8, 30], we
use mean average precision(mAP). A triplets prediction is
considered positive if human and object boxes have a IOU
larger than 0.5 with ground truth boxes, and the predicted
object categories and verb categories need to be correct. For
HICO-DET, we report mAP over Full, Rare, and Non-Rare
settings. For V-COCO, we report mAP on scenario #1 (in-
cluding objects) and scenario #2 (ignore objects).

4.2. Implementation Details

In our implementation, the layer number of base encoder,
head encoder, base decoder and head decoder are set to
!14= = 4, !ℎ4= = 2, !1

34
= 2, !ℎ

34
= 4. Query number

#@ = 100. We set the weight coefficients of _1 , _D , _2 , _0
to 2.5, 1, 1, 1. During training, we initialize our model pa-
rameters with pre-trained DETR [1] on COCO dataset. For
the missing parameters, we adopt a warmup strategy, which
first freezes the pre-trained parameters and adjusts the miss-
ing parameters for 10 epochs. Following prior work [3,30],
we set the parameters in encoder and decoder to 10−4, and
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Method Backbone Scenario #1 Scenario #2
Two-stage Method

iCAN [8] R50 45.3 52.4
TIN [22] R50 47.8 54.2
VCL [13] R101 48.3 -
DRG [7] R50-FPN 51.0 -

VSGNet [31] R152 51.8 57.0
PMFNet [32] R50-FPN 52.0 -
PDNet [41] R152 52.6 -

CHGNet [33] R50 52.7 -
FCMNet [26] R50 53.1 -

ACP [18] R152 53.2 -
IDN [20] R50 53.3 60.3
SCG [40] R50-FPN 54.2 60.9

One-stage Method
UnionDet [16] R50-FPN 47.5 56.2

IPNet [35] HG104 51.0 -
GG-Net [42] HG104 54.7 -

DIRV [6] EfficientDet-d3 56.1 -
HOITrans [44] R101 52.9 -

AS-Net [3] R50 53.9 -
HOTR [17] R50 55.2 64.4
QPIC [30] R50 58.8 61.0

Ours R50 66.2 68.5

Table 1. Performance comparison on V-COCO test set.

Method Scenario #1 Default(Full)
Ours 66.2 31.75

w/o encoder disentanglement 65.5 30.79
w/o attentional fusion 64.4 31.24

w/o decoder disentanglement 58.8 29.07

Table 2. Ablation study of model components on both V-COCO
test set (Scenario #1) and HICO-DET test set (Default, Full set-
ting)

the backbone to 10−5. Weight decay is set to 10−4. Batch
size is set to 16. For V-COCO, we freeze the backbone to
avoid over-fitting. For HICO-DET, we fine-tune the whole
model end-to-end. Including warmup, HICO-DET and V-
COCO are trained with 80 epochs and learning rate is de-
creased at 65th epoch with 10 times. Our experiments are
conducted on 8 Tesla V100 GPUs.

4.3. Comparison to State-of-the-art

We show the comparison of our method with previous
two-stage and one-stage methods in Tab. 1 and Tab. 3. Our
method outperforms prior works on both benchmarks.

On V-COCO dataset, compared with state-of-the-art
one-stage method QPIC [30], ours outperforms it with a
significant gap. Compared with state-of-the-art two-stage
method SCG [40], our method also yields a large perfor-
mance gap with 12.0% mAP. It illustrates the our method
has overwhelming advantage on both one-stage and two-
stage methods. Particularly, our method outperforms pre-
vious parallel-branch HOI transformer HOTR [17] and AS-
Net [3] by a large margin with 11.0% mAP and 12.3% mAP
under scenario #1.

On HICO-DET dataset, compared with state-of-the-art
one-stage methods, with R50 backbone, our method out-
performs QPIC [30] by 2.68% mAP, and AS-Net [3] by
2.88% mAP under Default Full setting. It’s also worth not-
ing that under Rare setting, our method achieves 27.45%,
which is significant better than QPIC, demonstrating the ef-
fectiveness of disentangled strategy. Our method also out-
performs recent state-of-the-art two-stage method SCG [38]
by 0.42% map. However, the two stage pipeline includes
heuristic processes such as NMS and is not end-to-end.

4.4. Ablation Study

w/o encoder disentanglement Our model adopts a dis-
entangled encoder to extract global contexts at three levels
for different decoding sub-tasks. We replace the disentan-
gled encoder with a single encoder of same layer in our full
model, the performance drops 0.7% mAP and 0.96% mAP
on both V-COCO and HICO-DET datasets respectively, as
shown in Tab. 2.

w/o attentional fusion Our attentional fusion block pro-
vides communications between two task decoders. As
shown in Tab. 2, we remove the attentional fusion block,
the performance drops 1.8% mAP and 0.51% mAP on V-
COCO and HICO-DET datasets respectively.

w/o decoder disentanglement Our disentangled decoder
is the key in our framework. It predicts interactive human-
object instance pairs instead of individual objects as in prior
parallel-branch transformers [3, 17], and exploits unified
HOI representation to associate instances and interactions.
Without our decoder disentanglement, our model is more
like the QPIC [30]. Hence we compare the performances
of ours and the single-branch transformer in Tab. 2. We
can observe that performances significantly drop on both
datasets.

Effect of warmup strategy Since our transformer model
has more parameters than original DETR, we adopt a
warmup strategy during training. To validate the effective-
ness of our warmup strategy, we perform an ablation study
about the warmup strategy, shown in Tab.6. We notice that
the warmup strategy slightly improves the performances on
both datasets.

Different layers of base/head encoders/decoders We
further perform ablation study on different transformer lay-
ers of base encoder/decoder and disentangled head en-
coders/decoders, shown in Tab.4. For simplicity of our
model and usage of pre-trained DETR parameters, we em-
pirically keep the sum of base layer and head layer to 6,
as in the original transformer. From the first three rows,
we can observe that the decoder base layer !1

34
= 2 and

head layer !ℎ
34
= 4 is the best proportion and provides best
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Default Known Object
Method Detector Backbone Full Rare Non-Rare Full Rare Non-rare

Two-stage Method
GPNN [28] COCO R101 13.11 9.34 14.23 - - -
iCAN [8] COCO R50 14.84 10.45 16.15 16.26 11.33 17.73
DCA [34] COCO R50 16.24 11.16 17.75 17.73 12.78 19.21
TIN [22] COCO R50 17.03 13.42 18.11 19.17 15.51 20.26

RPNN [43] COCO R50 17.35 12.78 18.71 - - -
PMFNet [32] COCO R50-FPN 17.46 15.65 18.00 20.34 17.47 21.20
FCMNet [26] COCO R50 20.41 17.34 21.56 22.04 18.97 23.12
DJ-RN [19] COCO R50 21.34 18.53 22.18 23.69 20.64 24.60

IDN [20] COCO R50 23.36 22.47 23.63 26.43 25.01 26.85
VCL [13] HICO-DET R50 23.63 17.21 25.55 25.98 19.12 28.03
DRG [7] HICO-DET R50-FPN 24.53 19.47 26.04 27.98 23.11 29.43
IDN [20] HICO-DET R50 24.58 20.33 25.86 27.89 23.64 29.16
SCG [40] HICO-DET R50-FPN 31.33 24.72 33.31 34.37 27.18 36.52

One-stage Method
UnionDet [16] HICO-DET R50-FPN 17.58 11.72 19.33 19.76 14.68 21.27

IPNet [35] COCO R50-FPN 19.56 12.79 21.58 22.05 15.77 23.92
PPDM [23] HICO-DET HG104 21.94 13.97 24.32 24.81 17.09 27.12
DIRV [6] HICO-DET EfficientDet-d3 21.78 16.38 23.39 25.52 20.84 26.92

HOTR [17] HICO-DET R50 25.10 17.34 27.42 - - -
HOITrans [44] HICO-DET R101 26.61 19.15 28.84 29.13 20.98 31.57

AS-Net [3] HICO-DET R50 28.87 24.25 30.25 31.74 27.07 33.14
QPIC [30] HICO-DET R50 29.07 21.85 31.23 31.68 24.14 33.93
QPIC [30] HICO-DET R101 29.90 23.92 31.69 32.38 26.06 34.27

Ours HICO-DET R50 31.75 27.45 33.03 34.50 30.13 35.81

Table 3. Performance comparison on HICO-DET. ’COCO’ means the object detector is freeze and pretrained on MS-COCO, ’HICO-DET’
means the model is fine-tuned on HICO-DET training set.

base head Scenario #1 Scenario #2

Decoder
1 5 65.6 67.5
2 4 66.2 68.5
3 3 64.7 66.5

Encoder
5 1 65.6 67.6
4 2 66.2 68.5
3 3 65.1 67.1

Table 4. Ablation study on different transformer layers of
base encoder/decoder and disentangled head encoders/decoders on
VCOCO test set.

Method VCOCO HICO
feature decomposition(proposed) 66.2 31.75

query decomposition 64.9 31.09

Table 5. Different association strategies of instances and interac-
tions on V-COCO test set (Scenario #1) and HICO-DET test set
(Default, Full setting)

Method VCOCO HICO
w/o warmup 65.7 31.49
w/ warmup 66.2 31.75

Table 6. Effect of warmup strategy on V-COCO test set (Scenario
#1) and HICO-DET test set (Default, Full setting)

performance, demonstrating the importance of unified rep-
resentation. From the bottom three rows, we can see that 4-

layer base with 2-layer head outperforms 3-layer base with
3-layer head, which implies that the modeling of shared
global contexts in base encoder is also important.

Different association strategies Different from previous
parallel-branch HOI transformer [3, 30] that instance de-
coder predicts individual objects in the image, our instance
decoder directly estimates a set of interactive human-object
instance pairs. In our framework, we adopt a base decoder
to generate a unified representation to associate the esti-
mated human-object instance pairs and interactions. We
notice that there might be different association strategies.
To study the effectiveness of our coarse-to-fine association
strategy(referred to as feature decomposition), we replace
the unified representation with a set of learnable unified
HOI queries, which are then used to generate two queries
with MLPs for disentangled decoders(referred to as query
decomposition). We keep our disentangled encoder and at-
tentional fusion block for fair comparison. As shown in Tab.
5, the performance drops by 1.3% mAP and 0.66% mAP on
V-COCO and HICO-DET datasets respectively, which im-
plies our association strategy is effective.

4.5. Model Complexity Analysis

Since our model includes more encoder/decoder and fu-
sion blocks, readers may care about the complexity of our
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(a) cross attention in interaction decoder

hold-handbag board-airplane wash-car work on computer instr-laptop throw-frisbee

(b) cross attention in instance decoder

Figure 4. Visualization of cross attention maps of the same triplet prediction in our interaction decoder(top row) and instance de-
coder(bottom row). The left three samples are from HICO-DET [2] and others are from V-COCO [11]. In the top row, we can see
that our interaction decoder attends to the interactive regions of human and objects. In the bottom row, we can see that our instance decoder
attends to the object extremities. The different regions the model attends to implies that interaction and instance decoders indeed capture
the disentangled representations of images.

Method Backbone AP Params(M) FLOPs(G)
QPIC [30] R50 58.8 41.68 87.87
QPIC [30] R101 58.3 60.62 156.18
AS-Net [3] R50 53.9 52.75 88.86
HOTR [17] R50 55.2 51.41 88.78

HOITrans [44] R101 52.9 60.62 156
Ours R50 66.2 57.31 94.23

Table 7. Model complexity comparison between ours and prior
state-of-the-art HOI transformers. ‘AP’ indicates the performances
on V-COCO test set under scenario #1.

model. Therefore, we compare the parameters and FLOPS
of our final model and prior HOI Transformers in Tab .7.
Similar to DETR [1], we compute the FLOPS with the tool
flop count operators from Detectron2 [36] for the first 100
images in the V-COCO test set and calculate the average
numbers. We observe that our model has comparable pa-
rameters and FLOPS compared with prior HOI transform-
ers. In particular, our model merely introduces 7% extra
FLOPS compared with the single-branch QPIC under R50,
demonstrating both efficiency and effectiveness of our dis-
entangled transformer.

4.6. Qualitative Analysis

As shown in Fig 4, we visualize the cross attention maps
of the same triplet prediction in instance decoder and inter-
action decoder. Top row shows the attention maps of in-
teraction decoder, we can observe that the attention maps
highlight the interactive regions between human-object in-
stance pairs. In the bottom row, we can observe that the in-

stance attention map attends to the object extremities, which
is similar to DETR [1]. The different attention maps implies
that our instance and interaction decoders indeed capture
disentangled representations.

5. Conclusion
In this paper, we propose disentangled transformer for

HOI detection. Our method decouples the triplet prediction
into human-object pair detection and interaction classifica-
tion via an instance stream and an interaction stream, where
both encoder and decoder are disentangled. To associate
the predictions of two task decoders, we adopt a coarse-to-
fine strategy that first utilizes a base decoder to generate a
unified HOI representation, and then conduct feature refine-
ment in the disentangled instance and interaction spaces.
We further propose an attentional fusion block to help two
task decoders communicate with each other. As a result,
our method is able to outperform prior HOI transformers
and other methods by a sizeable margin on both V-COCO
and HICO-DET benchmarks. The visualization of cross at-
tention maps in task decoders also provide a good interpre-
tation of the disentangled strategy.

Potential Negative Societal Impact
Our algorithm has no evident threats to society. How-

ever, someone might use our method for malicious usage,
e.g. to attack people in military usage or invasion of pri-
vacy with surveillance. Therefore, we encourage good faith
consideration before adopting our technology.
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