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Abstract

Pan-sharpening aims to integrate the complementary in-
formation of texture-rich PAN images and multi-spectral
(MS) images to produce the texture-rich MS images. De-
spite the remarkable progress, existing state-of-the-art Pan-
sharpening methods don’t explicitly enforce the comple-
mentary information learning between two modalities of
PAN and MS images. This leads to information redun-
dancy not being handled well, which further limits the per-
formance of these methods. To address the above issue, we
propose a novel mutual information-driven Pan-sharpening
framework in this paper. To be specific, we first project the
PAN and MS image into modality-aware feature space in-
dependently, and then impose the mutual information min-
imization over them to explicitly encourage the comple-
mentary information learning. Such operation is capable
of reducing the information redundancy and improving the
model performance. Extensive experimental results over
multiple satellite datasets demonstrate that the proposed al-
gorithm outperforms other state-of-the-art methods qualita-
tively and quantitatively with great generalization ability to
real-world scenes.

1. Introduction
With the rapid development of remote sensors, explosive

satellite images are available for a wide range of applica-
tions like military systems, environmental monitoring, and
mapping services. Due to the physical limitations, satellites
usually capture both multi-spectral (MS) and panchromatic
(PAN) sensors to simultaneously obtain complementary in-
formation. To be specific, MS images possess high spectral
but limited spatial resolution while PAN images have rich
spatial information but low spectral resolution. To generate
images with both high spectral and spatial resolutions, the
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Figure 1. The categorization of existing Pan-sharpening methods.
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Figure 2. The information redundancy reduction after integrating
mutual information minimization constraint, and the average fea-
tures of P2 and M2 are visualized, defined in Figure 4.

Pan-sharpening technique by fusing the MS and PAN im-
ages has drawn increasing attention from both image pro-
cessing and remote sensing communities.

Treated as a fusion task, considerable Pan-sharpening
methods have been developed with two main fusion strate-
gies: 1) image-level fusion and 2) feature-level fusion. As
shown in Figure 1 (a), the first category directly concate-
nates the MS and PAN images along the channel dimension
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before feeding them into the networks. Without conducting
explicitly cross-modal fusion, the ’input fusion’ strategy is
therefore limited in studying the complementary informa-
tion, leading to unsatisfactory performance. The second cat-
egory attempts to extract the modality-aware features from
PAN and MS images independently, and then performs the
information fusion in feature space, as shown in Figure 1
(b). Although encouraging improvement has been achieved,
it still suffers from the following issue. Since PAN and
MS images capture the same scene in different modalities,
they contain shared information as well as unique features,
as demonstrated in Figure 3. However, existing state-of-
the-art Pan-sharpening methods don’t explicitly enforce the
complementary information learning between two modali-
ties of PAN and MS images, resulting in the redundancy of
learned features and the so-called copy artifacts [5, 12, 46].
Considering the limitation of the current methods, in this
paper, we make our efforts to enforce the complementary
feature learning and reduce the information redundancy for
improving the Pan-sharpening performance.

As shown in Figure 1 (c), we propose a novel mu-
tual information-driven Pan-sharpening framework in a cas-
caded manner, and the detailed flowchart is illustrated in
Figure 4. The MS and PAN images are firstly fed into
two independent convolution branches for obtaining the
modality-aware features, and then we impose the mutual
information minimization over them to encourage the com-
plementary information learning from the shallow to deep
levels. To be specific, the obtained modality-aware fea-
tures are further converted to low-dimensional feature vec-
tors for calculating the mutual information where the latter-
level feature vectors are obtained depending on two-folds:
1) the current-layer modality features and 2) the previous-
layer immediate-process feature in feature vector calculat-
ing. Such operation is capable of reducing the information
redundancy, visualized in Figure 2. After obtaining the re-
fined features, a post-fusion module is devised for project-
ing them back to the expected MS images by equipping with
effective invertible neural networks. Extensive experimen-
tal results over multiple satellite datasets demonstrate that
the proposed algorithm outperforms other state-of-the-art
methods qualitatively and quantitatively with great gener-
alization ability to real-world scenes. Ablation studies also
verify the effectiveness of the proposed components.

The contributions of this work are as follows:

• We design a novel Pan-sharpening framework by mu-
tual information minimization in a cascaded manner.
To the best of our knowledge, this is the first attempt to
explicitly encourage the multi-modal learning between
MS and PAN modalities. The proposed model reduces
the information redundancy and alleviate the artifacts
in Pan-sharpening.

Feature extraction Feature extraction

Feature Fusion

MS’s unique feature Common feature PAN’s unique featureCommon feature

Figure 3. The decomposed components of the PAN and its corre-
sponding MS image by the technique [5] .

• Extensive experimental results over multiple satellite
datasets demonstrate the superiority of the proposed
algorithm against other state-of-the-art methods. The
great generalization ability is also verified over real-
world full-resolution satellite scenes.

2. Related work

2.1. Classic Pan-sharpening methods

In the past few years, many classic Pan-sharpening
methods have been proposed in an attempt to fuse the
low-resolution multi-spectral (LR-MS) image and PAN
image to obtain the high-resolution multi-spectral (HR-
MS) image. A common way of dividing is to divide
classic Pan-sharpening methods into the following cate-
gories: component substitution-based (CS) methods, mul-
tiresolution analysis-based (MRA) methods and variational
optimization-based (VO) approaches [10, 14, 37, 38]. The
core idea of the CS methods [9, 35] is to replace the spa-
tial component of the LR-MS image with the component
extracted from the PAN image. Generally, the CS methods
consume less time than other classic methods but the sharp-
ened image often has apparent spectral distortion. To reduce
spectral distortion, the MRA methods [29,34] construct the
HR-MS image by injecting high spatial details extracted
from the PAN image through multi-resolution decomposi-
tion technique into the LR-MS image. However, because
high frequency details are injected in the transform domain,
there are often frequency aliasing problems in actual use. In
addition, there are also some hybrid methods [23, 56] that
combine CS methods and MRA methods, trying to use the
advantages of the two to complement each other. In the re-
cent past, many VO approaches [2, 39, 40] have emerged
as their good performance in the field of Pan-sharpening.
The approaches are designed to find an optimized function
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Figure 4. The detailed flowchart of our proposed method. PAN and its corresponding MS images are firstly projected into modality-
aware feature maps as P1, P2, . . . , PK and M1, M2, . . . , MK from shallow to deep levels respectively. Next, we transform them to
low-dimension feature embedding Ep1, Ep2,. . . , EpK and Em1, Em2,. . . , EmK , and impose the mutual information minimization over
them to explicitly encourage the complementary information learning. Above operation is capable of reducing the information redundancy
and alleviating the artifacts. Finally, an effective post-fusion module is devised to project the features back to the expected MS images.

through certain prior constraints or assumptions. Unfortu-
nately, it is a huge challenge for VO approaches to choose
the appropriate prior constraint and reasonable hypothesis.

2.2. Deep learning based methods

Nowadays, with the success of deep learning-based (DL)
methods in the field of hyperspectral image [7,8,15,21,43]
and remote sensing image [6, 19, 20, 26, 45], the DL meth-
ods [5, 47, 54, 58] have also begun to be used in Pan-
sharpening and make a great improvement. A famous DL
method called PNN [31] is based on a three-layer convo-
lutional neural network. Subsequently, PANNet [50] in-
troduces the high-pass filtering domain in the training pro-
cess to preserve spatial information. MSDCNN [52] takes
into account the problem of multi-scale, adding multi-scale
modules to the network to promote performance. Further-
more, based on SRCNN [13], Cai et al. [3] applied super-
resolution method to Pan-sharpening. The networks men-
tioned above are designed based on the residual block which
limit the reuse of shallow network features. Wang et al. [44]
adopted U-shaped network to solve this problem. More-
over, WSDFNet [22] propagate shallow features by adap-
tive skip weighter to deep layers. Additionally, there are
also some networks based on generative adversarial mod-

els such as Pan-GAN [28]. Model-driven deep networks for
Pan-sharpening like GPPNN [48] increase the model inter-
pretability but performance has decreased.

2.3. Mutual information

InfoMax principle motivates explosive representation
learning researcher works where they maximize the mu-
tual information to achieve the effective representation. The
work [41] provides an empirical evidence about the con-
nection and application direction over three folds: 1) global
features and local features of the same image, 2) multiple
views of different image modality over the same scene, and
3) a sequential component of the data. Since then, Zhang
et.al [55] introduce mutual information minimization to ex-
plicitly encourage the multi-modal information learning be-
tween RGB image and depth data. Sanghi et.al [33] maxi-
mize the mutual information between 3D objects and their
geometric transformed versions to improve the representa-
tions. However, the information redundancy naturally ex-
ists in Pan-sharpening task and leads to the so-called copy
artifacts [5,12,46]. To this end, we introduce the mutual in-
formation minimization between two modalities PAN and
MS image to encourage the multi-modal learning.
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3. Methods
We denote PAN image as P ∈ RH×W×1 and its cor-

responding MS image is firstly up-sampled with the same
spatial resolution of P as M ∈ RH×W×C .

3.1. Model architecture

As detailed in Figure 4, our proposed method consists of
three modules: modality-aware feature extraction of PAN
and MS images, mutual information constraint and the post-
fusion module based on Invertible neural networks (INN).

Modality-aware feature extraction. We firstly employ
two independent feature extraction branches with the basic
component of convolution layer with kernel size 3 × 3 to
project the PAN and MS images to modality-aware feature
maps from shallow to deep levels. Specifically, these fea-
tures are denoted as P1, P2, . . . , PK and M1, M2, . . . , MK

respectively. Both of them are equipped with the size of
H ×W × C. Suppose that two branches denote as fp and
fm, the process can be written as

P1, P2, . . . , PK = fp(P ), (1)
M1,M2, . . . ,MK = fm(M). (2)

Mutual information. Referring to the above PAN fea-
tures P1, P2, . . . , PK and MS features M1,M2, . . . ,MK ,
we firstly transform them into low-dimensional feature vec-
tors for preparing the mutual information. Particularly, the
first-layer features P1 and M1 are fed into an additional
convolution layer with kernel size of 3 × 3 for channel di-
mension as P 1

T and M1
T , and then followed by two fully-

connected layers that receives above reshaped features to
obtain the low-dimensional feature vectors Ep1 and Em1

P 1
T ,M

1
T = C3(P1), C3(M1), (3)

Ep1, Em1 = FCs(P 1
T ), FCs(M1

T ), (4)

where C3, FCs represent the convolution layers of kernel
size 3×3 and full-connected layers respectively. In terms of
the latter-layer features, taking the i-layer for example, the
feature vectors are obtained by combining the previous in-
termediate feature transformation P i−1

T , M i−1
T and the cur-

rent modality features Pi, Mi. Particularly, it follows three
steps: 1) Pi and Mi are fed into two different convolution
layers for channel reduction; 2) the reduction features are
added with previous intermediate features P i−1

T and M i−1
T ;

3) the obtained features are further passed through the con-
volution layers and two fully-connected layers to generate
the low-dimensional feature vectors Epi and Emi as

P i
T = C3(C3(Pi) + P i−1

T ), (5)

M i
T = C3(C3(Mi) +M i−1

T ), (6)

Epi, Emi = FCs(P i
T ), FCs(M i

T ), (7)

where C3 denotes the convolution with kernel size 3 × 3
in no-sharing weights manner. Finally, given the modality-
aware feature vectors Ep1, Ep2, . . . , EpK of PAN image
and Em1, Em2, . . . , EmK of MS image, we introduce
the mutual information minimization to enforce the com-
plementary information learning of two modalities, thus re-
ducing the information redundancy.

In Information theory, mutual information aims to mea-
sure the amount of information obtained about a random
variable Epi by observing some other random variable
Emi or vice versa as

MI(Epi, Emi) = H(Epi)−H(Epi|Emi), (8)
MI(Emi, Epi) = H(Emi)−H(Emi|Epi), (9)

where

H(Emi, Epi) = H(Epi) +H(Emi|Epi), (10)
H(Emi, Epi) = H(Emi) +H(Epi|Emi). (11)

Combing above two equations, we can obtain

H(Emi)−H(Emi|Epi) = H(Epi)−H(Epi|Emi),
(12)

where H(.) represents the entropy, i ∈ [1,K] with K
being the stage number of feature extraction, H(Emi),
H(Epi) indicate the marginal entropies, H(Epi, Emi) and
and H(Emi, Epi) are the joint entropy, H(Epi|Emi) and
H(Emi|Epi) are the conditional entropy. Afterward, inte-
grating above equations, we can infer

MI(Epi, Emi) = H(Epi) +H(Emi)−H(Epi, Emi),
(13)

where we also introduce Kullback-Leibler divergence (KL)
to calculate the entropy following previous works [33, 41]

H(Epi) = −
∑

Epi log(Emi)−KL(Epi||Emi),

(14)

H(Emi) = −
∑

Emi log(Epi)−KL(Emi||Epi).

(15)

Note that we enforce the MI(Epi, Emi) calculation over
i = 1, . . .K levels, shown in Figure 4.

INN block. With the mutual information minimization,
the redundancy of modality features is reduced. Followed,
we design an effective post-fusion module based on invert-
ible neural networks. The basic component is the coupling
layer proposed in [36] and stacked for effectively fusing
above the refined modality features [30,57], thus projecting
back to the expected MS images. Deepening into the cou-
pling layer, the convolution block is implemented by Half-
Instance normalization module [11].
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3.2. Optimization

As shown in Figure 4, the overall loss function consists
of two parts: one for the reconstructing the ground-truth MS
image by L1 loss and the other for reducing the information
redundancy between two modalities, written as:

L = ∥f(M,P )−H∥1 + λ

K∑
i=1

MI(Epi, Emi), (16)

where f(.) denotes the mapping function of our method,
MI(.) indicates mutual information calculating. H is the
ground truth MS image and λ is the parameters to balance
the two terms in loss function. In our setting, λ is set as 0.1.

4. Experiments
In this section, we conduct extensive experiments over

three satellite image datasets of the WorldView II, World-
View III, and GaoFen2 to evaluate the model performance.

4.1. Datasets and benchmark

Due to the unavailability of ground-truth MS images,
we follow the previous works to generate the training set
by employing the Wald protocol tool [42]. Specifically,
given the MS image H ∈ RM×N×C and the PAN im-
age P ∈ RrM×rN×b, both of them are downsampled with
ratio r, and then are denoted by L ∈ RM/r×N/r×C and
p ∈ RM×N×b respectively. In the training set, L and p are
regarded as the inputs, while H is the ground truth. In our
work, three satellite images of the WorldView II, GaoFen2
and WorldView III are adopted to construct image datasets.
For each database, PAN images are cropped into patches
with the size of 128 × 128 pixels while the corresponding
MS patches are with the size of 32× 32 pixels.

To evaluate the results of our proposed method, sev-
eral commonly-recognized state-of-the-art Pan-sharpening
methods are selected, which are classified into two-folds: 1)
five representative deep-learning based methods, PNN [32],
PANNET [51], MSDCNN [53], SRPPNN [4], and GPPNN
[49]; 2) five promising traditional methods, SFIM [27],
Brovey [16], GS [24], IHS [17], and GFPCA [25].

4.2. Implementation details and metrics

We implement our networks in PyTorch framework on
the PC with a single NVIDIA GeForce GTX 2080Ti GPU.
In the training phase, they are optimized by Adam opti-
mizer over 1000 epochs with a batch size of 4. The learn-
ing rate is initialized with 8 × 10−4 and decayed by mul-
tiplying 0.5 when reaching 200 epochs. Several widely-
used image quality assessment (IQA) metrics are adapted
for performance measurement, including the PSNR, SSIM,
SAM [18], ERGAS [1], the three non-reference metrics of
Dλ, DS , QNR for real-world full-resolution scenes.

Table 1. The quantitative results on WorldView-II datasets. The
best values are highlighted by the red bold. The up or down arrow
indicates higher or lower metric corresponds to better images.

Method
WorldView II

PSNR↑ SSIM↑ SAM↓ ERGAS↓

SFIM 34.1297 0.8975 0.0439 2.3449

Brovey 35.8646 0.9216 0.0403 1.8238

GS 35.6376 0.9176 0.0423 1.8774

IHS 35.2926 0.9027 0.0461 2.0278

GFPCA 34.5581 0.9038 0.0488 2.1411

PNN 40.7550 0.9624 0.0259 1.0646

PANNET 40.8176 0.9626 0.0257 1.0557

MSDCNN 41.3355 0.9664 0.0242 0.9940

SRPPNN 41.4538 0.9679 0.0233 0.9899

GPPNN 41.1622 0.9684 0.0244 1.0315

Ours 41.6773 0.9705 0.0224 0.9519

Table 2. The quantitative results on GaoFen2 test datasets. The
best values are highlighted by the red bold.

Method
GaoFen2

PSNR↑ SSIM↑ SAM↓ ERGAS↓

SFIM 36.9060 0.8882 0.0318 1.7398
Brovey 37.7974 0.9026 0.0218 1.3720

GS 37.2260 0.9034 0.0309 1.6736
IHS 38.1754 0.9100 0.0243 1.5336

GFPCA 37.9443 0.9204 0.0314 1.5604
PNN 43.1208 0.9704 0.0172 0.8528

PANNET 43.0659 0.9685 0.0178 0.8577
MSDCNN 45.6874 0.9827 0.0135 0.6389
SRPPNN 47.1998 0.9877 0.0106 0.5586
GPPNN 44.2145 0.9815 0.0137 0.7361

Ours 47.3042 0.9892 0.0102 0.5481

Table 3. Comparisons on flops and parameter numbers.

PNN PANNET MSDCNN SRPPNN GPPNN Ours

params 0.0689 0.0688 0.2390 1.7114 0.1198 0.0714

flops 1.1289 1.1275 3.9158 21.1059 1.3967 1.1815
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Table 4. The quantitative results on WorldView-III test datasets.
The best values are highlighted by the red bold.

Method
WorldView III

PSNR↑ SSIM↑ SAM↓ ERGAS↓

SFIM 21.8212 0.5457 0.1208 8.9730

Brovey 22.5060 0.5466 0.1159 8.2331

GS 22.5608 0.5470 0.1217 8.2433

IHS 22.5579 0.5354 0.1266 8.3616

GFPCA 22.3344 0.4826 0.1294 8.3964

PNN 29.9418 0.9121 0.0824 3.3206

PANNET 29.6840 0.9072 0.0851 3.4263

MSDCNN 30.3038 0.9184 0.0782 3.1884

SRPPNN 30.4346 0.9202 0.0770 3.1553

GPPNN 30.1785 0.9175 0.0776 3.2593

Ours 30.4907 0.9223 0.0749 3.1125

Table 5. The non-reference metrics on full-resolution dataset. The
best values are highlighted by the red bold.

Method
Full-resolution Dataset

Dλ ↓ Ds ↓ QNR↑

PNN 0.0746 0.1164 0.8191

PANNET 0.0737 0.1224 0.8143

MSDCNN 0.0734 0.1151 0.8215

SRPPNN 0.0767 0.1162 0.8173

GPPNN 0.0782 0.1253 0.8073

Ours 0.0694 0.1118 0.8259

Table 6. The effect of weighting parameter λ in loss function.

λ 0.01 0.05 0.1 0.5 1

PSNR 41.5859 41.6079 41.6773 41.5581 41.4867

4.3. Parameter Numbers vs model performance

In this section, we investigate the comparisons on pa-
rameter numbers and model performance (representation by
PSNR) are shown in Table 3. It can be seen that our network
is able to achieve a good trade-off and achieves the best per-
formance with comparably fewer parameters compared to
other deep learning-based methods. We use the tensor with
1× 4× 32× 32 and 1× 1× 128× 128 to represent the MS
and PAN roles for evaluation.

4.4. Comparison with state-of-the-art methods

4.4.1 Evaluation on reduced-resolution scene

Quantitative comparison. The comparison results over
three satellite datasets are reported in Table 1, Table 2 and
Table 4 respectively where the best values are highlighted
by red bold. As can be seen clearly, our proposed method
achieves the best overall results than other promising Pan-
sharpening methods over all the satellite datasets. Specifi-
cally, the average gains of our method over the second-best
SRPPNN are 0.24dB, 0.16dB, 0.10dB in reference met-
ric PSNR on WorldView-II, GaoFen2 and WorldView-III
datasets, respectively. In addition to PSNR, consistent im-
provements can be observed in the other metrics, indicat-
ing the lower spectral distortion and spatial texture preser-
vation. When compared with the other approaches, our
method is far ahead.
Qualitative comparison. We also show the qualitative
comparison of the visual results to testify the effectiveness
of our method in Figure 5 and Figure 6 over the representa-
tive samples from WorldView-II and WorldView-III dataset.
Images in the last row are the MSE residuals between the
output pan-sharpened results and the ground truth. Com-
pared with other competing methods, our model has minor
spatial and spectral distortions. As for the MSE residu-
als, it’s noticed that our proposed method is closest to the
ground truth than other comparison methods. The state-of-
the-art performance of our method demonstrate the effec-
tiveness of the proposed mutual information minimization
mechanism, which is capable of reducing the information
redundancy and improving the Pan-sharpening results.

4.4.2 Evaluation on full-resolution scene

In order to demonstrate the real-world application value, we
further perform experiments on 200 sets of full-resolution
data obtained by Gaofen2. Due to the unavailability of
ground-truth MS images in the real-world full-resolution
scenes, the commonly-used three non-reference metrics of
Dλ, Ds and QNR are adapted for evaluation. The quantita-
tive comparison between representative CNN-based meth-
ods and our method are shown in Table 5. The lower Dλ,
Ds and the higher QNR correspond to the better image qual-
ity where the best results are remarked by red bold. As can
be seen clearly, our methods surpass other competitive Pan-
sharpening methods in all the indexes.

4.5. Ablation experiments

We conduct the ablation studies to further verify the
components of our model, including the mutual informa-
tion minimization (MI), the invertible neural network-base
fusion module (INN) and the weighting parameter λ of the
overall loss. The visual comparison is shown in Figure 8,
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Ground TruthGPPNN OursSRPPNNMSDCNNPANNet

PAN GFPCA GS SFIMMS PNN

GFPCA GS SFIM PNN GPPNN OursSRPPNNMSDCNNPANNet

Figure 5. Visual comparisons over WorldView-II.

Ground TruthGPPNN OursSRPPNNMSDCNNPANNet

PAN GFPCA GS SFIMMS PNN

GFPCA GS SFIM PNN GPPNN OursSRPPNNMSDCNNPANNet

Figure 6. Visual comparisons over WorldView-III.

where “ours” indicate the whole network, (I) and (II) are the
variants of “ours” by deleting the MI and replacing INN.

The mutual information minimization. In the first row
of Table 7, we delete the mutual information minimization
constraint to verify its necessity. Table 7 shows that deleting
it will degrade all the metrics dramatically, thus verifying its
positive effect to reduce the information redundancy. The
visual comparisons in Figure 8 between (I) and “ours” also

testify the vital importance of this component.

The invertible neural network-based fusion module. In
the second row of Table 7, we replace INN with pure
ResNet block under the constraint of the same numbers of
parameters. The results demonstrate that replacing it will
weaken our network’s performance, indicating its effective-
ness. The visual comparisons in Figure 8 between (II) and
“ours” also verify its necessity.
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Table 7. The results of ablation experiments over three datasets. The best values are highlighted by the red bold. “MI” and “INN” represent
the components of mutual information and the post-fusion invertible neural module respectively.

Config MI INN
WorldView II GaoFen2 WorldView III

PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓

(I) # ! 41.4940 0.9685 0.0231 0.9711 47.2316 0.9878 0.0117 0.5492 30.2893 0.9192 0.0789 3.1584

(II) ! # 41.5863 0.9699 0.0228 0.9620 47.2775 0.9885 0.0104 0.5488 30.3511 0.9214 0.0785 3.1311

Ours ! ! 41.6773 0.9705 0.0224 0.9519 47.3042 0.9892 0.0102 0.5481 30.4907 0.9223 0.0749 3.1125
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Figure 7. The features difference of PAN and MS in our model without (w/o) and with (w) integrating the mutual information constraint.

Ground TruthOurs(II)

PAN (I)MS

(II) Ours(I)

Figure 8. The visual comparison over GaoFen2 satellite.

The weighting parameter λ. In Table 6, we show the dif-
ferent values of weighting parameters λ to verify its effect
over WorldView-II. With its increasing, the effect of mutual

information becomes larger. Moreover, being smaller is in-
adequate of reducing information redundancy while being
larger will destroy the connection between two-modalities.
It is obvious that the setting as 0.1 is the optimal solution.

4.6. Visualization of feature maps

To verify the effect of mutual information (MI) con-
straint, we show the change of modality features before and
after integrating with mutual information constraint in Fig-
ure 7 and Figure 2. It is clearly seen that integrating MI en-
forces the complementary features learning and reduces the
information redundancy, especially in red box. To be spe-
cific, the PAN features focus more on texture details while
MS features focus more on spectral characteristics.

5. Conclusion
In this paper, we propose a novel Pan-sharpening frame-

work. Specifically, we introduce the mutual information
minimization regularization to reduce the information re-
dundancy between two modalities of PAN and MS images.
To the best of our knowledge, this is the first attempt to
explicitly encourage the complementary information learn-
ing. Extensive experimental results over multiple satellites
demonstrate the effectiveness of the proposed algorithm.
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