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Abstract

Long-range temporal alignment is critical yet challeng-
ing for video restoration tasks. Recently, some works at-
tempt to divide the long-range alignment into several sub-
alignments and handle them progressively. Although this
operation is helpful in modeling distant correspondences,
error accumulation is inevitable due to the propagation
mechanism. In this work, we present a novel, generic itera-
tive alignment module which employs a gradual refinement
scheme for sub-alignments, yielding more accurate motion
compensation. To further enhance the alignment accuracy
and temporal consistency, we develop a non-parametric re-
weighting method, where the importance of each neighbor-
ing frame is adaptively evaluated in a spatial-wise way for
aggregation. By virtue of the proposed strategies, our model
achieves state-of-the-art performance on multiple bench-
marks across a range of video restoration tasks including
video super-resolution, denoising and deblurring.

1. Introduction
Frame alignment plays an essential role in aggregating

temporal information in video restoration tasks, e.g., video
super-resolution (Video SR), video deblurring, and video
denoising. In recent years, great attempts have been made to
study this problem. Especially, deep learning-based meth-
ods are successful in building temporal correspondences
and achieve promising results.

The existing alignment methods can be roughly cate-
gorized into two classes: (i) independent alignment that
conducts frame-to-frame alignments totally independently
(see Fig. 2(a)) and (ii) progressive alignment that performs
temporally consecutive alignments sequentially in a recur-
sive manner (see Fig. 2(b)). Those independent alignment
approaches typically focus on designing effective feature
descriptors and motion estimation modules to improve the
performance. For example, EDVR [29] develops pyramid,
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Figure 1. Performance and efficiency comparison on Vimeo-90K-
T [33]. Besides high PSNR and fast inference, our alignment al-
gorithm can be easily integrated into existing frameworks (e.g.,
IconVSR [3]) to further improve performance. Circle sizes are set
proportional to the numbers of parameters.

cascading and deformable convolutions (PCD) for more ac-
curate alignment. Whereas, without exploiting the correla-
tions between multiple alignments, this strategy is still fac-
ing challenges to estimate the long-range motion fields. The
second line typically adopts a recurrent framework for grad-
ual alignment. Taking BasicVSR [3] for example, the au-
thors propose an optical-flow-based recurrent architecture
for video super-resolution. They predict the bidirectional
optical flow between two neighboring frames and then con-
duct a bidirectional propagation, where the temporal infor-
mation is aggregated by warping image features produced
by previous steps. This kind of methods is mainly proposed
to model long-range dependencies since it only needs to
handle relatively small motion between neighboring frames
in one step. However, such chain-rule-based propagation
has no chance to correct the misalignment caused by previ-
ous steps and may suffer from the error accumulation issue.

As illustrated in Fig. 2(c), we observe that differ-
ent long-range alignments (Ai) actually share some sub-
alignments (ai), e.g., a1 is shared among A1, A2 and A3,
so as a2 in A2 and A3. How can we utilize this property
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Figure 2. Three alignment strategies in video restoration tasks. (a) Independent alignment that estimates frame-to-frame correspondences
in isolation. (b) Progressive alignment that performs multiple alignments sequentially. (c) Our proposed iterative alignment scheme that
performs gradual refinement for shared sub-alignments. Ak refers to the k-th temporal alignment and ai is the i-th sub-alignment.

to improve the accuracy of the shared sub-alignments? In
this work, we propose an iterative alignment module (IAM)
built upon the progressive alignment strategy to gradually
refine the shared sub-alignments. For a specific shared sub-
alignment (e.g., a2 in A2 and A3), the previously estimated
result (a2 in A2) is used as a prior in the current iteration
(a2 in A3). Our IAM has two merits over the progressive
alignment scheme. First, the progressive alignment only
conducts a single prediction for each sub-alignment so that
misalignment can not be corrected. In contrast, our IAM
refines each sub-alignment iteratively, yielding more accu-
rate alignment. Second, the progressive alignment performs
multi-frame aggregation based on a chain-like propagation
so that misalignment will be propagated to the end. In our
IAM, each neighboring frame is aligned through individual
propagation, making it more reliable. Furthermore, to re-
duce the computational complexity, we elaborate a simple
yet efficient alignment unit for temporal sub-alignments.

From Fig. 1, it is observed that our alignment algorithm
yields high inference efficiency and superior performance
compared with state-of-the-art video SR methods. Partic-
ularly, our IAM can be easily plugged into existing deep
models. For example, by replacing the original independent
alignment module of IconVSR [3] with our “IAM” (denoted
as “IconVSR+IAM” in Fig. 1), the PSNR is boosted from
37.47dB to 37.56dB on Vimeo-90K-T [33], while reducing
the number of parameters from 8.7M to 7.8M.

Besides, the aggregation of multiple aligned frames re-
mains an essential step, for the purpose of preserving details
while eliminating alignment errors. Modern restoration sys-
tems either employ a sequence of convolutions to directly
fuse the aligned features [3, 28] or adopt spatial-temporal
adaptive aggregation strategies [9, 13, 15, 16, 19, 29, 31].
However, all these methods solely rely on the learned pa-
rameters, raising the risk of overfitting on a specific do-
main. In this work, we propose a non-parametric re-

weighting module, where two strategies are designed to ex-
plicitly evaluate the spatially-adaptive importance of differ-
ent frames. First, we explore the accuracy of alignments.
Patches in the aligned frames are compared with the coun-
terparts in the reference frame, and those of high similar-
ity are assigned with larger weights during fusion. Second,
to evaluate the consistency of alignments, we compute the
pixel-wise L2 distances of the aligned frames with their av-
erage. Pixels with smaller distances are considered to be
more consistent with other frames and hence are assigned
with larger weights. The proposed re-weighting module is
parameterless and hence can be plugged into other models.

The main contributions are summarized as:

• We rethink issues of the progressive alignment and
accordingly propose an iterative alignment scheme,
yielding more accurate estimation, especially over
long-range correspondences.

• We propose a non-parametric re-weighting module
that simultaneously evaluates the alignment accuracy
and temporal consistency.

• The quantitative and qualitative results justify the
state-of-the-art performance of our method across sev-
eral video restoration tasks.

2. Related Work
Temporal Alignment. Many video restoration ap-

proaches [3,22,30,33] perform independent temporal align-
ment between neighboring frames with the central frame.
Various strategies have been proposed to improve the per-
formance. For example, to fill the domain gap between opti-
cal flow estimation and video SR tasks, TOF [33] integrates
a task-oriented flow module into their VSR framework for
end-to-end training. Pan et al. [22] develop CNNs to esti-
mate the optical flow and the latent frame simultaneously.
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Figure 3. A general framework for video restoration tasks. There
are four components including a frame feature extraction module,
an iterative alignment module, an adaptive re-weighting module
and a reconstruction module.

Later on, some methods start to develop adaptive kernel-
based schemes [14,24,28,29,32,34,35] to perform the align-
ment and process the occlusion simultaneously. EDVR [29]
proposes a coarse-to-fine alignment algorithm to tackle the
large displacement. However, these independent alignment
models only focus on exploring correlations between two
frames in isolation. It is still challenging to handle long-
range alignments.

Another line of work [3, 4] begins to explore a progres-
sive alignment strategy for video restoration tasks. To al-
leviate the challenges of long-range alignment, they typ-
ically split multiple long-range alignments into several
sub-alignments. Those sub-alignments are subsequently
processed progressively. In BasicVSR [3], a pre-trained
SPyNet [23] is utilized to estimate motion fields of each
sub-alignment between adjacent frames. Then, they pro-
gressively aggregate the temporal information by warping
image features produced by previous steps. The progressive
alignment scheme makes it effective in handling long-range
alignment. Based on BasicVSR, BasicVSR++ [4] presents
a second-order propagation and motion field residual learn-
ing method to improve the accuracy of sub-alignments.
However, inaccurately estimated motion fields of some sub-
alignments will wrongly warp the image features. The mis-
aligned information is subsequently propagated and aggre-
gated in the later steps, resulting in error accumulation.
In this work, we propose an iterative alignment algorithm
built upon the progressive alignment scheme. Each sub-
alignment is estimated and refined gradually, largely im-
proving the accuracy of alignment.

Feature Fusion. The majority of video restoration meth-
ods fuse the aligned frames for temporal information ag-
gregation by feature concatenation followed by a convolu-
tion [18, 28, 33]. For example, FastDVD [26] divides con-
secutive frames into different groups and designs a two-
stage convolutional neural network for multi-frame fusion.
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Figure 4. Overview of our feature extraction module.

In addition, more effective aggregation strategies have been
proposed by applying spatial or temporal attention-based
mechanism [9, 13, 19, 31]. Isobe et al. [9] design a frame-
rate-aware group attention, which can handle various levels
of motions. In [30], a motion robustness analysis is adopted
to fuse temporal information, where different confidence
scores are assigned to the local neighbors of each pixel for
merging. Inspired by this work, we design an adaptive re-
weighting module for information aggregation, considering
both the accuracy and consistency of the alignment.

3. Methodology
3.1. Overview

Figure 3 shows the proposed framework. Our goal is
to reconstruct a high-quality image Ihq0 from 2N + 1 con-
secutive low-quality images {Ilq−N , · · · , Ilq0 , · · · , I

lq
N}. In

the feature extraction module, the input frames are first
downsampled with strided convolutions for video deblur-
ring/denoising, while being processed under the same res-
olution for video SR. Then we utilize the proposed IAM
to align input frames referring to the central frame. For
simplicity, we only consider the one-side alignment in the
following as the other side is processed symmetrically. Af-
terwards, an adaptive re-weighting module is designed to
fuse the aligned features. Finally, the Ihq0 is obtained by
adding the predicted residue to the original (for video de-
blurring/denoising) or upsampled (for video SR) input im-
age.

3.2. Feature Extraction

As illustrated in Fig. 4, we conduct feature extraction
to transform a RGB frame Ilqk to high-dimensional feature
maps Fk. We first utilize two convolutions with strides of 2
to downsample the feature resolutions for video deblurring
and denoising (highlighted in blue dotted box in Fig. 4) for
computational efficiency, while keeping the same resolution
for video SR (highlighted in green dotted box in Fig. 4).
Then we utilize another two convolutions with stride of 2 to
obtain the pyramid representations of the input frames. At
last, we fuse the pyramid features with a single convolution.
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Figure 5. PSNR differences of four SOTA video SR methods [2,3,
14, 29] compared to our method (dotted line) on REDS4 [21] and
REDS4-Fast. The smaller the value, the larger the gap.

3.3. Temporal Alignment

Temporal alignment aims to align multiple neighboring
features {F−N , · · · ,F−1,F1, · · · ,FN} to a reference F0.
Let Ak be the k-th temporal alignment between the neigh-
boring frame Fk and the reference frame F0, then we have

Ak(Fk,F0) = F̂0
k, k ∈ {−N, · · · ,−1, 1, · · · , N}, (1)

where F̂0
k is the aligned result.

3.3.1 Progressive Alignment

In order to facilitate the long-range alignment, some re-
cent methods [4] adopt a progressive alignment strategy.
For the alignment Ak, they divide it into sequential sub-
alignments {ak, ak−1, · · · , a1} to gradually align the feature
Fk to the reference frame F0. We use ai to represent the
sub-alginment from Fi to Fi−1:

ai : Fi → Fi−1. (2)

As illustrated in Fig. 2(b), all neighboring frames are pro-
cessed through the chained sub-alignments, indicating that
the latter sub-alignments strongly depend on the former pre-
dictions. Consequently, the error incurred by an intermedi-
ate inaccurate sub-alignment will be propagated and accu-
mulated till the end, leading to inferior performance. To al-
leviate the issue of error accumulation and boost the restora-
tion quality, we propose an iterative alignment algorithm to
focus on improving the accuracy of each sub-alignment ai.

3.3.2 Iterative Alignment

Unlike the progressive alignment that conducts each sub-
alignment only once, our algorithm iteratively refines the
sub-alignments based on the previous estimation. As shown
in Fig. 2(c), we start from the alignment A1, which only
contains the sub-alignment a1 : F1 → F0, described as:

A1 : a1(F1,F0, t = 1) ⇒ F̂0
1,h

1
1 , (3)

where F̂i−1
k refers to the aligned result of sub-alignment ai

in Ak. In Eq. 3, ht
i represents the estimated motion field of

the sub-alignment ai after being refined t times.
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Figure 6. Illustration of our iterative sub-alignment unit for the
ai of Ak. F̂i

k is the source feature and Fi−1 is the target feature.
The iterative refinement is highlighted in dashed box. F̂i−1

k is the
aligned result and hk+1−i

i is the refined motion field of ai.

After that, we consider the next alignment A2 by sequen-
tially performing two sub-alignments {a2, a1}:

A2 :

{
a2(F2,F1, t = 1) ⇒ F̂1

2,h
1
2 ,

a1(F̂1
2,F0,h

1
1, t = 2) ⇒ F̂0

2,h
2
1 .

(4)

For a1 in A2, it has already been carried out in A1 once.
Thus we fuse the pre-estimated motion field h1

1 of a1 in A1

to refine a1 in A2, formulated as an iterative optimization.
For the subsequent alignment A3, two sub-alignments

{a2, a1} will be refined as:

A3 :


a3(F3,F2, t = 1) ⇒ F̂2

3,h
1
3 ,

a2(F̂2
3,F1,h

1
2, t = 2) ⇒ F̂1

3,h
2
2 ,

a1(F̂1
3,F0,h

2
1, t = 3) ⇒ F̂0

3,h
3
1 .

(5)

It can be concluded that, apart from the first sub-alignment
ak in Ak, all other sub-alignments are optimized at least
twice. There are two merits: (i) The sub-alignments will
be more accurate through our iterative refinements. (ii) The
sub-alignments not only rely on the pre-aligned features but
also the pre-estimated motion field, making it more reliable.

To verify our claim, we evaluate our algorithm together
with recent video SR models [2, 3, 14, 29] on REDS4 [21]
and REDS4-Fast 1. As shown in Fig. 5, our model achieves
the best performance over the competing methods. Partic-
ularly, our method brings about significant improvement in
the context of large motion, demonstrating the effectiveness
of our IAM in the long-range alignment.

3.3.3 Sub-alignment Unit

In Sec. 3.3.2, we describe the iterative alignment algorithm
in detail. It is observed that for 2N neighboring frames,
our method requires N(N + 1) sub-alignments. In con-
trast, the independent and progressive alignment schemes

1REDS4-Fast is a subset of REDS4 [21] with an average motion mag-
nitude of 9.4 pixels, much larger than the average of REDS4 of 4.3 pixels.
The optical flows are calculated by RAFT [27].
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only need 2N (sub-)alignments. So it is critical to design
a simple sub-alignment unit for computational efficiency.
To this end, two improvements have been proposed. (i)
While the previous methods [3, 29] typically adopt a pyra-
mid alignment scheme that performs multiple-scale pro-
cessing in the alignment phase, we adopt an early multi-
scale fusion strategy in the feature extraction phase so that
our IAM only performs single-scale alignments. (ii) We
develop a lightweight sub-alignment unit with much fewer
parameters than other methods [2, 29]. Specifically, we use
a compact structure of residual blocks to reduce computa-
tional overhead (see details in supplementary materials.).

Fig. 6 shows the structure of our sub-alignment unit.
Taking the i-th sub-alignment ai of Ak for example, we
first utilize two convolutions followed by ReLU activation
to estimate the initialized motion field hc

i from the concate-
nation of source feature F̂i

k and target feature Fi−1. After
that, there are two cases for the prediction hk+1−i

i of ai:

hk+1−i
i =

{
hc
i , i = k ,

θ(hc
i ,h

k−i
i ), others .

(6)

If ai is the first sub-alignment of Ak (i = k), then no his-
torical prediction can be reused to refine ai. As a result, we
simply set hc

i as the estimated motion field of ai. Otherwise,
we will take the last estimation hk−i

i together with the cur-
rent estimation hc

i as input and utilize a single convolution
followed by two residual blocks (dubbed as θ) to refine the
prediction. Finally, we adopt a deformable convolution [6]
to adaptively sample contents from the source feature F̂i

k:

F̂i−1
k = DConv(F̂i

k,Fi−1,h
k+1−i
i ) (7)

Specially, if ai is the first sub-alignment in Ak (i = k), Eq. 7
can be written as:

F̂k−1
k = DConv(Fk,Fk−1,h

1
k) (8)

The sub-alignment unit is shared for all sub-alignments,
largely reducing the number of learnable parameters.

3.4. Adaptive Re-weighting

Although the temporal alignment module performs mo-
tion compensation for neighboring frames, it remains vital
to fuse them in an effective way. Recently, convolution-
based attention mechanism becomes popular to aggregate
multi-frame information [9, 13, 19, 31]. By contrast, we
present a non-parametric re-weighting module to explicitly
evaluate the spatially-adaptive importance of aligned frames
from two perspectives. First, we evaluate the accuracy of
aligned frames with respect to the reference frame. Second,
we measure the consistency of aligned neighboring frames.
Fig. 7 describes the pipeline of our re-weighting module.

Accuracy-Based Re-weighting. As shown in Fig. 7(a),
we measure the accuracy of aligned frames. For the refer-
ence frame F0, the feature vector at position (x, y) is de-
noted as v0, i.e., v0 = F0(x, y). We find its corresponding

Softmax

SubtractionÄ Inner Product Hadamard Product

(b) Consistency-Based Re-weighting

(a) Accuracy-Based Re-weighting

Repeat

Ä

å

.

.

.

Repe

Figure 7. Adaptive re-weighting module. There are two branches:
(a) the accuracy-based re-weighting branch for measuring the
accuracy of alignment, (b) the consistency-based re-weighting
branch for evaluating the consistency of the aligned frames.

3×3 patch centered at the same position in the k-th aligned
frame F̂0

k. For each feature vector on this patch, we cal-
culate its cosine similarity (normalized inner product) with
respect to v0 as:

Sx,y
k (∆x,∆y) =

F̂0
k(x+∆x, y +∆y)∥∥∥F̂0
k(x+∆x, y +∆y)

∥∥∥
2

⊗ v0

∥v0∥2
,

(9)
where Sx,y

k is the 3×3 similarity map at position (x, y) and
⊗ represents the inner product. (x + ∆x, y + ∆y) is the
coordinate of feature vector where ∆x,∆y ∈ {−1, 0, 1}.
Then a Softmax function is applied to Sx,y

k in the spatial
dimension, yielding the pixel-wise weights as:

Wx,y
k = Softmax(Sx,y

k ) . (10)

Then Wx,y
k is used to fuse feature vectors on the 3×3 patch,

and the re-weighted result F̄0
k(x, y) is obtained as:

F̄0
k(x, y) =

∑
∆x,∆y

Wx,y
k (∆x,∆y)⊙ F̂0

k(x+∆x, y +∆y) .

(11)
where ⊙ denotes the Hadamard product.

Consistency-Based Re-weighting. We first calculate the
average of aligned neighboring frames yielding F̂0

avg , as il-
lustrated in Fig. 7(b). For the k-th aligned frame F̂0

k, we
evaluate its consistency with other aligned frames as

Ck = exp(α · ∥F̂0
k − F̂0

avg∥
2

2
) , (12)

where α is set to −1 in our experiments. It is noted that Ck

maintains the same shape as F̂0
k.

6057



Task Video SR Video Deblurring Video Denoising

Configuration M(128), B(40)
M(128), B(10)

M(64), B(10)
M(128), B(40)

GPUs 6 6 2
Patch Reso. 64× 64 128× 128 128× 128
nFrames 5(7) 5 5
Mini-Batch 4 4 16

Table 1. The training and network configurations.

Finally, we multiply the accuracy-based re-weighted fea-
ture F̄0

k to the consistency map Ck and obtain the result:

F̃0
k = F̄0

k ⊙Ck . (13)

The refined aligned feature F̃0
k is passed to the reconstruc-

tion module for high-quality image regression (see Fig. 3).

4. Experiments
4.1. Implementation and Training Details

Configuration. As shown in Fig. 3, our network con-
sists of four modules: feature extraction, alignment, re-
weighting, and reconstruction. The feature extraction mod-
ule in Sec. 3.2 contains 5 residual blocks for all tasks. Ta-
ble 1 shows other detailed configurations, where M is the
number of feature channels in the network and B is the
number of residual blocks in the reconstruction module.

Training. We show the training settings in Table 1. We
use 2-6 NVIDIA GeForce RTX 2080 Ti GPUs to train our
models for 900K iterations for all three video restoration
tasks. We adopt random vertical or horizontal flipping or
90◦ rotation for data augmentation. The initial learning rate
is set to 5× 10−4 and a cosine decay strategy is employed.
We use Charbonnier loss for all the three tasks.

4.2. Datasets and Metrics

Video Super-Resolution. REDS [21] and Vimeo-90K [33]
are two widely used datasets in Video SR. Vimeo-90K con-
tains 64,612 training and 7,840 testing 7-frame sequences
with resolution 448 × 256. The testing set is denoted as
Vimeo-90K-T. In REDS, there are 266 training and 4 testing
video sequences. Each sequence consists of 100 consecu-
tive frames with resolution 1280 × 720. Following [29],
we denote the testing set as REDS4. Apart from these
two testing datasets, we also give the quantitative results on
Vid4 [17], which consists of 4 video clips. We adopt MAT-
LAB bicubic downsampling to generate the LR frames.

Video Deblurring. We utilize the video deblurring
dataset [25] (short for VDB) to train and evaluate our mod-
els. There are a total of 61 training and 10 testing video
pairs. Each pair contains blurry and sharp videos. The test-
ing subset is marked as VDB-T. To quantitatively compare
with SOTA video deblurring methods [12, 22, 29, 35], we
measure the PSNR/SSIM values on the RGB channels.

Task Video SR Video Deblurring Video Desnoising
Dataset Vimeo-90K-T VDB-T DAVIS (σ = 20)
Baseline 37.36 29.88 35.62
+IAM 37.72 (+0.36) 32.19 (+2.31) 36.36 (+0.74)
+IAM+ARW 37.84 (+0.48) 32.28 (+2.40) 36.73 (+1.11)

Table 2. Quantitative comparison for ablation study. PSNR (dB) is
reported. “Baseline” means the model without the proposed strate-
gies. “IAM” and “ARW” denote the iterative alignment module
and adaptive re-weighting, respectively.
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Figure 8. Analysis of the iterative number in IAM in video SR.
The first line shows the predictions and the second line shows the
optical flows (using RAFT [27]) between predictions and GT.

Video Denoising. In this task, we aim to remove Gaussian
white noises with known noise levels (σ). Our model is
trained on DAVIS [11], which contains 87 training and 30
testing 540p videos. Set8 [26] is also adopted for testing.
Following [26], we keep a maximum of 85 frames for all
training and testing sequences. A single denoising model
is trained for all noise levels. We report our PSNR/SSIM
results on the RGB channels for a fair comparison.

4.3. Analysis
In this section, we perform a comprehensive analysis of

our method. We abbreviate the iterative alignment module
as IAM and the adaptive re-weighting as ARW for clarity.

IAM and ARW. To evaluate the performance of the pro-
posed IAM and ARW designs, we perform a quantitative
comparison in Table 2. Starting from a baseline without
these designs, we incrementally add the iterative alignment
module (IAM) and adaptive re-weighting (ARW). As illus-
trated in Table 2, the proposed IAM brings about 0.36dB,
2.31dB and 0.74dB improvement on PSNR in the video SR,
deblurring and denoising tasks, respectively. Besides, we
notice that the utilization of ARW further pushes the PSNR
up to a new height. Especially, it brings more improvement
in the denoising task. All these results manifest the effec-
tiveness of our proposed IAM and ARW strategies.

Iterative Number in IAM. We assess the influence of the
iterative number in Table 3 on video SR. Compared to
the baseline that performs a single prediction of each sub-
alignment (identical to the progressive alignment), we grad-
ually increase the number of refinements to 2 and 3 (de-
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Methods PSNR (dB) SSIM Runtime (ms)
Baseline 37.36 0.9468 153

IAM
R2 37.68 (+0.32) 0.9487 166
R3 37.72 (+0.36) 0.9490 169

ARW
Acc. 37.39 (+0.03) 0.9469 154
Con. 37.43 (+0.07) 0.9469 158

Full 37.84 (+0.48) 0.9498 170

Table 3. Ablation study on different IAM and ARW settings for
video SR. The running time of each model is also reported with an
input size of 7× 3× 64× 112.
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Figure 9. Analysis of the ARW module in Video SR. (a) Visual
comparison between without (w/o) and with (w/) ARW. (b) Tem-
poral consistency comparison between without and with ARW.

noted as R2 and R3) for sub-alignments, resulting in PSNR
gains by 0.32dB and 0.36dB, respectively. It is noteworthy
that the increase of running time is quite minor (13-16ms).
Also, as illustrated in Fig. 8, the optical flow between the
prediction and GT becomes smaller with the increase of re-
finements, indicating more accurate alignment. Both quan-
titative and qualitative results suggest that our IAM can sig-
nificantly improve the alignment accuracy by reducing the
error accumulation during propagation.
Re-weighting Type in ARW. As shown in Table 3, we
study the proposed accuracy- and consistency-based re-
weighting strategies for video SR. Compared with the base-
line, the accuracy-based re-weighting leads to a 0.03dB
gain while the consistency one obtains 0.07dB improve-
ment, only costing extra 1-5ms. Figure 9 shows some ex-
amples to illustrate the improved accuracy and consistency
of our ARW. It can be observed that the model with our re-
weighting module is able to restore more accurate textures
while maintaining temporal consistency.

4.4. Comparison with State-of-The-Art Methods

We compare our method with state-of-the-art approaches
quantitatively and qualitatively in the video SR, video de-

!"#$%"# &'() *$+,- !./"#(0) 1$2/ 34

Figure 10. Qualitative comparison on Vimeo-90K-T [33] and
REDS4 [21] in video SR.

Method
REDS4 (RGB) Vid4 (Y)

N PSNR/SSIM N PSNR/SSIM
Bicubic 1 26.14/0.7292 1 23.78/0.6347
TOF [33] 5 27.98/0.7990 7 25.89/0.7651
DUF [10] 5 28.63/0.8251 7 27.33/0.8318
EDVR [29] 5 31.09/0.8800 7 27.35/0.8264
MuCAN [14] 5 30.88/0.8750 7 27.26/0.8215
VSR-T [2] 5 31.19/0.8815 7 27.36/0.8258
∗IconVSR [3] 5 30.81/0.8746 7 27.39/0.8279
Ours 5 31.30/0.8850 7 27.90/0.8380

Table 4. REDS4 [21] and Vid4 [17] results under the ×4 setting in
video SR. The PSNR(dB)/SSIM results are evaluated under x4 set-
ting. ’∗’ indicates the results are from [2], that trains and evaluates
IconVSR under 5/7-frame settings.

blurring and video denoising tasks.

Video Super-resolution. Table 5 and Table 4 exhibit
the quantitative results of our method and existing video
SR methods [2–4, 7, 10, 14, 29, 33] on Vimeo-90K-T [33],
REDS4 [21] and Vid4 [17] datasets. Compared to the repre-
sentative independent [29] and progressive (BasicVSR [3])
alignment methods, our method obtains superior Y-channel
PSNR performance with 0.23dB and 0.66dB improvement
on Vimeo-90K-T, respectively. In addition, our model also
surpasses the VSR-T [2] by 0.13dB, which has much more
parameters. The results of BasicVSR++ on Vimeo-90K-T
are obtained by pre-trianing on REDS. Though our model is
only trained on Vimeo-90K without pre-training (as a typi-
cal setup), our model still performs better than it. In terms
of the Vid4 [17] dataset, our method achieves significant
improvement with 0.51dB on PSNR compared with Icon-
VSR [3]. Note that we only include recent methods which
employ 5/7-frame settings for a fair comparison on REDS4
and Vid4. Fig. 10 shows the visual comparison on Vimeo-
90K-T and REDS4. Our model recovers much clearer text
and more accurate structures compared to other methods.
Video Denoising. Following previous methods [1, 5, 26],
we adopt Set8 [26] and DAVIS [11] as our benchmarks in
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Methods Bicubic EDVR [29] MuCAN [14] BasicVSR [3] IconVSR [3] †BasicVSR++ [4] VSR-T [2] Ours
nFrame 1 1 7 7 7 7 7 7
Param. - 20.6M 19.8M 6.3M 8.7M 7.3M 43.8M 17.0M
RGB 29.79/0.8483 35.79/0.9374 - - - - 35.88/0.9380 35.96/0.9389
Y 31.32/0.8684 37.61/0.9489 37.32/0.9465 37.18/0.9450 37.47/0.9476 37.79/0.9500 37.71/0.9494 37.84/0.9498

Table 5. Vimeo-90K-T [33] results in video SR. The PSNR(dB)/SSIM results are obtained under the ×4 setting. Numbers in red and blue
refer to the best and second-best results. ’†’ means BasicVSR++ uses an additional REDS dataset for pre-training.

Dataset σ VNLB [1] V-BM4D [20] VNLnet [5] FastDVD [26] Ours

Set8

10 37.26 36.05 37.10 36.44 37.25
20 33.72 32.19 33.88 33.43 34.05
30 31.74 30.00 - 31.68 32.19
40 30.39 28.48 30.55 30.46 30.89
50 29.24 27.33 29.47 29.53 29.90

DAVIS

10 38.85 37.58 35.83 38.71 39.75
20 35.68 33.88 34.49 35.77 36.73
30 33.73 31.65 - 34.04 34.89
40 32.32 30.05 32.32 32.82 33.56
50 31.13 28.80 31.43 31.86 32.51

Table 6. Set8 [26] and DAVIS [11] results in video denoising.
PSNR(dB) results are reported.

Meth. EDVR [29] STFA [35] Pan [22] ARVo [12] Ours-M Ours
Param. 23.6M 5.4M 16.2M - 12.7M 16.7M
PSNR 28.51 31.24 32.13 32.80 32.28 32.92
SSIM 0.864 0.934 0.927 0.935 0.942 0.948

Table 7. VDB-T [25] results in video deblurring. “Ours-M” and
“Ours” denote our medium and standard models.

the video denoising task. The quantitative results are re-
ported in Table 6. Our model achieves the best results under
most noise levels. Especially, compared with the second-
best approaches, our method largely improves the PSNR by
0.37dB and 0.65dB under the noise level σ = 50 on Set8
and DAVIS, respectively. Figure 11 presents some qualita-
tive results. It is observed that our method restores richer
and clearer textures compared with other approaches.

Video Deblurring. We compare our method with several
recent video deblurring approaches [8, 22, 25, 29, 35] on
VDB-T [25]. As illustrated in Table 1, two models with
different sizes (10 or 40 residual blocks) are developed, de-
noted as “Ours-M” and “Ours”. From Table 7, compared to
the second best ARVo [12], we see that our model achieves
0.12dB and 0.013 improvement on PSNR and SSIM, re-
spectively. Some visual examples illustrated in Figure 12
also demonstrate that our model is able to handle some chal-
lenging cases with complex motion blur.

Limitation & Societal Impact The proposed design are
mainly for improving the accuracy of the long-range align-
ment. There remains plenty of room to optimize the mod-
eling of subtle motion. Besides, further improving the effi-
ciency of the entire pipeline is also our future target. All of
our models are trained and evaluated using public available
video restoration datasets, presenting no potentially nega-
tive societal impacts.

VNLNetInput (             ) FastDVD Ours GT

Figure 11. Qualitative comparison on Set8 [26] in video denoising.

STFA Pan Ours GTBlurry Patch

Figure 12. Visual results on VDB-T [25] in video deblurring.

5. Conclusion
In this paper, we propose a simple yet effective itera-

tive alignment algorithm (IAM) and an efficient adaptive
reweighting strategy (ARW) to better utilize multi-frame in-
formation. The quantitative and qualitative results of three
video restoration tasks illustrate the effectiveness of our
method. Besides, we show that our method is general and
can be deployed in existing video processing systems to
further improve their performance. We will explore more
video-based tasks in the future. The code will be publicly
available to promote the development of the community.
Acknowledgment GPUs supported by SmartMore Cor-
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