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Abstract

Shadow removal, which aims to restore the background
in the shadow regions, is challenging due to its highly ill-
posed nature. Most existing deep learning-based meth-
ods individually remove the shadow by only considering
the content of the matched paired images, barely taking
into account the auxiliary supervision of shadow genera-
tion in the shadow removal procedure. In this work, we
argue that shadow removal and generation are interrelat-
ed and could provide useful informative supervision for
each other. Specifically, we propose a new Bijective Map-
ping Network (BMNet), which couples the learning proce-
dures of shadow removal and shadow generation in a u-
nified parameter-shared framework. With consistent two-
way constraints and synchronous optimization of the two
procedures, BMNet could effectively recover the underlying
background contents during the forward shadow removal
procedure. In addition, through statistical analysis of real-
world datasets, we observe and verify that shadow appear-
ances under different color spectrums are inconsistent. This
motivates us to design a Shadow-Invariant Color Guidance
Module (SICGM), which can explicitly utilize the learned
shadow-invariant color information to guide network col-
or restoration, thereby further reducing color-bias effects.
Experiments on the representative ISTD, ISTD+ and SRD
benchmarks show that our proposed network outperform-
s the state-of-the-art method [11] in de-shadowing perfor-
mance, while only using its 0.25% network parameters and
6.25% floating point operations (FLOPs).

1. Introduction

Shadows are cast when light sources are fully or partial-
ly blocked by objects and are common in various natural
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Figure 1. Visual comparisons with state-of-the-art methods on a
real-world shadow scene. (a) to (c): Param+M+D-Net [28], Fu et
al. [11], G2R [34]. (d) and (e) are the color map of the input image
and our learned shadow-invariant color map, respectively.

scenes. However, shadows often present challenges for a
variety of existing computer vision tasks, e.g., object track-
ing [38] and detection [35], face recognition [49], etc. Con-
sequently, shadow removal has been studied for a long time
as one of the fundamental computer vision tasks.

Currently, much attention has been drawn to recovering
the shadow region contents from a shadow image. Existing
methods broadly come in two flavors: traditional model-
based techniques and deep learning-based methods. Tradi-
tional shadow removal methods rely on the priors of shadow
images , e.g., image gradients [15], illumination [44] and
regions [16, 39]. However, due to these priors limitations,
the traditional methods often are not effective to handle the
shadows in complicated real shadow scenes [23].

Recently, deep learning has achieved remarkable success
in various computer vision tasks [0, 12,13,21,22,36], which
also includes shadow removal and gradually dominated this
field. Le et al. [27,28] attempt to build a linear shadow il-
lumination model to characterize the mapping relationship
between the shadow image I, and the shadow-free image
I;;. DSC[19] and DHAN [5] exploit the global and multi-
context features to better remove shadows by designing the
direction-aware spatial attention module or the growth dilat-
ed convolutions. Moreover, recently some methods [5, 34]
attempt to exploit the shadow generation to obtain a large
number of pseudo shadow pairs as network training data
to boost the de-shadowing performance. However, most of
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these methods may easily ignore the shadow generation pro-
cedure, as the inverse operation of shadow removal, could
also provide auxiliary informative supervision for the shad-
ow removal procedure.

In this paper, we propose a Bijective Mapping Network
(BMNet) to accurately recover the underlying content in
the shadow regions. Specifically, our BMNet is composed
of the forward and backward mapping procedures with the
help of conditional inputs C, i.e., shadow masks and col-
or maps. Similar to previous methods [1 1, 34], the forward
mapping process aims at learning a nonlinear function F(-)
to transfer the shadow images I, to their shadow-free ver-
sion I,;. Ideally, if the forward mapping function I,y =
F(,, C; 0) is optimal, the input shadow image I should be
reconstructed closely through the reverse mapping F~ (I, fs
C; 6). Such reverse mapping procedure could provide the
regular constraint and informational supervision to improve
the forward mapping performance [17]. Our method u-
tilizes such a supplementary mechanism to push the esti-
mated shadow-free images I, ¢ close to the ground truth.
With respect to the above key idea, we naturally implemen-
t it based on the advanced invertible frameworks [2, 4, 50].
In addition, we notice the shadow removed results of the
many shadow removal methods exist obvious color-bias ef-
fect, as shown in Figure 1. By conducting statistical analy-
sis on real-world shadow datasets, we observe that shadow
appearances are different under different color spectrums.
This observation motivates us to devise a Shadow-Invariant
Color Guidance Module (SICGM) to explicitly employ the
learned shadow-invariant color information to guide the col-
or restoration. Different from previous methods [11,27,34]
using only a single scale of shadow mask information, our
SICGM integrates both the color and mask information in-
to the network in a multi-scale fashion. With the guidance
of the additional shadow-invariant color cues, our method
could further reduce the color-bias effect. In summary, our
contributions are as follows:

e We propose a new shadow removal framework, which
couples the procedures of shadow removal (forward
mapping) and generation (reverse mapping) in the
same parameters-shared bijective mapping network
(BMNet). Two procedures are synchronously op-
timized with consistent two-way constraints, which
could benefit from each other and improve the overall
de-shadowing performance.

e We propose a Shadow-Invariant Color Guidance Mod-
ule in the BMNet, which explicitly incorporates the
shadow-invariant color information to guide the de-
sired color restoration of shadow regions, therefore
further solving the color-bias issue.

e Comprehensive experiments on the public ISTD, IST-
D+, and SRD datasets demonstrate that our proposed
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Figure 2. (a) A simplified visual representation of one pair of real-
world shadow images statistics process based on the Eqn. (1) and
(2). We could find that the attenuation appearances of the shadows
under different RGB color spectrums are obviously different. (b)
Statistics of shadow effects of different RGB basic color spectrum-
s on the real-world ISTD test dataset. Due to the space limitation,
here we present the statistical results of the top 30% image pairs in
order based on the Eqn. (3). To highlight the difference, the log-
arithmic transformation is performed. It is clear that the shadow
effects measurement values on the three RGB spectrums corre-
sponding to most images are obviously different. Red, Green, and
Blue are the three primary colors of color space. Hence, we argue
the degrees of shadow effects under different color spectrums are
different based on the statistical results. (Best viewed on screen.)

method achieves superior performance with very few
network parameters and computational costs, e.g., on-
ly 0.25% parameters and 6.85% the floating point op-
erations of the SOTA method [11].

2. Related work

Shadow Generation. Previous shadow generation
methods [29, 48] mainly aimed at generating shadows for
the virtual objects. Besides, some shadow removal algo-
rithms contain the shadow generation network, adopting
generative adversarial techniques. G2R [34] and DHAN [5]
synthesize a large number of pseudo shadow pairs through
the designed shadow generators for network training. In
the Mask-ShadowGAN [20, 33], the corresponding shadow
generators are trained to ensure that the generated shadows
and real shadows have a similar distribution by adversari-
al learning. Mask-ShadowGAN [20] is inspired by Cycle-
GAN [1]. Cycle consistency losses are proposed to avoid
the mode collapse issue of GANs and help minimize the
distribution divergence. However, we leverage the com-
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plementary of shadow generation and removal processes to
better obtain the de-shadowing performance and rely on the
supervised training manner to achieve shadow generation.

Shadow Removal. Pioneer approaches [9, 10, 14, 16,46,

] usually implement shadow removal using various hand-
crafted priors, e.g., image gradients, regions or user inter-
action. Finlayson et al. [9, 10] restore the shadow-free im-
ages based on the gradient consistency property. Guo et
al. [16] attempt to build relative illumination conditions a-
mong individual regions to recover shadow contents. Gong
et al. [14] employ the two rough user interactive inputs to
design the robust algorithm for shadow removal.

Recently, Deep Neural Networks (DNNs) methods have
achieved remarkable progress in the shadow removal field
based on the publicly available large-scale datasets [0, 36,

]. More precisely, DeshadowNet [36] integrates context
embedding information to predict shadow matte for shadow
removal. DSC [19] novelly designs a direction-aware spa-
tial attention module to capture global information for shad-
ow detection and removal. CANet [3] attempts to transfer
the contextual information of non-shadow regions to shad-
ow regions to achieve shadow removal. Fu et al. [1 1] formu-
late the shadow removal task as a multiple exposure images
fusion problem. Meanwhile, generative adversarial network
techniques [6,22,30,40] are applied for enhancing the real-
ity of shadow removed results or unpaired dataset training.

Previous methods [20, 34] also make use of the typical
inverse procedures of shadow removal and generation to
construct a close-loop constraint for their framework. How-
ever, instead of training two individual generators with var-
ious losses, we involve these two procedures into the same
parameter-shared network and exploit the shadow genera-
tion procedure to serve as a regular constraint and informa-
tional supervision to maximize the overall performance.

Invertible Neural Network. Due to the reversible prop-
erty, Invertible Neural Networks (INN) have drawn much
attention in many computer vision tasks. INN could im-
plement the forward and backward propagation operations
within the same framework. In other words, the forward
process learns a mapping function y = fy(z) from the
source domain z to the target domain y, while the reverse
mapping process can be written as z = f, ' (y).

Pioneering researches about normalizing flow-based IN-
N [7, 8, 25] mainly focus on the image generation tasks,
which can transform a posterior distribution to another
distribution with information lossless [31]. Because of
the powerful network representation capacity or reversible
property, INNs are also applied to many inference vision
tasks, e.g., Image Colorization [2], Image Rescaling [45],
Image Denoising [32], Video Super-Resolution [53] and
Low-Light Image Enhancement [50]. In this paper, we take
advantage of the invertible mechanism of INN to tightly
couple the inverse procedures of shadow removal and gen-

eration with consistent two-way constraints.

3. Method
3.1. Motivation

Here we illustrate the motivation behind the two core
designs of our shadow removal algorithm. The first core
design is our Bijective Mapping Network for shadow re-
moval. Currently many previous shadow removal method-
s [11,20,27,28, 34] exploit powerful DNNs to lean a non-
linear transformation function Iy = F(I, C; 6) to estimate
I, to get close to the reference I, ; based on the conditional
inputs C (i.e., shadow masks M ).

Ideally, if the forward mapping Iy = F(I, C; 0) is opti-
mal, we could obtain the input I through the corresponding
reverse mapping F~ (I, > C; 0). Shadow removal (forward)
and generation (reverse) procedures are the two sides of the
same coin. Introducing the reverse mapping process could
provide a regular constraint on the I; to improve the forward
mapping performance [|7]. In this paper, we employ such
a bijective mapping manner to push the estimated shadow-
free images I,  close to the reference. Finally, we naturally
implement such a bijective mapping learning process based
on the latest INNs [2,4, 50].

Another core design of our method is based on our ob-
servation and statistical analysis. Intuitively, shadows of-
ten bring obvious color degradation to images, which shows
that the original ratios of RGB spectrums have changed. It
is likely that shadows have different effects on different RG-
B spectrums, leading to different shadow appearances under
different colors. Moreover, we conduct the statistical anal-
ysis to verify this viewpoint. We first leverage the ratio be-
tween the pixel difference (values attenuation) between I
and I in the shadow area and the original pixel value to
measure shadow appearances, which can be written as

Ly -1
Ay = T ey
where A, indicates the attenuation degree of shadow at
point x, and we also call it the shadow effect at point x in
this paper. For the commonly used RGB color space, there
are three basic color spectrums. We respectively calculate
the shadow effects of each color spectrum (red, blue, and
green). For example, the shadow effects of Red spectrum at
point = can be expressed as

R — R
A==t 2)

Moreover, we obtain the average shadow effects of one pair
images on Red spectrum through

R/ —R®
R _
A = Mean(( =7

mean

) * M), 3)
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Figure 3. Illustration of our proposed Bijective Mapping Network (BMNet) for shadow removal. BMNet implements the two-way mapping
procedures with the help of the condition inputs in the same parameters-shared framework. The green arrow indicates the shadow removal
procedure (forward mapping), and the red arrow indicates the shadow generation procedure (reverse mapping). The reverse mapping
procedure could provide the regular constraint and informational supervision to improve the de-shadowing performance.

where Mean indicates the average operation and M indi-
cates the shadow mask, which is provided by the original
dataset. The shadow mask M is used in Eqn. 3, because we
only need to calculate the statistical values in the shadow
region. Likewise, the shadow effects on the blue and green
spectrums are calculated using Eqn. (2) and (3) as well.

We further present the average shadow effects of each
pair of images in the three basic color spectrums on the
ISTD dataset, as shown in Figure 2. In conclusion, differ-
ent color spectrums will be affected by shadows, but the
degrees of shadow effects are different under different col-
or spectrums. This conclusion motivates us to additionally
employ the color cue to guide the network to reconstruct
shadow-free images and reduce the color-bias effect.

3.2. Bijective Mapping Network

As shown in Figure 3, our proposed Bijective Mapping
Network (BMNet) is a symmetrically designed framework,
consisting of forward and backward mapping procedures
during the training process. In the forward mapping pro-
cess, BMNet receives the shadow image I, as input and
learns forward mapping from I, to I, + based on the con-
dition input. Specifically, we first obtain the shallow feature
representation 29 through the plain convolutional layer with
the kernel size of 1 x 1. Then 2 and the auxiliary condition
information C (include the shadow mask and color map) are
sent into n cascaded invertible blocks (IBs) for further fea-
tures affine transformation. Afterward, we apply another 1
x 1 convolutional layer to generate I, #- Consequently, the

detailed forward mapping operation can be expressed as:

m(} = Convsix(Ls),
o} = IBs(x,C), €5

I;; = Convsixi1(z}),

where C indicates the shadow mask and the learned
shadow-invariant color map in our paper.

Deepening into the ¢-th invertible block, the input fea-
tures x; are equally divided into two parts [z} , 27 ] along
the channel dimension and pass through the affine transfor-
mation to obtain the output x?‘l as

2yt = af, ® pi(af,,€) @ pu(af,, ©), 5)
T =2, @ pa(ait!, C) @ pa(afT,C)), (6)
,7:3“ = Concat[xﬁrl,xgl], @)

where ® and & indicate element-wise multiplication and
addition; ¢; and p; (¢ = 1,2) are the affine transforma-
tion functions and we adopt the proposed SICGM to present
them (details refer to Section 3.3).

When the reverse mapping propagation happens, the
ground truth I is reversibly transferred into its shadow-
degraded version I,. The affine transformations are natu-
rally inverted in the ¢—th invertible block, which is easy to
present as

h, = (@ pa(af !, C) 0 (2, C), (8
xh, = (@7 © pi(al,, C)) @ ¢1(a,, C), 9)

2y = Concat[z} , 2} ], (10)
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Figure 4. The first row is the shadow image pair (Is, I s) and their
corresponding color maps (C'(Is), C(Ls¢)); The second raw is the
learned color map G(Is) with the L¢oior constraint.

where S and @ indicate element-wise subtraction and divi-
sion, respectively.

3.3. Shadow-Invariant Color Guidance Module

Referring to the Retinex theory [26] and [42], we could
obtain the corresponding color map of an image I as:

I

e = Mean.(I)’

1D
where the Mean,. operation indicates the average opera-
tion of each pixel among RGB channels. We provide vi-
sual comparisons between the color maps from I, I,y and
the estimated color map from the encoder G.(-) in the Fig-
ure 4. The network architecture of G.(-) employs clas-
sical UNet [37] structure. We can find that utilizing en-
coder G.(-) could obtain a high-quality color map close
to reference. In other words, G.(-) aims at learning the
shadow-invariant color information from I;. In our pro-
posed Shadow-Invariant Color Guidance Module (SICGM),
we explicitly inject the learned invariant color information
G(I;) and shadow mask to help the network to reconstruct
shadow-free images and reduce color-bias.

As shown in Figure 5, SICGM is built on the pyramid
multi-scale architecture to improve the network capability.
At each scale, color maps and masks are used as condi-
tional inputs to integrate with features F; pass through the
designed Conditional Coupling Layer (CC-Layer). More
precisely, CC-Layer employs the Spatial Feature Transfor-
m (SFT) [41] to inject the conditional inputs with scaling
and shifting feature transformation operation. Consequent-
ly, the detailed operation at each scale can be expressed as:

(7, B) = Convsix1(Ge(Is), M),
F, = CCLayer(Fs | v,8)
=YRQF, ®B,
F, = Resblocks(Fy),

12)

where C'onvsy«1 represents the vanilla convolutional lay-
ers with the kernel size of 1 x 1; ® and @ refer to element-
wise multiplication and addition; Resblocks is derived

C;ndition inp‘ut
7 é, 8 | | _’% o -
HxWxC \ t—\ HxwxC

- ! é" I o _.%_.(@/

: 1*1 convolution
: ResBlock
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Figure 5. Illustration of our proposed Shadow-Invariant Color
Guidance Module (SICGM), which is used as affine transforma-
tion functions ¢; and p; (¢ = 1, 2) in the invertible blocks.

from the ResNet [18]. Finally, the features of different s-
cales are aggregated together as the module final outputs.

3.4. Loss function

During the training phase, we first train the color encoder
G.(+) to obtain the shadow-invariant color map through L1
distance loss by

Lcolor = ||Gc(ls) - Gc(Isf)Hl (13)

Then we train the BMNet based on the pre-trained color
encoder G.(-) outputs. We also adopt the L.1 distance as our
BMNet loss function in the bijective mapping process. The
forward mapping process loss is defined as:

Ly = Loy = Logl- (14)
Similar, the loss function of backward mapping process is :
Ly = I — L1 (15)

Therefore, the total loss of the BMNet is a weighted sum of
the aforementioned losses:

Liotar = Ly + ALy, (16)

where A indicates the weight factor.

4. Experiments

Implementation Details. Our proposed method is im-
plemented in the PyTorch platform on the PC with a single
GPU (NVIDIA GeForce GTX 3090). During our training
phase, we adopt the Adam [24] optimizer with the batch
size of 4 and the patch size of 256 x 256. For the three
benchmark datasets, the total number of iterations is set as
1.5€5. The initial learning rate of our BMNet is 0.0004 and
the learning rate is reduced by half by every 5e4 iteration.
The weight factor A of L4 is empirically set to 0.4.
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Table 1. Quantitative comparisons with the SOTA methods on the ISTD datasets. The best and the second results are boldfaced and
underlined, respectively. S, NS, and ALL indicate the shadow region, non-shadow region, and all the image, respectively.

Reci ‘ . ‘ Methods
egion ' Metrics
Guoetal. [16] ST-CGAN [40] Mask-ShadowGAN [20] DSC[19] DHAN[5] G2R[34] Fuetal[I1] Jinetal. [22] Ours
PSNR 1 27.76 33.74 - 34.64 34.65 31.63 34.71 31.69 35.61
S SSIM 1 0.964 0.981 - 0.984 0.983 0.975 0.975 0.976 0.988
RMSE | 18.65 9.99 12.67 8.72 8.26 10.72 791 11.43 7.60
PSNR 1 26.44 29.51 - 31.26 29.81 26.19 28.61 28.99 32.80
NS SSIM t 0.975 0.958 - 0.969 0.937 0.967 0.880 0.958 0.976
RMSE | 7.76 6.05 6.68 5.04 5.56 7.55 5.51 5.81 4.59
PSNR 1 23.08 27.44 - 29.00 28.15 24.72 27.19 26.38 30.28
ALL SSIM t 0.919 0.929 - 0.944 0.913 0.932 0.945 0.922 0.959
RMSE | 9.26 6.65 7.41 5.59 6.37 7.85 5.88 6.57 5.02
#Parameters (M: 10°) - 29.24 11.38 22.30 21.75 22.76 143.01 21.16 0.37
#FLOPs (G: 10%) 17.88 56.83 123.47 262.87 113.87 160.32 105.00 10.99
Table 2. Quantitative comparisons with the SOTA methods on the SRD datasets.
Region ‘ Metrics ‘ Methods
Input Images Guoetal. [16] DeshadowNet [36] DSC[19] DHAN|[5] Fuetal [I1] Jinetal [22] Ours
PSNR 1 18.96 - - 30.65 33.67 32.26 34.00 35.05
S SSIM 1 0.871 - - 0.960 0.978 0.966 0.975 0.981
RMSE | 36.69 29.89 11.78 8.62 8.94 8.55 7.70 6.61
PSNR 1 3147 - - 31.94 34.79 31.87 35.53 36.02
NS SSIM 1 0.975 - - 0.965 0.979 0.945 0.981 0.982
RMSE | 4.83 6.47 4.84 441 4.80 5.74 3.65 3.61
PSNR 1 18.19 - - 27.76 30.51 28.40 31.53 31.69
ALL SSIM 1 0.8295 - - 0.903 0.949 0.893 0.955 0.956
RMSE | 14.05 12.60 6.64 5.71 5.67 6.50 4.65 4.46

Benchmark Datasets. We conduct shadow removal ex-
periments on the three representative ISTD [40], adjust-
ed ISTD (ISTD+) [27] and SRD [36] benchmarks. ISTD
dataset is composed of 1870 images triples (shadow im-
ages, shadow-free images, and shadow mask). This dataset
has been divided into 1330 training triplets and 540 testing
triplets. ISTD+ is proposed in [27], which has decreased
the color inconsistency of the ISTD dataset through their
designed color adjustment algorithm. Hence, the number
of training and testing triplets is the same as ISTD. SRD
dataset contains 2680 training pairs and 408 testing pairs,
respectively. Because SRD does not provide the ground
truth shadow masks, we directly utilize the public SRD
shadow masks provided by DHAN [5] during the training
and testing phase.

Evaluation Metrics. Following the previous method-
s [11,22,34] to evaluate the shadow removal performance,
we employ the shadow removed results with a resolution
of 256 x 256. We have utilized the root mean square er-
ror (RMSE) between the estimated shadow-free images I, ¥
and ground truth I, ; in the LAB color space. For the RMSE
metric, the lower values indicate better results. Moreover,
we also adopt the Peak Signal-to-Noise Ratio (PSNR) and
the structural similarity (SSIM) [43] to measure the de-
shadowing performance of various methods in the RGB col-
or space. For the PSNR and SSIM metrics, higher values
represent better results.

Table 3. Quantitative comparisons with the SOTA methods on the
ISTD+ datasets. The best and the second results are boldfaced and
underlined, respectively.

Method \RMSE | ‘ Shadow Non-Shadow ALL Image
Input Images 40.2 2.6 8.5
Guo et al. [16] 22.0 3.1 6.1
ST-CGAN [40] 13.4 7.7 8.7
DeshadowNet [36] 15.9 6.0 7.6
ShadowGAN [20] 12.4 4.0 5.3
Param+M+D-Net [28] 9.7 3.0 4.0
G2R [34] 7.3 29 3.6
SP+M-Net [27] 7.9 3.1 39
Fuetal [11] 6.5 3.8 4.2
Jin et al. [22] 10.3 3.5 4.6
Ours (w detected mask) 6.1 29 35
Ours (w GT mask) 5.6 2.5 3.0

4.1. Shadow Removal Evaluation on ISTD Dataset

In Table 1, we report the comparison results with re-
cent state-of-the-art (SOTA) methods on the ISTD dataset,
including ST-CGAN [40], Mask-ShadowGAN [20], DSC
[19], DHAN [5], G2R [34], Fuetal.[11], and Jin et al. [22].
Apart from the deep learning (DL) based methods, we al-
so provide one of the traditional shadow removal methods:
Guo et al. [16]. In order to ensure the fairness of com-
parison, the results of these SOTA methods are provided
by the authors or obtained from the original paper. Obvi-
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Input GT (a) (b)
Figure 6. Visual comparison results of shadow removal on the ISTD and ISTD+ dataset. (a) to (f) are the estimated results from SOTA
methods : Guo et al. [16], SP+M-Net [27], Param+M+D-Net [28], G2R [34], Jin et al. [22], and Fu et al. [11], respectively.

ously, our method achieves the best shadow removal per-
formance among the shadow regions (S), non-shadow re-
gions (NS), and all the images (ALL). Our method is also
the method with the smallest amount of network parame-
ters and the smallest amount of computational cost among
all DL-based methods. Specifically, from the PNSR met-
ric values, our method is 1.28dB higher than DSC [19].
Our proposed method also outperforms method [ 1] by de-
creasing the RMSE value from 7.91 to 7.60, only using its
0.25% network parameters and 6.25% floating point opera-
tions (FLOPs).

In addition, we have provided the visual comparison re-
sults in the Figure 6 . Obviously, the traditional method
[16] cannot successfully eliminate shadows in these rela-
tively complex scenes, and it will also greatly affect the
non-shadow regions of the input image, e.g., the result of
the second row and third column. We can see that the re-
sults of [27,28] suffer from obvious artifacts and color-bias
effect. They fail to recover the shadowed contents proba-
bly because of their simplified linear shadow model. G2R
[34] is prone to generate the blurry results and inaccurate
colors, e.g., the sixth column estimated results. Although
method [11, 22] could remove most of the shadows, their
results still exist obvious color-bias, especially in shadow
regions. Compared to previous methods, our method could
better restore the contents and color of shadow regions and
less boundary trace.

We report the de-shadowing performance of our method
on the ISTD+ dataset in Table 3. We compare the SOTA
methods: Guo et al. [16], ST-CGAN [40], DeshadowNet
[36], ShadowGAN [20], Param+M+D-Net [28], SP+M-Net
[27], Fu et al. [11] and Jin et al. [22]. For the RSME met-
ric, our method also delivers the superior performance in
the S, NS and ALL regions among the SOTA methods, out-

(d (e) ®

performing method [11] by 13.54 % lower RMSE value.
4.2. Shadow Removal Evaluation on SRD Dataset

In the Table 1, we report the comparison results with re-
cent SOTA methods on the ISTD dataset, including Guo et
al. [16], DeshadowNet [36], DSC [19], DHAN [5], G2R
[34], Fu et al. [11], and Jin et al. [22]. Our method also
delivers the best de-shadowing performance with the low-
est RMSE and the highest PSNR values. Compared with
DHAN [5], the RMSE value of our method is reduced from
8.55 to 6.61 in the shadow region. Moreover, we also pro-
vide the visual comparisons in Figure 7.

4.3. Ablation Study

Analysis of the effects of the reverse mapping proce-
dure. In our paper, we argue the shadow generation pro-
cedure (reverse mapping) could act as a regular constraint
and provide useful supervision for the shadow removal pro-
cedure (forward mapping). We conduct experiments to ver-
ify the effects of the reverse mapping process on the IST-
D dataset. In Table 4, we provide the de-shadowing per-
formance without the reverse mapping process (equivalent
to no backward loss L;). We found that the de-shadowing
performance has dropped significantly based on the PSNR
and RMSE metric values. In addition, we present the visu-
al comparisons when canceling the reverse mapping proce-
dure in Figure 8. We can see that there still exist obvious
shadow residues and boundary traces.

Analysis of the Effects of Modules. We evaluate the
effects of each module of our proposed network on the IST-
D dataset. For the SICGM module, we change the multi-
scale design into a single-scale design. We replace the S-
FT operation with simple concatenation. For the condition
inputs, we cancel the shadow-invariant color cue to verify
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Table 4. Ablation study of the each module effects. = indicates
the replacement operation.

S | NS | ALL
PSNR1? RMSE /| | PSNRT RMSE| | PSNRT RMSE |
w/o backward loss L 35.13 7.97 31.92 4.79 29.42 5.33

Models ‘

w/o multi-scale 35.33 7.78 32.10 4.73 29.77 5.17

w/o color guidance 35.54 7.68 31.67 4.76 29.64 5.16
SSLayer (SFT = concat) | 35.22 7.89 32.11 4.96 29.68 5.16
Ours (default) 35.61 7.60 32.80 4.59 30.28 5.02

Table 5. Ablation study of the number of invertible blocks (IB).
We empirically set 4 IBs as default in our paper.

Metrics ‘ Numbers of IB

1 2 3 4 5 6 7
‘ PNSR 1 2879 2948 2995 3028 3036 3053  30.61
ALL (-149) (-0.80) (-0.33) (+0.00) (+0.08) (+025) (+0.33)
‘ RMSE | 5.63 517 504 502 493 478 471
(+0.61) (+0.15) (+0.02) (+0.00) (-0.09) (-024) (-0.31)
#Parameter (M: 10%) | 0.16  0.23 030 037 044 051 0.58

Input

Figure 7. Visual comparison results of shadow removal on the
SRD dataset. (a) and (b) are the estimated results from SOTA
methods : DSC [19] and Fu et al. [11].

Ours

i
Input GT wj/o color guidance  w/o backward loss

Figure 8. Visual illustration of effects of the color guidance and
backward loss L.

T8

A
Lt
Figure 9. Our method tolerates the inaccurate masks as input.

From left to right in the above two examples are: input, inaccu-
rate mask, and output.

the effectiveness of the color information. The PSNR and
RMSE values of each variation in Table 4 illustrate the con-
tributions of each module to the de-shadowing performance
improvement. We also provide visualization comparisons
without shadow-invariant color cues guidance. As shown
in Figure 8, there exists an obvious color-inconsistency be-
tween the shadow and surrounding non-shadow regions.

Analysis of the Numbers of Invertible Blocks. We
conduct experiments to verify the shadow removal perfor-
mance of BMNet with different numbers N of invertible
blocks (IB). We report the PSNR and RMSE results and
corresponding network parameters on the ISTD dataset in
Table 5. Increasing the number of IB will increase the num-
ber of model parameters and computational costs. When N

> 4, increasing the same amount of parameters will bring a
limited performance improvement. Hence, we empirically
set N = 4 as the default setting, considering the trade-off
between network performance and parameters.

Analysis of the Effects of the Shadow Masks. Follow-
ing the previous methods [11, 27, 28, 34], shadow masks
have been used as additional auxiliary information of the
network to provide shadow locations. With the improve-
ment of the shadow detection method [19, 51, 52], the de-
tected mask can also be used as auxiliary information to re-
duce the cost of shadow removal [28]. Hence, our method
also employs the shadow mask as default input to assist the
shadow generation procedure. Here, we further verify our
method performance when the network takes the imperfec-
t detected shadow masks from [52] as condition inputs on
the ISTD+ dataset in Table 3. Using detected masks, our
method shows a slight decrease in de-shadowing perfor-
mance. Moreover, masks of SRD dataset from DHAN [5]
contain inaccurate shadow masks, our method still could ro-
bustly remove these shadows, as shown in Figure 9.

5. Limitation

Our proposed BMNet can effectively remove shadows
in the images. However, it still has limitations. In the sec-
ond row of Figure 8, our result suffers from slight shad-
ow boundary traces. The shadow boundary pixels often are
partially shadowed (penumbra). The shadow degradation
degree of penumbra pixels exists difference compared to
shadow region pixels (umbra), which may bring inconsis-
tent traces along the boundary during the processing.

6. Conclusion

In this paper, we propose a symmetrically designed bi-
jective mapping network, which exploits the auxiliary su-
pervision of shadow generation (reverse mapping) for the
shadow removal procedure (forward mapping). More-
over, through conducting statistical analysis on real-world
datasets, we observe and verify that shadow appearances
under different color spectrums are different. We specifi-
cally develop a Shadow-Invariant Color Guidance Module,
explicitly embedding the shadow-invariant color informa-
tion to guide the network to better remove shadows and re-
duce color-bias effect. Finally, comprehensive experiments
demonstrate the superiority of our method, using the least
parameters and FLOPs to achieve the best performance.
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