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Abstract

Recently, self-attention mechanisms have shown impres-
sive performance in various NLP and CV tasks, which can
help capture sequential characteristics and derive global
information. In this work, we explore how to extend self-
attention modules to better learn subtle feature embed-
dings for recognizing fine-grained objects, e.g., different
bird species or person identities. To this end, we propose
a dual cross-attention learning (DCAL) algorithm to co-
ordinate with self-attention learning. First, we propose
global-local cross-attention (GLCA) to enhance the inter-
actions between global images and local high-response re-
gions, which can help reinforce the spatial-wise discrim-
inative clues for recognition. Second, we propose pair-
wise cross-attention (PWCA) to establish the interactions
between image pairs. PWCA can regularize the attention
learning of an image by treating another image as dis-
tractor and will be removed during inference. We observe
that DCAL can reduce misleading attentions and diffuse the
attention response to discover more complementary parts
for recognition. We conduct extensive evaluations on fine-
grained visual categorization and object re-identification.
Experiments demonstrate that DCAL performs on par with
state-of-the-art methods and consistently improves multiple
self-attention baselines, e.g., surpassing DeiT-Tiny and ViT-
Base by 2.8% and 2.4% mAP on MSMT17, respectively.

1. Introduction
Self-attention is an attention mechanism that can relate

different positions of a single sequence and draw global
dependencies. It is originally applied in natural language
processing (NLP) tasks [10, 46] and exhibits the outstand-
ing performance. Recently, Transformer with self-attention
learning has also been explored for various vision tasks
(e.g., image classification [5, 12, 19, 37, 45, 51] and object
detection [2, 68]) as an alternative of convolutional neu-

*Equal contribution.

ral network (CNN). For general image classification, self-
attention has been proved to work well for recognizing 2D
images by viewing image patches as words and flattening
them as sequences [12, 45].

In this work, we investigate how to extend self-attention
modules to better learn subtle feature embeddings for rec-
ognizing fine-grained objects, e.g., different bird species or
person identities. Fine-grained recognition is more chal-
lenging than general image classification owing to the sub-
tle visual variations among different sub-classes. Most of
existing approaches build upon CNN to predict class prob-
abilities or measure feature distances. To address the subtle
appearance variations, local characteristics are often cap-
tured by learning spatial attention [15, 34, 40, 60] or explic-
itly localizing semantic objects / parts [11, 56, 58, 61]. We
adopt a different way to incorporate local information based
on vision Transformer. To this end, we propose global-local
cross-attention (GLCA) to enhance the interactions between
global images and local high-response regions. Specifically,
we compute the cross-attention between a selected subset
of query vectors and the entire set of key-value vectors. By
coordinating with self-attention learning, GLCA can help
reinforce the spatial-wise discriminative clues to recognize
fine-grained objects.

Apart from incorporating local information, another so-
lution to distinguish the sutble visual differences is pair-
wise learning. The intuition is that one can identify the
subtle variations by comparing image pairs. Exiting CNN-
based methods design dedicated network architectures to
enable pair-wise feature interaction [16, 69]. A contrastive
loss [16] or score ranking loss [69] is used for feature learn-
ing. Motivated by this, we also employ a pair-wise learning
scheme to establish the interactions between image pairs.
Different from optimizing the feature distance, we propose
pair-wise cross-attention (PWCA) to regularize the atten-
tion learning of an image by treating another image as dis-
tractor. Specifically, we compute the cross-attention be-
tween query of an image and combined key-value from both
images. By introducing confusion in key and value vectors,
the attention scores are diffused to another image so that
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the difficulty of the attention learning of the current image
increases. Such regularization allows the network to dis-
cover more discriminative regions and alleviate overfitting
to sample-specific features. It is noted that PWCA is only
used for training and thus does not introduce extra compu-
tation cost during inference.

The proposed two types of cross-attention are easy-to-
implement and compatible with self-attention learning. We
conduct extensive evaluations on both fine-grained visual
categorization (FGVC) and object re-identification (Re-ID).
Experiments demonstrate that DCAL performs on par with
state-of-the-art methods and consistently improves multiple
self-attention baselines. Particularly, for FGVC, DCAL im-
proves DeiT-Tiny by 2.5% and reaches 92.0% top-1 accu-
racy with the larger R50-ViT-Base backbone on CUB-200-
2011. For Re-ID, DCAL improves DeiT-Tiny and ViT-Base
by 2.8% and 2.4% mAP on MSMT17, respectively.

Our main contributions can be summarized as follows.
(1) We propose global-local cross-attention to enhance the
interactions between global images and local high-response
regions for reinforcing the spatial-wise discriminative clues.
(2) We propose pair-wise cross-attention to establish the in-
teractions between image pairs by regularizing the attention
learning. (3) The proposed dual cross-attention learning can
complement the self-attention learning and achieves consis-
tent performance improvements over multiple vision Trans-
former baselines on various FGVC and Re-ID benchmarks.

2. Related Work

2.1. Self-Attention Mechanism

The self-attention mechanism is originally proposed to
relate distinct positions in a sequence and draw global
dependencies. Transformer carrying forward this mecha-
nism has dominated in various sequence-to-sequence NLP
tasks [10, 46]. Transformer usually consists of multiple en-
coder and decoder modules. Each encoder / decoder in-
cludes a multi-head self-attention (MSA) layer and a feed-
forward network (FFN) layer. A decoder also has an ex-
tra MSA layer to handle the output of encoder. Besides,
layer normalization (LN) and residual connection are used
in each MSA or FFN layer. Recent work has applied Trans-
formers to various vision tasks (e.g., image classification
[5,12,19,37,45,51], object detection [2,41,44,68], seman-
tic segmentation [23, 39, 50, 51, 63] and low-level tasks [4])
and shown competitive performance compared to the state-
of-the-art CNNs. For general image classification, iGPT [5]
first uses auto-regressive and BERT [10] objectives for self-
supervised pre-training and then fine-tunes for classifica-
tion tasks. ViT [12] reshapes an image into a sequence
of flattened fixed-size patches for training Transformer en-
coders only. Attempts have also been made to improve ViT
by knowledge distillation [45] and progressive tokeniza-

tion [57]. Fine-grained recognition is more challenging than
general image classification owing to the sutble visual vari-
ations among different sub-classes. In this work, we extend
self-attention to better recognize fine-grained objects with
two types of cross-attention modules.

2.2. Fine-Grained Visual Categorization

Fine-grained visual categorization (FGVC) is a special
case of image classification, which aims to identify those
highly-confused categories with fine differences. Prior
CNN-based methods address this task by mining effective
information from multi-level features [13, 34, 58], adopt-
ing multi-granularity training strategies [13], locating dis-
criminative objects or parts [11, 61] and exploring feature
interaction in pair-wise learning [16, 69]. Recently, a few
Transformer-based methods address FGVC by feature fu-
sion on multi-level Transformer layers [52] and part selec-
tion [17]. Our motivation is similar with [17, 52] in the
aspects of aggregating multi-level attention and selecting
patch tokens. However, they are based on self-attention
only while we design two cross-attention modules for learn-
ing.

2.3. Object Re-Identification

Similar to FGVC, object re-identification also aims to
distinguish different person / vehicle identities with sub-
tle inter-class differences. Mainstream Re-ID methods are
based on the CNN structure and metric learning [30, 32].
Local information is crucial for Re-ID and many different
approaches have been presented by encoding discrimina-
tive part-level features [31, 42, 49]. Transformer with self-
attention structure has recently been applied to Re-ID by in-
troducing part tokens [67], shuffling patch embeddings [17],
and learning disentangled features [24]. Our work differs
from the most related methods [17, 67] in the following
aspects. First, we adopt a different way to encode the lo-
cal information by GLCA, while [17] does not explicitly
mine part regions and [67] computes the attention between
a part token and its associated subset of patch embeddings
by online clustering. Second, [17, 67] uses a single im-
age for training while we employ image pairs for PWCA.
Third, [17] requires side information (e.g., camera IDs and
viewpoint labels) while our method only takes images as
input.

3. Proposed Approach
3.1. Revisit Self-Attention

[46] originally proposes the self-attention mechanism to
address NLP tasks by calculating the correlation between
each word and all the other words in the sentence. [12] in-
herits the idea by taking each patch in the image / feature
map as a word for general image classification. In gen-
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(a) Global-Local Cross-Attention (GLCA) (b) Pair-Wise Cross-Attention (PWCA)

Figure 1. Overview of the proposed two types of cross-attention mechanisms. We stack L self-attention, M global-local cross-attention,
T pair-wise cross-attention modules in our network. See Section 3 for details.

eral, a self-attention function can be depicted as mapping a
query vector and a set of key and value vectors to an output.
The output is computed as a weighted sum of value vec-
tors, where the weight assigned to each value is computed
by a scaled inner product of the query with the correspond-
ing key. Specifically, a query q ∈ R1×d is first matched
against N key vectors (K = [k1; k2; · · · ; kN ], where each
ki ∈ R1×d) using inner product. The products are then
scaled and normalized by a softmax function to obtain N
attention weights. The final output is the weighted sum
of N value vectors (V = [v1; v2; · · · ; vN ], where each
vi ∈ R1×d). By packing N query vector into a matrix
Q = [q1; q2; · · · ; qN ], the output matrix of self-attention
(SA) can be represented as:

fSA(Q,K, V ) = softmax(
QKT

√
d

)V = SV (1)

where 1√
d

is a scaling factor. Query, key and value matrices
are computed from the same input embedding X ∈ RN×D

with different linear transformations: Q = XWQ, K =
XWK , V = XWV , respectively. S ∈ RN×N denotes the
attention weight matrix.

To jointly attend to information from different repre-
sentation subspaces at different positions, multi-head self-
attention (MSA) is defined by considering multiple atten-
tion heads. The process of MSA can be computed as lin-
ear transformation on the concatenations of self-attention
blocks with subembeddings. To encode positional infor-
mation, fixed / learnable position embeddings are added to
patch embeddings and then fed to the network. To pre-
dict the class, an extra class embedding ˆCLS ∈ R1×d is
prepended to the input embedding X throughout the net-
work, and finally projected with a linear classifer layer for
prediction. Thus, the input embeddings as well as query,
key and value matrices become (N + 1) × d and the self-

attention function (Eq. 1) allows to spread information be-
tween patch and class embeddings.

Based on self-attention, a Transformer encoder block can
be constructed by an MSA layer and a feed forward net-
work (FFN). FFN consists of two linear transformation with
a GELU activation. Layer normalization (LN) is put prior
to each MSA and FFN layer and residual connections are
used for both layers.

3.2. Global-Local Cross-Attention

Self-attention treats each query equally to compute
global attention scores according to Eq. 1. In other words,
each local position of image is interacted with all the po-
sitions in the same manner. For recognizing fine-grained
objects, we expect to mine discriminative local information
to facilitate the learning of subtle features. To this end, we
propose global-local cross-attention to emphasize the inter-
action between global images and local high-response re-
gions. First, we follow attention rollout [1] to calculate the
accumulated attention scores for i-th block:

Ŝi = S̄i ⊗ S̄i−1 · · · ⊗ S̄1 (2)

where S̄ = 0.5S +0.5E means the re-normalized attention
weights using an identity matrix E to consider residual con-
nections, ⊗ means the matrix multiplication operation. In
this way, we track down the information propagated from
the input layer to a higher layer. Then, we use the aggre-
gated attention map to mine the high-response regions. Ac-
cording to Eq. 2, the first row of Ŝi = [ŝi,j ](N+1)×(N+1)

means the accumulated weights of class embedding ˆCLS.
We select top R query vectors from Qi that correspond
to the top R highest responses in the accumulated weights
of ˆCLS to construct a new query matrix Ql, representing
the most attentive local embeddings. Finally, we compute
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the cross attention between the selected local query and the
global set of key-value pairs as below.

fGLCA(Ql,Kg, V g) = softmax(
QlKgT

√
d

)V g (3)

In self-attention (Eq. 1), all the query vectors will be
interacted with the key-value vectors. In our GLCA (Eq.
3), only a subset of query vectors will be interacted with
the key-value vectors. We observe that GLCA can help
reinforce the spatial-wise discriminative clues to promote
recognition of fine-grained classes. Another possible choice
is to compute the self-attention between local query Ql and
local key-value vectors (Kl, V l). However, through es-
tablishing the interaction between local query and global
key-value vectors, we can relate the high-response regions
with not only themselves but also with other context out-
side of them. Figure 1 (a) illustrates the proposed global-
local cross-attention and we use M = 1 GLCA block in
our method.

3.3. Pair-Wise Cross-Attention

The scale of fine-grained recognition datasets is usually
not as large as that of general image classification, e.g., Im-
ageNet [9] contains over 1 million images of 1,000 classes
while CUB [47] contains only 5,994 images of 200 classes
for training. Moreover, smaller visual differences between
classes exist in FGVC and Re-ID compared to large-scale
classification tasks. Fewer samples per class may lead to
network overfitting to sample-specific features for distin-
guishing visually confusing classes in order to minimize the
training error.

To alleviate the problem, we propose pair-wise cross at-
tention to establish the interactions between image pairs.
PWCA can be viewed as a novel regularization method to
regularize the attention learning. Specifically, we randomly
sample two images (I1, I2) from the same training set to
construct the pair. The query, key and value vectors are sep-
arately computed for both images of a pair. For training I1,
we concatenate the key and value matrices of both images,
and then compute the attention between the query of the
target image and the combined key-value pairs as follows:

fPWCA(Q1,Kc, Vc) = softmax(
Q1K

T
c√

d
)Vc (4)

where Kc = [K1;K2] ∈ R(2N+2)×d and Vc = [V1;V2] ∈
R(2N+2)×d. For a specific query from I1, we compute N+1
self-attention scores within itself and N + 1 cross-attention
scores with I2 according to Eq. 4. All the 2N + 2 atten-
tion scores are normalized by the softmax function together
and thereby contaminated attention scores for the target im-
age I1 are learned. Optimizing this noisy attention out-
put increases the difficulty of network training and reduces

the overfitting to sample-specific features. Figure 1 (b) il-
lustrates the proposed pair-wise cross-attention and we use
T = 12 PWCA blocks in our method. Note that PWCA
is only used for training and will be removed for inference
without consuming extra computation cost.

4. Experiments

4.1. Experimental Setting

Datasets. We conduct extensive experiments on two
fine-grained recognition tasks: fine-grained visual catego-
rization (FGVC) and object re-identification (Re-ID). For
FGVC, we use three standard benchmarks for evaluations:
CUB-200-2011 [47], Stanford Cars [27], FGVC-Aircraft
[35]. For Re-ID, we use four standard benchmarks: Mar-
ket1501 [62], DukeMTMC-ReID [54], MSMT17 [53] for
Person Re-ID and VeRi-776 [64] for Vehicle Re-ID. In all
experiments, we use the official train and validation splits
for evaluation.

Baselines. We use DeiT and ViT as our self-attention
baselines. In detail, ViT backbones are pre-trained on
ImageNet-21k [9] and DeiT backbones are pre-trained on
ImageNet-1k [9]. We use multiple architectures of DeiT-
T/16, DeiT-S/16, DeiT-B/16, ViT-B/16, R50-ViT-B/16 with
L = 12 SA blocks for evaluation.

Implementation Details. We coordinate the proposed
two types of cross-attention with self-attention in the form
of multi-task learning. We build L = 12 SA blocks, M = 1
GLCA blocks and T = 12 PWCA blocks as the overall ar-
chitecture for training. The PWCA branch shares weights
with the SA branch while GLCA does not share weights
with SA. We follow [59] to adopt dynamic loss weights
for collaborative optimization, avoiding exhausting manual
hyper-parameter search. The PWCA branch has the same
GT target as the SA branch since we treat another image as
distractor.

For FGVC, we resize the original image into 550×550
and randomly crop to 448×448 for training. The sequence
length of input embeddings for self-attention baseline is
28 × 28 = 784. We select input embeddings with top
R = 10% highest attention responses as local queries. We
apply stochastic depth [21] and use Adam optimizer with
weight decay of 0.05 for training. The learning rate is ini-
tialized as lrscaled = 5e−4

512 × batchsize and decayed with
a cosine policy. We train the network for 100 epochs with
batch size of 16 using the standard cross-entropy loss.

For Re-ID, we resize the image into 256×128 for pedes-
trian datasets, and 256×256 for vehicle datasets. We select
input embeddings with top R = 30% highest attention re-
sponses as local queries. We use SGD optimizer with a mo-
mentum of 0.9 and a weight decay of 1e-4. The batch size
is set to 64 with 4 images per ID. The learning rate is initial-
ized as 0.008 and decayed with a cosine policy. We train the

4695



Method Backbone Accuracy (%)
CUB CAR AIR

RA-CNN [15] VGG19 85.3 92.5 88.4
MA-CNN [60] VGG19 86.5 92.8 89.9
MAMC [40] ResNet101 86.5 93.0 -
PC [14] DenseNet161 86.9 92.9 89.2
FDL [29] DenseNet161 89.1 94.0 -
NTS-Net [56] ResNet50 87.5 93.9 91.4
Cross-X [34] ResNet50 87.7 94.6 -
S3N [11] ResNet50 88.5 94.7 92.8
MGE-CNN [58] ResNet50 88.5 93.9 -
DCL [8] ResNet50 87.8 94.5 93.0
TASN [61] Resnet50 87.9 93.8 -
PMG [13] ResNet50 89.6 95.1 93.4
CIN [16] ResNet50 88.1 94.5 92.8
API-Net [69] DenseNet161 90.0 95.3 93.9
LIO [65] ResNet50 88.0 94.5 92.7
SPS [22] ResNet50 88.7 94.9 92.7
CAL [38] ResNet101 90.6 95.5 94.2

TransFG [17] ViT-Base 91.7 94.8 -
RAMS-Trans [20] ViT-Base 91.3 - -
FFVT [52] ViT-Base 91.6 - -

Baseline DeiT-Tiny 82.1 87.2 84.7
Baseline + DCAL DeiT-Tiny 84.6 89.4 87.4
Baseline DeiT-Small 85.8 90.7 88.1
Baseline + DCAL DeiT-Small 87.6 92.3 90.0
Baseline DeiT-Base 88.0 92.9 90.3
Baseline + DCAL DeiT-Base 88.8 93.8 92.6
Baseline ViT-Base 90.8 92.5 90.0
Baseline + DCAL ViT-Base 91.4 93.4 91.5
Baseline R50-ViT-Base 91.3 94.0 92.4
Baseline + DCAL R50-ViT-Base 92.0 95.3 93.3

Table 1. Performance comparisons in terms of top-1 accuracy on
three standard FGVC benchmarks: CUB-200-2011, Stanford Cars
and FGVC-Aircraft.

network for 120 epochs using the cross-entropy and triplet
losses.

All of our experiments are conducted on PyTorch with
Nvidia Tesla V100 GPUs. Our method costs 3.8 hours with
DeiT-Tiny backbone for training using 4 GPUs on CUB,
and 9.5 hours with ViT-Base for training using 1 GPU on
MSMT17. During inference, we remove all the PWCA
modules and only use the SA and GLCA modules. We add
class probabilities output by classifiers of SA and GLCA
for prediction for FGVC, and concat two final class tokens
of SA and GLCA for prediction for Re-ID. A single image
with the same input size as training is used for test.

4.2. Results on Fine-Grained Visual Categorization

We evaluate our method on three standard FGVC bench-
marks and compare with the state-of-the-art approaches in
Table 1. Our method achieves competitive performance
compared to the prior CNN-based and Transformer-based

methods. Particularly, with the R50-ViT-Base backbone,
DCAL reaches 92.0%, 95.3% and 93.3% top-1 accuracy on
CUB-200-2011, Stanford Cars and FGVC-Aircraft bench-
marks, respectively. Table 1 also shows our method can
consistently improve different vision Transformer baselines
on all the three benchmarks, e.g., surpassing the pure Trans-
former (DeiT-Tiny) by 2.2% and the hybrid structure of
CNN and Transformer (R50-ViT-Base) by 1.3% on Stan-
ford Cars. The results validate the compatibility of our
method to different Transformer architectures.

Comparisons to Transformer-based Methods. Our
method performs on par with the recent Transformer vari-
ants on FGVC: TransFG [17], RAMS-Trans [20], FFVT
[52]. These existing methods also select tokens based on
aggregated attention responses. Differently, they continue
to model the selected tokens by self-attention while we per-
form cross-attention between local query and global key-
value vectors. Compared to self-attention in selected to-
kens, we can relate the high-response regions with not only
themselves but also with other context outside of them.
Besides, TransFG [17] uses overlapping patches and will
largely increase training time and computation overhead,
while we adopt the standard non-overlapping patch split
method.

Comparisons to CNN-based Methods. (1) Existing
region-based methods can be divided to two categories. Ex-
plicit localization methods (e.g, RACNN [15], MA-CNN
[60], NTS-Net [56], MGE-CNN [58]) utilize attention /
localization sub-network with ranking losses to mine ob-
ject regions. Implicit localization methods (e.g., S3N [11],
TASN [61]) use class activation map and Gaussian sampling
to amplify object regions in the original image. Our GLCA
adopts a different scheme to incorporate the local informa-
tion with higher performance, e.g., +3.5% over MGE-CNN
on CUB. (2) Pair-wise learning is also applied for FGVC by
interacting features (CIN [16], API-Net [69]) or introducing
confusion (PC [14], SPS [22]) between image pairs during
training. Our motivation of PWCA is similar to [14,22] but
we implement a different regularization method to alleviate
overfitting. Our method surpasses these related pair-wise
learning methods, e.g., +3.9% over CIN and +5.1% over
PC on CUB.

4.3. Results on Object Re-ID

We evaluate our method on four standard Re-ID bench-
marks in Table 2 and achieve competitive performance com-
pared to the state-of-the-art methods on both Person Re-ID
and Vehicle Re-ID tasks. Particularly, with the ViT-Base
backbone, DCAL reaches 80.2%, 64.0%, 87.5%, 80.1%
mAP on VeRi-776, MSMT17, Market1501, DukeMTMC,
respectively. Similar to FGVC, our method can consis-
tently improve different vision Transformer baselines, e.g.,
surpassing the light-weight Transformer (DeiT-Tiny) by
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Method VeRi-776 MSMT17 Market1501 DukeMTMC
mAP (%) R1 (%) mAP (%) R1 (%) mAP (%) R1 (%) mAP (%) R1 (%)

SPReID [26] - - - - 83.4 93.7 73.3 86.0
PCB [43] - - - - 81.6 93.8 69.2 83.3
MGN [49] - - 52.1 76.9 86.9 95.7 78.4 88.7
SAN [25] 72.5 93.3 55.7 79.2 88.0 96.1 75.7 87.9
ABDNet [6] - - 60.8 82.3 88.3 95.6 78.6 89.0
HOReID [48] - - - - 84.9 94.2 75.6 86.9
ISP [66] - - - - 88.6 95.3 80.0 89.6
STNReID [33] - - - - 84.9 93.8 - -
CDNet [28] - - 54.7 78.9 86.0 95.1 76.8 88.6
FIDI [55] 77.6 95.7 - - 86.8 94.5 77.5 88.1
SPAN [7] 68.9 94.0 - - - - - -
PVEN [36] 79.5 95.6 - - - - - -
CAL (ResNet50) [38] 74.3 95.4 56.2 79.5 87.0 94.5 76.4 87.2

DRL-Net [24] - - 55.3 78.4 86.9 94.7 76.6 88.1
AAformer [67] - - 63.2 83.6 87.7 95.4 80.0 90.1
TransReID* (ViT-Base) [18] 79.2 96.9 63.6 82.5 - - - -

DeiT-Tiny 71.3 94.3 42.1 63.9 77.9 90.3 69.5 82.9
DeiT-Tiny + DCAL (Ours) 74.1 94.7 44.9 68.2 79.8 91.8 71.7 84.9
DeiT-Small 76.7 95.5 53.3 75.0 84.3 93.7 75.7 87.6
DeiT-Small + DCAL (Ours) 78.1 95.9 55.1 77.3 85.3 94.0 77.4 87.9
DeiT-Base 78.3 95.9 60.5 81.6 86.6 94.4 79.1 88.7
DeiT-Base + DCAL (Ours) 80.0 96.5 62.3 83.1 87.2 94.5 80.2 89.6
ViT-Base 78.1 96.0 61.6 81.4 87.1 94.3 78.9 89.4
ViT-Base + DCAL (Ours) 80.2 96.9 64.0 83.1 87.5 94.7 80.1 89.0

Table 2. Performance comparisons on four Re-ID benchmarks: VeRi-776, MSMT17, Market1501, DukeMTMC. The input size is 256×128
for pedestrian datasets and 256×256 for vehicle datasets. * means results without side information for fair comparison.

2.8% and the larger Transformer (ViT-Base) by 2.4% on
MSMT17.

Comparisons to Transformer-based Methods. Our
method performs on par with the recent Transformer vari-
ants on Re-ID: DRL-Net [24], AAformer [67], TransReID
[18]. DRL-Net [24] imposes decorrelation constraints on
Transformer decoder to disentangle ID relevant and irrel-
evant features, while we only employ Transformer encoder
and extend self-attention to cross-attention. Both of existing
methods (TransReID [18], AAformer [67]) and our meth-
ods incorporate local information for recognition but adopt
different manners. TransReID [18] designs a jigsaw patch
module to shuffle the patch embeddings for learning robust
features. AAformer [67] computes the attention between
a part token and its associated subset of patch embeddings
by online clustering. Differently, we proposes global-local
cross-attention to enhance the interactions between global
images and local regions.

Comparisons to CNN-based Methods. (1) Many prior
approaches have been presented to encode discriminative
part-level features for recognition. Typical part-based ReID
methods include SPReID [26] and PCB [43]. SPReID [26]
utilizes a parsing model to generate human part masks to

compute reliable part representations, which consumes ex-
tra computation overhead in segmentation part. PCB [43]
utilizes a refined part pooling to retrieve the body part in-
formation. Our method does not aim to mine precise ob-
ject parts but establish the interactions between global im-
ages and high-response local regions. (2) Image pairs or
triplets are widely used in Re-ID for metric learning. Re-
cent Re-ID methods also introduce pair-wise spatial trans-
former to match the holistic and partial image pairs [33]
or design pair-wise loss to learn fine-grained features for
recognition [55]. Our pair-wise cross-attention is a new
practice in Re-ID in contrast to previous work.

4.4. Ablation Study

Contributions from Algorithmic Components. We
examine the contributions from the two types of cross-
attention modules using different vision Transformer base-
lines in Table 3. We use DeiT-Tiny for FGVC and ViT-Base
for Re-ID. With either GLCA or PWCA alone, our method
can obtain higher performance than the baselines. With
both cross-attention modules, we can further improve the
results. We note that PWCA will be removed for inference
so that it does not introduce extra parameters or FLOPs. We
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Method CUB-200-2011 VeRi-776 MSMT17
Params FLOPs Acc Params FLOPs mAP R1 Params FLOPs mAP R1

Baseline 5.5M 8.6G 82.1 81.6M 41.1G 78.1 96.0 81.6M 20.5G 61.6 81.4
+ GLCA 6.0M 8.8G 83.1 88.4M 42.4G 79.5 96.5 88.4M 21.3G 63.7 83.0
+ PWCA 5.5M 8.6G 83.1 81.6M 41.1G 79.2 96.5 81.6M 20.5G 62.8 82.3
Ours 6.0M 8.8G 84.6 88.4M 42.4G 80.2 96.9 88.4M 21.3G 64.0 83.1

Table 3. Effect of the proposed two types of cross-attention learning on CUB-200-2011, VeRi-776 and MSMT17. We use DeiT-Tiny for
CUB, ViT-Base for VeRi-776 and MSMT17 as baselines in this ablation experiment.

Method CUB MSMT17
Acc mAP

Baseline 82.1 61.6
+ PWCA 83.1 62.8
+ Adding noise in I1 77.3 56.0
+ Adding noise in label of I1 81.6 60.8
+ I2 from noise 82.1 62.1
+ I2 from COCO 82.5 62.2
+ I2 from intra-class only 81.7 62.2
+ I2 from inter-class only 83.0 62.7
+ I2 from intra- & inter-class (1:1) 83.0 62.5

Table 4. Comparisons of different regularization methods. DeiT-
Tiny is used for CUB and ViT-Base is used for MSMT17.

uses one GLCA module in our method, which only requires
a small increase of parameters or FLOPs compared to the
baseline.

Ablation Study on GLCA. (1) Cross-ViT [3] is a most
recent method based on cross-attention for general image
classification. It constructs two Transformer branches to
handle image tokens of different sizes and uses the class
token from one branch to interact with patch tokens from
another branch. We implement this idea using the same
selected local queries and the same DeiT-Tiny backbone.
The cross-token strategy obtains 82.1% accuracy on CUB,
which is worse than our GLCA by 1%. (2) Another possible
baseline to incorporate local information is computing the
self-attention for the high-response local regions (i.e., local
query, key and value vectors). This local self-attention base-
line obtains 82.6% accuracy on CUB using the DeiT-Tiny
backbone, which is also worse than our GLCA (83.1%). (3)
We conduct more ablation experiments to examine the ef-
fect of GLCA. We obtain 82.6% accuracy on CUB by se-
lecting local query randomly and obtain 82.8% by select-
ing local query based on the penultimate layer only. Our
GLCA outperforms both baselines, validating that mining
high-response local query with aggregated attention map is
effective for our cross-attention learning.

Ablation Study on PWCA. We compare PWCA with

different regularization strategies in Table 4 by taking I1 as
the target image. The results show that adding image noise
or label noise without cross-attention causes degraded per-
formance compared to the self-attention learning baseline.
As the extra image I2 used in PWCA can be viewed as dis-
tractor, we also test replacing the key and value embeddings
of I2 with Gaussian noise. Such method performs better
than adding image / label noise, but still worse than our
method. Moreover, sampling I2 from a different dataset
(i.e., COCO), sampling intra-class / inter-class pair only,
or sampling intra-class & inter-class pairs with equal prob-
ability performs worse than PWCA. We assume that the
randomly sampled image pairs from the same dataset (i.e.,
natural distribution of the dataset) can regularize our cross-
attention learning well.

Amount of Cross-Attention Blocks. Figure 2 presents
the ablation experiments on the amount of our cross-
attention blocks using DeiT-Tiny for CUB and ViT-Base
for MSMT17. For GLCA, the results show that M = 1
performs best. We analyze that the deeper Transformer
encoder can produce more accurate accumulated attention
scores as the attention flow is propagated from the input
layer to higher layer. Moreover, using one GLCA block
only introduces small extra Parameters and FLOPs for in-
ference. For PWCA, the results show that T = 12 performs
best. It implies that adding I2 throughout all the encoders
can sufficiently regularize the network as our self-attention
baseline has L = 12 blocks in total. Note that PWCA is
only used for training and will be removed for inference
without consuming extra computation cost.

4.5. Qualitative Analysis

Figure 3 (a) and Figure 4 (a) visualize the generated
attention map using [1] and the selected high-response
patches. We observe that self-attention tend to highlight the
most discriminative regions in the image. Thanks to GLCA,
our method can reduce misleading attention and encourage
the network to discover more discriminative clues for recog-
nition.

Figure 3 (b) and Figure 4 (b) visualize the generated
attention map using [1] for self-attention and PWCA. We
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Figure 2. Effect on the amount of cross-attention blocks. DeiT-
Tiny is used for CUB and ViT-base ise used for MSMT17. For
all the backbones and all the datasets, we build the same M = 1
GLCA block and same T = 12 PWCA blocks in our method.

(a) SA vs. GLCA

(b) SA vs. PWCA

Figure 3. Visualization of the generated attention map for self-
attention learning and our cross-attention learning on CUB.

observe that PWCA can diffuse the attention responses to
explore more complementary parts of objects compared to
self-attention. We also visualize the attention map on the
distractor image and the blue gauze on it indicates that little
attention is derived. It is accordance with our expectation
that the attention weights will dominate on the target im-
age as we compute the cross-attention between the query of
target image and the combined key-value vectors (Eq. 4).

(a) SA vs. GLCA (b) SA vs. PWCA

Figure 4. Visualization of the generated attention map for self-
attention learning and our cross-attention learning on MSMT17.

4.6. Limitations

Compared to the self-attention learning baseline, our
method may take longer time for network convergence as
we perform joint training of self-attention and the proposed
two types of cross-attention. For example, the self-attention
baseline costs 2.1 hours while our method costs 3.8 hours
for training on CUB with the same DeiT-backbone and
same epochs of 100. However, it is noted that fine-grained
recognition datasets are much smaller than the large-scale
image classification benchmark and thereby our training
time in practice is still acceptable.

Another limitation is that GLCA will increase small
computation cost compared to the self-attention baseline.
For example, Table 3 shows that GLCA increases 9%
Params and 2% FLOPs for DeiT-Tiny on CUB and in-
creases 8% Params and 3% FLOPs for ViT-Base on VeRi-
776. We also test removing both GLCA and PWCA blocks
for maintaining the same computation cost with the self-
attention baseline, and the performance slightly drops, e.g,
84.3% vs. 84.6% (Ours) accuracy on CUB and 80.1% vs.
80.2% (Ours) mAP on VeRi-776.

5. Conclusion
In this work, we introduce two types of cross-attention

mechanisms to better learn subtle feature embeddings for
recognizing fine-grained objects. GLCA can help reinforce
the spatial-wise discriminative clues by modeling the inter-
actions between global images and local regions. PWCA
can establish the interactions between image pairs and can
be viewed as a regularization strategy to alleviate over-
fitting. Our cross-attention design is easy-to-implement
and compatible to different vision Transformer baselines.
Extensive experiments on seven benchmarks have demon-
strated the effectiveness of our method on FGVC and Re-ID
tasks. We expect that our method can inspire new insights
for the self-attention learning regime in Transformer.

4699



References
[1] Samira Abnar and Willem Zuidema. Quantifying atten-

tion flow in transformers. arXiv preprint arXiv:2005.00928,
2020. 3, 7

[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020. 1,
2

[3] Chun-Fu Chen, Quanfu Fan, and Rameswar Panda. Crossvit:
Cross-attention multi-scale vision transformer for image
classification. arXiv preprint arXiv:2103.14899, 2021. 7

[4] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yip-
ing Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu,
and Wen Gao. Pre-trained image processing transformer. In
CVPR, 2021. 2

[5] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In ICML, 2020. 1, 2

[6] Tianlong Chen, Shaojin Ding, Jingyi Xie, Ye Yuan, Wuyang
Chen, Yang Yang, Zhou Ren, and Zhangyang Wang. Abd-
net: Attentive but diverse person re-identification. In ICCV,
pages 8351–8361, 2019. 6

[7] Tsai-Shien Chen, Chih-Ting Liu, Chih-Wei Wu, and Shao-
Yi Chien. Orientation-aware vehicle re-identification with
semantics-guided part attention network. In ECCV, pages
330–346. Springer, 2020. 6

[8] Yue Chen, Yalong Bai, Wei Zhang, and Tao Mei. Destruction
and construction learning for fine-grained image recognition.
In CVPR, 2019. 5

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 4

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1, 2

[11] Yao Ding, Yanzhao Zhou, Yi Zhu, Qixiang Ye, and Jianbin
Jiao. Selective sparse sampling for fine-grained image recog-
nition. In ICCV, 2019. 1, 2, 5

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1, 2

[13] Ruoyi Du, Dongliang Chang, Ayan Kumar Bhunia, Jiyang
Xie, Zhanyu Ma, Yi-Zhe Song, and Jun Guo. Fine-grained
visual classification via progressive multi-granularity train-
ing of jigsaw patches. In ECCV, 2020. 2, 5

[14] Abhimanyu Dubey, Otkrist Gupta, Pei Guo, Ramesh Raskar,
Ryan Farrell, and Nikhil Naik. Pairwise confusion for fine-
grained visual classification. In ECCV, 2018. 5

[15] Jianlong Fu, Heliang Zheng, and Tao Mei. Look closer to
see better: Recurrent attention convolutional neural network
for fine-grained image recognition. In CVPR, 2017. 1, 5

[16] Yu Gao, Xintong Han, Xun Wang, Weilin Huang, and
Matthew Scott. Channel interaction networks for fine-
grained image categorization. In AAAI, 2020. 1, 2, 5

[17] Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski,
Cheng Yang, Yutong Bai, Changhu Wang, and Alan Yuille.
Transfg: A transformer architecture for fine-grained recog-
nition. arXiv preprint arXiv:2103.07976, 2021. 2, 5

[18] Shuting He, Hao Luo, Pichao Wang, Fan Wang, Hao Li,
and Wei Jiang. Transreid: Transformer-based object re-
identification. arXiv preprint arXiv:2102.04378, 2021. 6

[19] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local
relation networks for image recognition. In ICCV, 2019. 1,
2

[20] Yunqing Hu, Xuan Jin, Yin Zhang, Haiwen Hong, Jingfeng
Zhang, Yuan He, and Hui Xue. Rams-trans: Recurrent atten-
tion multi-scale transformer for fine-grained image recogni-
tion. In Proceedings of the 29th ACM International Confer-
ence on Multimedia, pages 4239–4248, 2021. 5

[21] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-
ian Q Weinberger. Deep networks with stochastic depth. In
European conference on computer vision, pages 646–661.
Springer, 2016. 4

[22] Shaoli Huang, Xinchao Wang, and Dacheng Tao. Stochas-
tic partial swap: Enhanced model generalization and inter-
pretability for fine-grained recognition. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 620–629, 2021. 5

[23] Zilong Huang, Xinggang Wang, Lichao Huang, Chang
Huang, Yunchao Wei, and Wenyu Liu. Ccnet: Criss-cross
attention for semantic segmentation. In ICCV, 2019. 2

[24] Mengxi Jia, Xinhua Cheng, Shijian Lu, and Jian Zhang.
Learning disentangled representation implicitly via trans-
former for occluded person re-identification. arXiv preprint
arXiv:2107.02380, 2021. 2, 6

[25] Xin Jin, Cuiling Lan, Wenjun Zeng, Guoqiang Wei, and
Zhibo Chen. Semantics-aligned representation learning for
person re-identification. In AAAI, volume 34, pages 11173–
11180, 2020. 6

[26] Mahdi M Kalayeh, Emrah Basaran, Muhittin Gökmen,
Mustafa E Kamasak, and Mubarak Shah. Human semantic
parsing for person re-identification. In CVPR, 2018. 6

[27] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
ICCV workshop, 2013. 4

[28] Hanjun Li, Gaojie Wu, and Wei-Shi Zheng. Combined depth
space based architecture search for person re-identification.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6729–6738, 2021. 6

[29] Chuanbin Liu, Hongtao Xie, Zheng-Jun Zha, Lingfeng Ma,
Lingyun Yu, and Yongdong Zhang. Filtration and distilla-
tion: Enhancing region attention for fine-grained visual cat-
egorization. In AAAI, 2020. 5

[30] Hao Liu, Jiashi Feng, Meibin Qi, Jianguo Jiang, and
Shuicheng Yan. End-to-end comparative attention networks
for person re-identification. TIP, 26(7):3492–3506, 2017. 2

[31] Xinchen Liu, Wu Liu, Jinkai Zheng, Chenggang Yan, and
Tao Mei. Beyond the parts: Learning multi-view cross-part

4700



correlation for vehicle re-identification. In ACM MM, pages
907–915, 2020. 2

[32] Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and Wei
Jiang. Bag of tricks and a strong baseline for deep person
re-identification. In CVPR Workshop, 2019. 2

[33] Hao Luo, Wei Jiang, Xing Fan, and Chi Zhang. Stnreid:
Deep convolutional networks with pairwise spatial trans-
former networks for partial person re-identification. TMM,
22(11):2905–2913, 2020. 6

[34] Wei Luo, Xitong Yang, Xianjie Mo, Yuheng Lu, Larry S
Davis, Jun Li, Jian Yang, and Ser-Nam Lim. Cross-x learn-
ing for fine-grained visual categorization. In ICCV, 2019. 1,
2, 5

[35] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew
Blaschko, and Andrea Vedaldi. Fine-grained visual classi-
fication of aircraft. arXiv preprint arXiv:1306.5151, 2013.
4

[36] Dechao Meng, Liang Li, Xuejing Liu, Yadong Li, Shijie
Yang, Zheng-Jun Zha, Xingyu Gao, Shuhui Wang, and Qing-
ming Huang. Parsing-based view-aware embedding network
for vehicle re-identification. In CVPR, pages 7103–7112,
2020. 6

[37] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan
Bello, Anselm Levskaya, and Jonathon Shlens. Stand-
alone self-attention in vision models. arXiv preprint
arXiv:1906.05909, 2019. 1, 2

[38] Yongming Rao, Guangyi Chen, Jiwen Lu, and Jie Zhou.
Counterfactual attention learning for fine-grained visual cat-
egorization and re-identification. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 1025–1034, 2021. 5, 6

[39] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon
Shlens, Pieter Abbeel, and Ashish Vaswani. Bottleneck
transformers for visual recognition. In CVPR, 2021. 2

[40] Ming Sun, Yuchen Yuan, Feng Zhou, and Errui Ding. Multi-
attention multi-class constraint for fine-grained image recog-
nition. In ECCV, 2018. 1, 5

[41] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng
Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan Yuan,
Changhu Wang, et al. Sparse r-cnn: End-to-end object de-
tection with learnable proposals. In CVPR, 2021. 2

[42] Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin
Wang. Beyond part models: Person retrieval with refined
part pooling (and a strong convolutional baseline). In ECCV,
2018. 2

[43] Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin
Wang. Beyond part models: Person retrieval with refined
part pooling (and a strong convolutional baseline). In ECCV,
pages 480–496, 2018. 6

[44] Zhiqing Sun, Shengcao Cao, Yiming Yang, and Kris Kitani.
Rethinking transformer-based set prediction for object detec-
tion. arXiv preprint arXiv:2011.10881, 2020. 2

[45] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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