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Abstract

Deep learning methods can struggle to handle domain
shifts not seen in training data, which can cause them to not
generalize well to unseen domains. This has led to research
attention on domain generalization (DG), which aims to
the model’s generalization ability to out-of-distribution. Ad-
versarial domain generalization is a popular approach to
DG, but conventional approaches (1) struggle to sufficiently
align features so that local neighborhoods are mixed across
domains; and (2) can suffer from feature space over col-
lapse which can threaten generalization performance. To
address these limitations, we propose localized adversar-
ial domain generalization with space compactness mainte-
nance (LADG) which constitutes two major contributions.
First, we propose an adversarial localized classifier as
the domain discriminator, along with a principled primary
branch. This constructs a min-max game whereby the aim
of the featurizer is to produce locally mixed domains. Sec-
ond, we propose to use a coding-rate loss to alleviate fea-
ture space over collapse. We conduct comprehensive ex-
periments on the Wilds DG benchmark to validate our ap-
proach, where LADG outperforms leading competitors on
most datasets.

1. Introduction

Deep neural networks can suffer from poor generaliza-
tion performance on out-of-distribution (OOD) data from
unseen domains, i.e., from domain shift. For this reason,
techniques to improve generalization abilities have gained
increasing attention over the past decade, e.g. domain gen-
eralization (DG) and domain adaptation (DA). DA requires
access to data from testing domains during training. In con-
trast, DG aims to construct a generalized model by exposing
the training process to multiple training domains without
exposure to OOD data from testing domains. As such, DG
can reflect challenges in many real-life applications.

*Work was done while Wei Zhu interned at PAII Inc.

Figure 1. Localized discriminator can align two domains in a more
fine-grained way.

Different DG methods have been proposed, including
empirical risk minimization (ERM)-based methods [40, 52,
59], meta-learning based methods [28], domain-invariant
representation based methods [16, 29, 33, 44], invariant risk
minimization based methods [3, 54], and gradient agree-
ment methods [39,42]. Among them, domain invariant rep-
resentation based methods, specifically adversarial domain
generalization (ADG) methods, seem to the most popular
according to recent literature [19, 43]. ADG methods are
inspired by generative adversarial networks [18] and learn
a common feature space by adversarial learning for train-
ing domains [16]—the common feature space is expected
to help generalization to unseen domains [16]. Although in-
tuitively reasonable and technically sound, most of these
methods show little performance gain over the baseline
ERM in practice as indicated by recent benchmarks [19,25].

In this work, we argue that two issues limit the per-
formance impact of current ADG methods. First, we find
that ERM feature representations are surprisingly already
roughly aligned, with features clustered class-wisely re-
gardless of their domain labels. The discrepancy between
domains can be observed at local regions where local neigh-
borhoods are not mixed across domains. Since ADG meth-
ods operate under the assumption of significant domain
shift, this less obvious domain-level discrepancy challenges
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conventional ADG methods. Second, we measure the com-
pactness of the feature space using three different metrics
and found that the featurizer may trivially fool the discrim-
inator by over collapsing the feature space. The collapsed
feature space can cause overfitting [50].

To address these limitations, we propose localized adver-
sarial domain generalization with space compactness main-
tenance (LADG). As shown in Fig. 1, LADG incorporates
a localized domain classifier [6] with adversarial learning.
Since the predictions of local classifiers are made according
to samples around a target sample, a local domain classifier
can thus be used to describe the quality of alignment of lo-
cal regions. We adopt label propagation in this paper as it is
effective and differentiable [32, 53]. We also outline how to
integrate localized classification properly within a genera-
tor loss that encourages neighbor hood mixing. To alleviate
feature space over collapse, LADG measures and maintains
the compactness of the feature space using a differentiable
coding ratio [50].

We summarize our contributions as follows:

1. We argue that ERM can already roughly align training
domains with a linear primary task predictor, which
undermines the assumption of most existing ADG
methods. We also observe that applying ADG to the
feature space can lead to feature space over collapse.

2. We propose localized adversarial domain generaliza-
tion (LADG) to alleviate these two limitations. LADG
adopts a principled label propagation as the domain
discriminator to allow a fine-grained domain align-
ment and penalizes the space collapse caused by ad-
versarial learning.

3. We conduct extensive experiments on benchmark
datasets to verify our observations and show the effec-
tiveness of the proposed method.

2. Related Work
DG is an active research topic with varied approaches.

For instance, some methods enhance the generalization
ability of ERM directly, e.g., using mixup-based meth-
ods to generate novel data composed of mixtures of do-
mains [47, 48, 52, 59]. Other methods try to improve the
performance over the worst groups or domains [21, 40].
Recently, self-supervised learning has also been applied to
DG, which is inspired by its success on general represen-
tation learning [15, 24, 36]. Nonetheless, domain-invariant
learning has attracted increasing attention for DG, and can
be categorized as either representation invariant [16, 17, 29,
33,41,44,54], predictor invariant [1,3,11,26], and gradient
invariant methods [38, 39, 42].

We focus on domain invariant representation learning,
specifically adversarial domain generalization (ADG) [2,

16, 29, 33, 35, 58] in this paper. Domain adversarial neural
network (DANN) adopts a gradient reversal layer and up-
dates the featurizer to fool the domain discriminator by gen-
erating domain-invariant representations [16]. Conditional
DANN (CDANN)’s discriminator takes the primary task la-
bel into consideration when distinguishing samples from
different domains [30, 33]. MMD-AAE adopts maximum
mean discrepency (MMD) to align domains, matching the
latent representation to a prior distribution by adversarial
learning [29]. Matsuura et al. extend DANN [35] with un-
known domain labels. Zhou et al. adopt a domain trans-
formation network to augment the training data to differ-
ent training domains for adversarial learning [58]. Sicilia
et al. propose to interpolate the feature space by using the
gradient of the domain discriminator [43]. All these works
operate under the assumption of significant domain shifts
in the feature space between training domains. However,
we empirically observe that the domain-level discrepancy
is not as obvious as expected under standard benchmark
domain generalization settings. As such, LADG is devel-
oped to align the domains in a more fine-grained and local
way. Moreover, we propose a loss to prevent space collapse
that could potentially benefit all ADG methods and also
other fields using adversarial learning, e.g., domain adap-
tation [56] and adversarial debiasing [23, 51].

3. Adversarial Domain Generalization
We focus on the problem of domain generalization. In

this setting, the training set, Dtr = {xi, yi, ei}ni , is com-
posed of data from S different domains, i.e., Dtr = {Ds}Ss ,
where Ds = {xi, yi, s}ns

i=1 selects the samples from the s-th
domain, xi is the training data, yi denotes the ground-truth
label for the primary task, and the categorical value, ei, de-
notes the domain label. We note that the primary task label
yi can take different forms for different tasks, e.g. a cate-
gorical value for classification and a continuous value for
regression. We adopt a deep neural network to handle the
problem, which contains a featurizer ϕ and a predictor w.
The features extracted by ϕ are denoted as H = {Hs}Ss ,
where Hs = {hi}ns

i=1 = {ϕ(xi)}ns
i=1 selects the learned

features for s-th domain. If the primary task is classifica-
tion, we can also use Hy = {ϕ(xi) ∀ yi = y}ny

i=1 to denote
the features extracted from samples of the y-th class.

It is reasonable and common to implement the predic-
tor, ϕ, using a single linear layer following standard bench-
marks [19]. We will follow the same practice, which will
allow us to directly measure the impact of our contributions
compared to alternative approaches. The objective of do-
main generalization is to obtain a model that achieves su-
perior performance on testing data from unseen domains.

A highly popular approach is adversarial domain gener-
alization (ADG) [16, 33, 35, 43]. These are inspired by gen-
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(a) ERM (b) DANN (c) CDANN (d) Ours

Figure 2. Visualization of learned representation on PACS dataset. * denotes testing domain. Different shape(color) represents different
class(domain).

(a) Vk(H) (b) R(H) (c) RC(H)

Figure 3. The feature space will collapse with adversarial domain alignment. We pretrain the model for 600 steps with ERM and then ADG
methods are applied. Our method trained with Lcr can alleviate space collapse.

erative adversarial networks [18] and handle the problem by
learning a domain-invariant representation with the aid of
a domain discriminator, denoted as η. We use the seminal
DANN [16] work as an exemplar to illustrate the approach.
Given the training data, DANN trains the featurizer ϕ and
the classifier w to minimize the primary task loss:

Lt(w, ϕ) =
1

n

∑
xi,yi∈Dtr

ℓ(w ◦ ϕ(xi), yi), (1)

where ℓ(·) is the primary-task loss function. The featur-
izer representations likely overfit to the training domains
and would struggle under the presence of domain shifts.
This can lead to serious performance drops when testing
the trained model on unseen domains. ADG methods aim
to learn domain-invariant features to improve the general-
ization ability by using the domain discriminator, η, to dis-
tinguish samples from different domains using the extracted
features hi by minimizing the domain classification loss:

Ldom(η) = − 1

n

∑
xi,ei∈Dtr

log(pi), (2)

where pi is the pseudo-probability for the ground-truth do-
main and the dependence on xi is implied. DANN uses the

cross-entropy loss to train the domain classifier η. To obtain
domain-invariant representations, the feature extractor ϕ is
adversarially trained to maximize Ldom so that the extracted
features H are indistinguishable to the domain classifier. We
summarize the training objective as follows:

Lgen := min
w,ϕ
Lt(w, ϕ)− λLdom(η)

Ldisc := min
η
Ldom(η),

(3)

where λ is used to balance the adversarial domain classifi-
cation loss and the primary task loss.

3.1. Limitations

Although ADG methods have achieved progress, they
do not show significant improvements over empirical risk
minimization (ERM) according to recent benchmarks [19].
We argue that two issues limit the performance of current
ADG approaches: incomplete alignment and feature space
over collapse. To illustrate this, we use three existing meth-
ods as exemplars: ERM, DANN [16], and CDANN [33].
DANN learns to match the feature distributions across do-
mains P (Hs)) where Hs = ϕ(Xs), while CDANN aims
to match the class-conditioned feature distributions. We
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provide observations and analysis using experiments con-
ducted on the PACS dataset [27], which is a commonly
used image classification dataset for domain generaliza-
tion that comprises 7 different classes from four domains
S ∈ {art, cartoons, photo, sketches}. Additional analy-
ses on other datasets can be found in the supplementary ma-
terials.

3.1.1 Incomplete Alignment

We train ADG methods under the benchmark setting with
a linear predictor w and use tSNE [46] to visualize the
learned representations. The results are shown in Fig. 2.
ADG methods operate under the assumption that the latent
representation of samples from different training domains
learned by ERM would be located at different sub-spaces,
i.e., domain shift, and learning to align the data distributions
across different domains would lead to a common represen-
tation space, i.e., a domain-invariant representation. How-
ever, observations from the visualization results of Fig. 2a
question this assumption. First, when using ERM, the fea-
tures for different domains are surprisingly already roughly
aligned and the domain shift is not as obvious as expected.
Instead, samples from the same class are grouped together
regardless of their domain labels. Second, the features from
same domains often form localized clusters and the clusters
will be spread over the whole space. The localized clusters
are also cross-distributed across domains, which leads to lo-
calized domain-level statistical difference across domains.
This suggests that ERM already incompletely aligns fea-
tures, i.e., in a gross but non-local manner.

Since features are already at least partly aligned, the im-
pact of additional measures that aim to align the domain-
level distributions P (Hs), e.g., DANN [16] and MMD [29],
can be limited. In principle, ADG approaches could more
completely align distributions across domains, i.e., produce
local mixing without the localized clusters of Fig. 2. Yet,
in practice it is extremely difficult to train classification-
based discriminators to learn a rich and complete enough
representation of the domain distributions that actually de-
scribes the degree of local neighborhood-level mixing. As
Fig. 2b demonstrates, DANN features still exhibit the local-
ized clusters of ERM.

An intuitive way to alleviate this problem is to align the
domain distributions conditioned on the class label P (Hs

y)
as adopted by CDANN [30, 33]. However, the conditioned
domain distributions are still not well mixed (see Fig. 2c)
because of the intra-class intra-domain heterogeneity. Addi-
tionally, the class-conditioned domain alignment may par-
tially dismiss the fact that the domain information contained
in samples from different classes could mutually benefit the
domain discrimination across classes. Finally, it is nontriv-
ial to apply class-conditioned methods to general domain

adaptation problems, e.g., regression or object detection.
To mitigate the problem, we introduce localized adver-

sarial domain generalization (Section 4.1), which aligns the
domain features at all local regions by incorporating a lo-
calized classifier with adversarial learning [6].

3.1.2 Feature Space Collapse

Another concern for ADG is feature space over collapse.
An ideal result for ADG is to make features to be domain-
invariant while maintaining the compactness of the feature
space and keeping the primary task loss Lt small. When
updating the feature extractor ϕ to fool the domain discrim-
inator by maximizing the domain classification loss Ldom,
a trivial way is to collapse the whole space or class-wisely
collapse the feature space so that the Ldom could be maxi-
mized. To verify our assumption that the feature space tends
to be over compact with ADG, we adopt three different
strategies to measure the compactness of the learned feature
space H ∈ Rn×d:

1. We calculate the average degree of the k-nearest neigh-
bors (KNN) graph. That is, we average the sum of
cosine similarity between the i-th sample and its K-
nearest neighbors:

Vk(H) =
1

N

N∑
i=1

∑
j∈Ni

h⊺
i hj

∥hi∥∥hj∥
, (4)

where the set Ni represents the neighbors of the i-th
sample. Sk(H) can be used to monitor the local den-
sity;

2. We calculate coding rate following [50]:

R(H) =
1

2
log det(I +

d

nϵ2
H⊺H), (5)

where ϵ denotes the precision and we use H =
[h1 . . .hn]

⊺ to represent a set of features in matrix
form. R(H) indicates the number of bits needed to en-
code the data H up to a precision ϵ, and thus can be
seen as a measurement of the compactness of the fea-
ture space. Please refer to [34,50] for details. We nor-
malize H to eliminate scale effects when calculating
R(H);

3. We average over the class-wise coding rate for the
learned features as [50]

RC(H) =

C∑
y=1

Ny

N
R(Hy, ϵ). (6)

RC(H) can be used to measure the compactness for
the class-wise feature space [50].
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Figure 4. Block diagram of our method.

For simplicity, we calculate all measurements with sam-
ples in the minibatch, and the results are shown in Fig. 3.
According to our experiments, when we train the model
with ERM, all feature space compactness measurements re-
main stable. In contrast, we observe a sharp decrease of all
measurements when we apply ADG. This implies that the
features extracted by ϕ tend to collapse to trivially max-
imize the loss of the domain discriminator. The collapse
often leads to overfitting and poses a threat to the gener-
alization performance for unseen domains [50]. While the
feature space is expected to shrink with ADG by removing
features correlated with domain information, the space is at
high risk for over collapse. As shown in Fig. 3c, we alle-
viate the over collapse by proposing a loss to encourage to
maintain the compactness of the feature space.

4. Our Method
We introduce localized adversarial domain generaliza-

tion with space compactness maintenance (LADG) to deal
with the above two limitations. Fig. 4 outlines our approach.
LADG applies a localized classifier to examine every local
region to achieve instance-wise domain alignment. Addi-
tionally, LADG adopts a coding rate inspired loss to prevent
space collapse.

4.1. Local Classification

To deal with the problem of incomplete alignment,
LADG adopts a local classifier to ADG. Local classifiers
predict the label for each sample based on the local regions
of interests around the target sample [6]. The general idea
here is that if a discriminator can correctly predict a sam-
ple’s domain from its neighbors’ domains, then local neigh-
borhoods are not well mixed. Fooling such a discriminator
can lead to more complete distributional alignment and bet-
ter domain generalization performance. Typical local clas-
sification methods include KNN, decision trees, random
forests [8], and localized logistic regression [20]. LADG
instead adopts label propagation, which is effective, dif-
ferentiable, and can be seamlessly incorporated with deep

neural networks. Label propagation has been successfully
applied to different problems, including few-shot learn-
ing [32], node classifiers [53], metric learning [31], debias-
ing [60], semi-supervised learning [22], and domain adap-
tation [10, 55], but is not well studied for domain general-
ization.

Algorithm 1: Localized ADG
Input: the training set:Dtr , ρ = 0.2, ξ = 0.99
Output: the trained weight ϕ,w
while the maximal iterations are not reached do
{xi, yi, ei}ni=1 ∼ Dtr // sample minibatch
{hi}ni=1 = {ϕ(xi)}ni=1 // extract features
/* Update Domain Disc η */
Obtain domain prediction pij by Alg. 2
Update η by minimizing Ldisc (13)
/* Update ϕ and w */
Obtain pij by Alg. 2 with updated η
Lt(w, ϕ) = 1

n

∑n
i=1 ℓ(w ◦ ϕ(xi), yi) (1)

Lprior(ϕ) = − 1
n

∑n
i=1

∑S
j=1 qj log(pij) (11)

Lcr(ϕ) =
1
ρ
log cosh(ρ(R(H)− R̄(H))) (12)

Update ϕ and w by minimizing Lgen (13)
R̄(H)← ξR̄(H) + (1− ξ)R(H)

end

Algorithm 2: Label Propogation
Input: Extracted features {hi}ni=1, domain label {ei}ni=1

Output: Domain prediction: pij
gi = η(hi) // Get domain features
Construct similarity graph A by (7)
S = D−1/2AD−1/2

Obtain converged prediction R∗ by (9)

pij =
exp(r∗ij)∑S

j=1 exp(r∗ij)

LADG trains a discriminator that adversarially projects
feature representations into a new space, i.e., gi = η(hi).
We can use a standard MLP for the discriminator. Alterna-
tively, other architectures are possible, e.g., GatedGCN [9]
which allows the discriminator to exploit a sample’s neigh-
bors when projecting the features. This can give it additional
information and a greater ability to discriminate, thereby
further challenging the featurizer. Both options work well,
with the latter providing a slight edge in our experiments.
An affinity matrix, A = {aij}, is then constructed based on
the transformed features and their K-nearest neighbors:

aij =

exp

(
τ g⊺

i gj

2∥gi∥∥gj∥

)
if j ∈ Ni

0 otherwise
, (7)

where τ is a scale factor. Because it is intractable to con-
struct an affinity matrix across an entire dataset, we in-
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dataset task input # samples # domains

iWildCam Cls. image 203,029 323
Camelyon17 Cls. image 455,954 5
PovertyMap Reg. image 19,669 23x2
FMoW Cls. image 523,846 16x5
CivilComments Cls. text 448,000 16
Amazon Cls. text 539,502 2586

Table 1. Wilds datasets statistics.

stead construct one for each mini-batch. A Laplacian nor-
malized similarity graph can then be obtained as S =
D−1/2AD−1/2 [13], where the degree matrix D = {dij} is
a diagonal matrix defined as dii =

∑
j aij . We use the con-

structed graph to propagate the domain labels [32, 53, 57],
here represented as an n×S matrix, E = {eij}, where each
row is a one-hot vector of the categorical domain label:

Rt+1 = αSRt + (1− α)E, (8)

where Rt are the propagated soft domain labels for the t-th
propagation timestep, and α = 0.8 is the restart probability.
We initialize R0 ← E. The converged propagation results
can be calculated as [57]

R∗ = (I− αS)−1E. (9)

We normalize the converged results into domain-prediction
pseudo-probabilities:

pij =
exp(r∗ij)∑S
j=1 exp(r

∗
ij)

. (10)

LADG updates the discriminator by minimizing the domain
classification loss Ldom in (2) with the pij defined in (10).
We conduct the label propagation with samples in the mini-
batch.

Analogously, we could follow standard ADG practices
and simply train the featurizer to produce domain-invariant
representations by maximizing the same Ldom in (3). How-
ever, we found that this will not only make the training
process unstable, but also likely make the domains trivially
aligned when the number of training domains S ≥ 3. To
see this, assume four domains as {A,B,C,D}. We could
trivially update the featurizer ϕ to fool the discriminator by
aligning A with B, and C with D, without even aligning
the A and C domains together. Instead we need a loss that
directly formulates our end goal of local neighborhood mix-
ing. To do this, we calculate a prior distribution of domain
labels for each minibatch, qj = 1

n

∑N
i=1 eij . The featurizer

is then trained to match each sample’s propagated domain
pseudo-probability with the prior distribution:

Lprior(ϕ) = −
1

n

n∑
i=1

S∑
j=1

qj log(pij), (11)

thus encouraging each local neighborhood to be well mixed
with all domains. We empirically validate the effectiveness
of (11) in the experiments.

4.2. Alleviate Space Over Collapse

The featurizer may trivially minimize the feature space
to make the domains less distinguishable, i.e., space col-
lapse, which will dramatically degrade the generalization
performance for testing domains. To alleviate this problem,
we penalize feature space over collapse by encouraging to
maintain the compactness for the feature space R(H):

Lcr(ϕ) =
1

ρ
log cosh(ρ(R(H)− R̄(H))). (12)

We elaborate on several points for (12). First, we calculate
the coding rate R(H) within each minibatch for tractabil-
ity. Second, R̄(H) is the moving average of R(H) across
batches, and is updated as R̄(H)← ξR̄(H)+(1−ξ)R(H),
where ξ = 0.99. R̄(H) can be initialized during pretraining.
We adopt a Log-Cosh loss instead of L1, which makes the
loss effectively zero beyond a certain tolerance value, al-
lowing the network to focus on more egregious violations.
A hyperparameter ρ further smoothes the loss curve, which
we set to 0.2. Lastly, we use the overall coding rate R(H)
instead of the class-wise one Ry(H) since we observe that
stable R(H) directly leads to stable Ry(H) and it is nontriv-
ial to calculate the class-wise coding rate Ry(H) for general
primary tasks.

4.3. Overall Training

We summarize the overall training objective of LADG as

Lgen := min
w,ϕ
Lt(w, ϕ) + λLprior(ϕ) + γLcr(ϕ)

Ldom := min
η
Ladv(η),

(13)

where λ and γ are used to balance different terms. As the
domain discriminator will be discarded during inference,
our method introduces no extra parameters and computa-
tional cost compared with ERM for testing. We summarize
the training process of LADG in Algorithm 1. Because we
calculate affinities across mini-batches, the sampling strat-
egy plays an important role. We randomly select K domains
and populate the mini-batch with an equal number of sam-
ples from each domain.

5. Experiments
As has been noted, robustness to synthetic distributional

shifts do not necessarily translate to robustness to real-
world shifts [14, 45]. For this reason, we conduct exper-
iments primarily on the Wilds benchmark [25], which is
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iWildCam Camelyon17 PovertyMap FMoW CivilComments AmazonMethods F1 avg acc wg r wg acc wg acc 10% acc

ERM 31.0(1.3) 70.3(6.4) 0.45(0.06) 32.3(1.25) 56.0(3.6) 53.8(0.8)
CORAL 32.8(0.1) 59.5(7.7) 0.44(0.06) 31.7(1.24) 65.6(1.3) 52.9(0.8)
IRM 15.1(4.9) 64.2(8.1) 0.43 (0.07) 30.0(1.37) 66.3 (2.1) 52.4 (0.8)
Group DRO 23.9 (2.1) 68.4 (7.3) 0.39 (0.06) 30.8 (0.81) 70.0(2.0) 53.3 (0.0)
FISH 22.0 (1.8) 74.7 (7.1) 0.30 (0.01) 34.6 (0.18) 73.1* (1.2) 53.3* (0.0)
DANN 27.9(1.1) 65.6(6.7) 0.45(0.06) 30.6(0.15) 66.0(1.0) 53.3(0.0)
CDANN 32.7(1.5) 66.3(6.1) n/a 33.1(0.11) 69.5(1.5) 53.3(0.0)
LADG 33.1(0.6) 76.5(7.7) 0.48(0.07) 33.5(2.08) 66.9(1.3) 53.3(0.0)

Table 2. Out-of-distribution test results on Wilds. wg means worst group performance. * FISH adopts different backbone for CivilComments
and Amazon [42]. Best results are highlighted. DANN and CDANN are implemented by ourselves.

Camelyon17 val acc test acc*

ERM 84.9(3.1) 70.3(6.4)
CORAL 86.2(1.4) 59.5(7.7)
IRM 86.2(1.4) 64.2(8.1)
Group DRO 85.5(2.2) 68.4(7.3)
FISH 83.9(1.2) 74.7(7.1)
DANN 85.6(1.1) 65.6(6.7)
CDANN 86.0(1.3) 66.3(6.1)
LADG 85.4(0.8) 76.5(7.7)

Table 3. Results on Camelyon17. Validation results are OOD. Test
acc is the main summary metric.

iWildCam ID F1 ID acc OOD F1* OOD acc

ERM 47.0(1.4) 75.7(0.3) 31.0(1.3) 71.6(2.5)
CORAL 43.5(3.5) 73.7(0.4) 32.8(0.1) 73.3(4.3)
IRM 22.4(7.7) 59.9(8.1) 15.1(4.9) 59.8(3.7)
Group DRO 37.5(1.7) 71.6(2.7) 23.9(2.1) 72.7(2.0)
FISH 40.3(0.6) 73.8(0.1) 22.0(1.8) 64.7(2.6)
DANN 42.3(0.5) 73.5(0.1) 27.9(1.1) 71.8(1.3)
CDANN 46.7(0.7) 75.0(0.2) 32.7(1.5) 72.9(1.5)
LADG 46.4(1.2) 73.7(0.8) 33.1(0.6) 74.4(2.7)

Table 4. Results on iWildCam. All metrics are from the test set.
OOD F1 is the main summary metric.

composed of real-world datasets representing natural distri-
butional shifts from many different modalities and applica-
tions, e.g., biomedical imagery, satellite imagery, and text.
Importantly, all Wilds datasets reflect distributional shifts
that produce significant performance drops between in-
distribution (ID) and out-of-distribution (OOD) data [25].
We follow the experimental settings of FISH [42], a recent
and leading approach, and test on the Poverty [49], Came-
lyon17 [4], FMoW [12], CivilComments [7], iWildCam [5],
and Amazon [37] Wilds datasets. Note CivilComments is

PovertyMap val r test r val wg r test wg r*

ERM 0.80(0.04) 0.78(0.04) 0.51(0.06) 0.45(0.06)
CORAL 0.80(0.04) 0.78(0.05) 0.52(0.06) 0.44(0.06)
IRM 0.81(0.03) 0.77(0.05) 0.53(0.05) 0.43(0.07)
Group DRO 0.78(0.05) 0.75(0.07) 0.46(0.04) 0.39(0.06)
FISH 0.82(0.0) 0.80(0.02) 0.47(0.01) 0.30(0.01)
DANN 0.80(0.04) 0.79(0.03) 0.52(0.05) 0.45(0.06)
CDANN n/a n/a n/a n/a
LADG 0.80(0.03) 0.79(0.04) 0.51(0.07) 0.48(0.07)

Table 5. Results on PovertyMap. CDANN is not applicable for
regression. r denotes Pearson correlation coefficient. All validation
metrics are OOD. wg means worst-group performance and test wg
r coefficient is the main summary metric.

FMoW val acc test acc val wr acc test wr acc*

ERM 59.5(0.37) 53.0(0.55) 48.9(0.62) 32.3(1.25)
CORAL 56.9(0.25) 50.5(0.36) 47.1(0.43) 31.7(1.24)
IRM 57.4(0.37) 50.8(0.13) 47.5(1.57) 30.0(1.37)
Group DRO 58.8(0.19) 52.1(0.5) 46.5(0.25) 30.8(0.81)
FISH 57.8(0.15) 51.8(0.32) 49.5(2.34) 34.6(0.18)
DANN 57.1(0.73) 50.2(0.36) 50.2(1.01) 30.6(0.15)
CDANN 56.8(0.11) 51.0(0.36) 50.0(0.31) 33.1(0.11)
LADG 57.2(0.15) 51.2(0.24) 51.0 (0.47) 33.5(2.08)

Table 6. Results on FMoW. All validation results are OOD. wr
means worst-region performance and test wr acc is the main sum-
mary metric.

designed for sub-population shifts (training and testing do-
mains overlap), so it is not a DG dataset, but we include it
for completeness. We summarize the statistics of the used
datasets in Table 1, and we refer the readers to [25] for de-
tails on these datasets. We report the Wilds leaderboard met-
rics, which always include OOD test, but also may include
ID test or OOD validation metrics. We also provide the re-
sults on domainbed including the PACS dataset in supple-
mentary material [19].
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Civ.Comm. val avg acc val wg acc test avg acc test wg acc*

ERM 92.3(0.2) 50.5(1.9) 92.2(0.1) 56.0(3.6)
CORAL 88.9(0.6) 64.7(1.4) 88.7(0.5) 65.6(1.3)
IRM 89.0(0.7) 65.9(2.8) 88.8(0.7) 66.3(2.1)
Group DRO 90.1(0.4) 67.7(1.8) 89.9(0.5) 70.0(2.0)
FISH* 89.7*(0.3) 72.0*(1.0) 89.5*(0.2) 73.1*(1.2)
DANN 89.1(0.5) 68.8(1.1) 88.9(0.5) 66.0(1.0)
CDANN 89.6(0.2) 69.4(0.5) 89.3(0.2) 69.5(1.5)
LADG 88.8(0.6) 66.8(2.1) 88.6(0.6) 66.9(1.3)

Table 7. Results on CivilComments. * FISH uses a different back-
bone [42]. For CivilComments, the training and test domains over-
lap and there is only sub-population shift. wg means worst-group
performance and test wg acc is the main summary metric.

Amazon val acc test acc val 10% acc test 10% acc

ERM 72.7(0.1) 71.9(0.1) 55.2(0.7) 53.8(0.8)
CORAL 72.0(0.3) 71.1(0.3) 54.7(0.1) 53.3(0.1)
IRM 71.5(0.3) 70.5(0.3) 54.2(0.8) 52.4(0.8)
Group DRO 70.7(0.6) 70.0(0.6) 54.7(0.0) 53.3(0.0)
FISH* 72.5*(0.0) 71.7*(0.1) 54.7*(0.0) 53.3*(0.0)
DANN 72.1(0.0) 71.4(0.1) 54.7(0.0) 53.3(0.0)
CDANN 72.3(0.2) 71.2(0.2) 54.7(0.0) 53.3(0.0)
LADG 71.9(0.1) 71.1(0.2) 54.7(0.0) 53.3(0.0)

Table 8. Results on Amazon. * FISH uses a different back-
bone [42]. Validaton metrics are OOD and test 10% acc is the main
summary metric.

Experimental Settings: We follow the settings and eval-
uation metrics of Wilds benchmark [25]. We compare our
methods with ERM [25], Coral [44], Group DRO [40],
IRM [3], and Fish [42], which we retrieve from the Wilds
benchmark leaderboard [25]. We implement DANN [16]
and CDANN [33] ourselves. We adopt the same featur-
izer ϕ, predictor w, and model selection strategies used in
the Wilds benchmark. We provide all hyperparameters in
the supplementary material. Following the Wilds specifi-
cations [25], for iWildCam, FMoW, and Amazon, we av-
erage the results over three different runs, and for Came-
lyon17 (CivilComment), we run the experiments ten (five)
times. For PovertyMap, we average the results over five dif-
ferent folds.
Results: We summarize the results in Table 2 for the main
summary metrics, and detailed results for each dataset are
provided in Tables 3–8. From Table 2, LADG achieves
state-of-the art results on 3 datasets and the second-best
result on FMoW. Notably, LADG performance is much
more stable, with the relative (and rank-order) performance
of some methods, e.g. FISH, varying considerably from
dataset to dataset. Despite not being designed to address
sub-population shifts, LADG still exhibits good perfor-
mance on CivilComments, outperforming ERM. All meth-
ods perform comparably for Amazon (likely because its
huge numbers of domains make it difficult to beat ERM),

Camelyon17 PovertyMap
avg acc r wg r

DANN 65.6(6.7) 0.79(0.03) 0.45(0.06)
DANN w/ ℓcr 73.8(7.9) 0.78(0.04) 0.47(0.06)
LADG w/o Lcr 68.8(5.4) 0.79(0.05) 0.43(0.07)
LADG w/o Lprior 72.8(7.3) 0.80(0.07) 0.46(0.13)
LADG w/o GNN 75.7(6.3) 0.79(0.05) 0.49(0.03)
LADG 76.5(7.7) 0.79(0.04) 0.48(0.07)

Table 9. Ablation studies on Wilds.

but LADG matches the best DG methods’ performances.
These results demonstrate that for true DG dataset, LADG
(1) exhibits leading performance; and (2) its performance is
consistently high.
Ablation Study: In this section, we conduct ablation stud-
ies on Camelyon17 and Poverty Map to validate the differ-
ent components of the proposed methods. The experiments
follow the exact same settings as Wilds benchmark. The re-
sults are shown in Table 9. DANN w/ Lcr equips DANN
with Lcr loss. LADG w/o Lprior replaces prior matching
loss with Ladv and LADG w/o GNN replace GNN with
MLP. The experiments show that the coding ratio lossLcr is
important for our method, and LADG outperforms its direct
counterpart DANN either with or without Lcr loss.

6. Limitations and Future Work
Our analysis and experiments are conducted under the

benchmark settings with a linear predictor w [19, 25], and
we do not experimentally verify the performance of our
method under the settings with non-linear predictors. We
expect incompletely aligned distributions with unmixed
local neighborhoods to also be a problem when using
non-linear predictors and that LADG’s innovations would
equally apply. We leave this for future work. Another limi-
tation is that our method treats each domain as equally im-
portant. In practice, we may over-sample the domains that
are deviated from others to improve the worst group per-
formance for better generalization ability [40]. Finally, im-
proving performance when domains numbers are huge is
another important avenue for future work.

7. Conclusions
We proposed LADG, which addresses two limitations

of existing ADG approaches: (1) incomplete distributional
alignment with unmixed neighorhoods and (2) feature space
over collapse. LADG incorporates an adversarial localized
classifier to align domains within every local region. More-
over, LADG penalizes space over collapse by encouraging
to maintain the compactness of the feature space via a dif-
ferentiable coding-rate formulation. Experiments on lead-
ing benchmarks validate LADG’s effectiveness and consis-
tent performance across datasets.
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[3] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David
Lopez-Paz. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019. 1, 2, 8

[4] Peter Bandi, Oscar Geessink, Quirine Manson, Mar-
cory Van Dijk, Maschenka Balkenhol, Meyke Hermsen,
Babak Ehteshami Bejnordi, Byungjae Lee, Kyunghyun
Paeng, Aoxiao Zhong, et al. From detection of individual
metastases to classification of lymph node status at the pa-
tient level: the camelyon17 challenge. IEEE transactions on
medical imaging, 38(2):550–560, 2018. 7

[5] Sara Beery, Arushi Agarwal, Elijah Cole, and Vighnesh
Birodkar. The iwildcam 2021 competition dataset. arXiv
preprint arXiv:2105.03494, 2021. 7

[6] Bernd Bischl, Julia Schiffner, and Claus Weihs. Benchmark-
ing local classification methods. Computational Statistics,
28(6):2599–2619, 2013. 2, 4, 5

[7] Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum
Thain, and Lucy Vasserman. Nuanced metrics for measur-
ing unintended bias with real data for text classification. In
Companion proceedings of the 2019 world wide web confer-
ence, pages 491–500, 2019. 7

[8] Leo Breiman. Random forests. Machine learning, 45(1):5–
32, 2001. 5

[9] Xavier Bresson and Thomas Laurent. Residual gated graph
convnets. CoRR, abs/1711.07553, 2017. 5

[10] Tianle Cai, Ruiqi Gao, Jason D Lee, and Qi Lei. A theory
of label propagation for subpopulation shift. arXiv preprint
arXiv:2102.11203, 2021. 5

[11] Shiyu Chang, Yang Zhang, Mo Yu, and Tommi Jaakkola. In-
variant rationalization. In International Conference on Ma-
chine Learning, pages 1448–1458. PMLR, 2020. 2

[12] Gordon Christie, Neil Fendley, James Wilson, and Ryan
Mukherjee. Functional map of the world. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6172–6180, 2018. 7

[13] Fan RK Chung and Fan Chung Graham. Spectral graph the-
ory. Number 92. American Mathematical Soc., 1997. 6

[14] Josip Djolonga, Jessica Yung, Michael Tschannen, Rob
Romijnders, Lucas Beyer, Alexander Kolesnikov, Joan
Puigcerver, Matthias Minderer, Alexander D’Amour, Dan
Moldovan, Sylvain Gelly, Neil Houlsby, Xiaohua Zhai, and
Mario Lucic. On Robustness and Transferability of Convo-
lutional Neural Networks. In 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
16453–16463, Nashville, TN, USA, June 2021. IEEE. 6

[15] Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas,
and Ben Glocker. Domain generalization via model-agnostic

learning of semantic features. Advances in Neural Informa-
tion Processing Systems, 32:6450–6461, 2019. 2

[16] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. The journal of machine learning
research, 17(1):2096–2030, 2016. 1, 2, 3, 4, 8

[17] Mingming Gong, Kun Zhang, Tongliang Liu, Dacheng Tao,
Clark Glymour, and Bernhard Schölkopf. Domain adaptation
with conditional transferable components. In International
conference on machine learning, pages 2839–2848. PMLR,
2016. 2

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014. 1, 3

[19] Ishaan Gulrajani and David Lopez-Paz. In search of lost
domain generalization. arXiv preprint arXiv:2007.01434,
2020. 1, 2, 3, 7, 8

[20] David J Hand and Veronica Vinciotti. Local versus global
models for classification problems: fitting models where it
matters. The American Statistician, 57(2):124–131, 2003. 5

[21] Zeyi Huang, Haohan Wang, Eric P Xing, and Dong Huang.
Self-challenging improves cross-domain generalization. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16,
pages 124–140. Springer, 2020. 2

[22] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej
Chum. Label propagation for deep semi-supervised learning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5070–5079, 2019. 5

[23] Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin Kim,
and Junmo Kim. Learning not to learn: Training deep neural
networks with biased data. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 9012–9020, 2019. 2

[24] Daehee Kim, Youngjun Yoo, Seunghyun Park, Jinkyu Kim,
and Jaekoo Lee. Selfreg: Self-supervised contrastive regu-
larization for domain generalization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 9619–9628, 2021. 2

[25] Pang Wei Koh, Shiori Sagawa, Sang Michael Xie, Marvin
Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Ya-
sunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, et al.
Wilds: A benchmark of in-the-wild distribution shifts. In In-
ternational Conference on Machine Learning, pages 5637–
5664. PMLR, 2021. 1, 6, 7, 8

[26] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen,
Amy Zhang, Jonathan Binas, Dinghuai Zhang, Remi
Le Priol, and Aaron Courville. Out-of-distribution general-
ization via risk extrapolation (rex). In International Confer-
ence on Machine Learning, pages 5815–5826. PMLR, 2021.
2

[27] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Deeper, broader and artier domain generaliza-
tion. In Proceedings of the IEEE international conference on
computer vision, pages 5542–5550, 2017. 4

7116



[28] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Learning to generalize: Meta-learning for do-
main generalization. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018. 1

[29] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot.
Domain generalization with adversarial feature learning. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5400–5409, 2018. 1, 2, 4

[30] Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang
Liu, Kun Zhang, and Dacheng Tao. Deep domain generaliza-
tion via conditional invariant adversarial networks. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 624–639, 2018. 2, 4

[31] Bin Liu, Zhirong Wu, Han Hu, and Stephen Lin. Deep metric
transfer for label propagation with limited annotated data. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops, pages 0–0, 2019. 5

[32] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho
Yang, Sung Ju Hwang, and Yi Yang. Learning to propagate
labels: Transductive propagation network for few-shot learn-
ing. arXiv preprint arXiv:1805.10002, 2018. 2, 5, 6

[33] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and
Michael I Jordan. Conditional adversarial domain adapta-
tion. arXiv preprint arXiv:1705.10667, 2017. 1, 2, 3, 4, 8

[34] Yi Ma, Harm Derksen, Wei Hong, and John Wright. Seg-
mentation of multivariate mixed data via lossy data coding
and compression. IEEE transactions on pattern analysis and
machine intelligence, 29(9):1546–1562, 2007. 4

[35] Toshihiko Matsuura and Tatsuya Harada. Domain general-
ization using a mixture of multiple latent domains. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 11749–11756, 2020. 2

[36] Saeid Motiian, Marco Piccirilli, Donald A Adjeroh, and Gi-
anfranco Doretto. Unified deep supervised domain adapta-
tion and generalization. In Proceedings of the IEEE inter-
national conference on computer vision, pages 5715–5725,
2017. 2

[37] Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying
recommendations using distantly-labeled reviews and fine-
grained aspects. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 188–197, 2019. 7

[38] Giambattista Parascandolo, Alexander Neitz, Antonio Orvi-
eto, Luigi Gresele, and Bernhard Schölkopf. Learn-
ing explanations that are hard to vary. arXiv preprint
arXiv:2009.00329, 2020. 2

[39] Alexandre Rame, Corentin Dancette, and Matthieu Cord.
Fishr: Invariant gradient variances for out-of-distribution
generalization. arXiv preprint arXiv:2109.02934, 2021. 1,
2

[40] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and
Percy Liang. Distributionally robust neural networks for
group shifts: On the importance of regularization for worst-
case generalization. arXiv preprint arXiv:1911.08731, 2019.
1, 2, 8

[41] Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Sid-
dhartha Chaudhuri, Preethi Jyothi, and Sunita Sarawagi.

Generalizing across domains via cross-gradient training.
arXiv preprint arXiv:1804.10745, 2018. 2

[42] Yuge Shi, Jeffrey Seely, Philip HS Torr, N Siddharth, Awni
Hannun, Nicolas Usunier, and Gabriel Synnaeve. Gradi-
ent matching for domain generalization. arXiv preprint
arXiv:2104.09937, 2021. 1, 2, 7, 8

[43] Anthony Sicilia, Xingchen Zhao, and Seong Jae Hwang.
Domain adversarial neural networks for domain generaliza-
tion: When it works and how to improve. arXiv preprint
arXiv:2102.03924, 2021. 1, 2

[44] Baochen Sun, Jiashi Feng, and Kate Saenko. Correlation
alignment for unsupervised domain adaptation. In Domain
Adaptation in Computer Vision Applications, pages 153–
171. Springer, 2017. 1, 2, 8

[45] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Car-
lini, Benjamin Recht, and Ludwig Schmidt. Measuring Ro-
bustness to Natural Distribution Shifts in Image Classifi-
cation. arXiv:2007.00644 [cs, stat], Sept. 2020. arXiv:
2007.00644. 6

[46] Laurens Van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(11), 2008. 4

[47] Yufei Wang, Haoliang Li, and Alex C Kot. Heterogeneous
domain generalization via domain mixup. In ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 3622–3626. IEEE,
2020. 2

[48] Yuan Wu, Diana Inkpen, and Ahmed El-Roby. Dual mixup
regularized learning for adversarial domain adaptation. In
European Conference on Computer Vision, pages 540–555.
Springer, 2020. 2

[49] Christopher Yeh, Anthony Perez, Anne Driscoll, George Az-
zari, Zhongyi Tang, David Lobell, Stefano Ermon, and Mar-
shall Burke. Using publicly available satellite imagery and
deep learning to understand economic well-being in africa.
Nature communications, 11(1):1–11, 2020. 7

[50] Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing
Song, and Yi Ma. Learning diverse and discriminative rep-
resentations via the principle of maximal coding rate reduc-
tion. Advances in Neural Information Processing Systems,
33, 2020. 2, 4, 5

[51] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell.
Mitigating unwanted biases with adversarial learning. In
Proceedings of the 2018 AAAI/ACM Conference on AI,
Ethics, and Society, pages 335–340, 2018. 2

[52] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. arXiv preprint arXiv:1710.09412, 2017. 1, 2

[53] Kai Zhang, Yaokang Zhu, Jun Wang, and Jie Zhang. Adap-
tive structural fingerprints for graph attention networks.
In International Conference on Learning Representations,
2019. 2, 5, 6

[54] Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek
Gupta, Sergey Levine, and Chelsea Finn. Adaptive risk min-
imization: A meta-learning approach for tackling group dis-
tribution shift. arXiv preprint arXiv:2007.02931, 2020. 1,
2

7117



[55] Yabin Zhang, Bin Deng, Kui Jia, and Lei Zhang. Label prop-
agation with augmented anchors: A simple semi-supervised
learning baseline for unsupervised domain adaptation. In
European Conference on Computer Vision, pages 781–797.
Springer, 2020. 5

[56] Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael
Jordan. Bridging theory and algorithm for domain adap-
tation. In International Conference on Machine Learning,
pages 7404–7413. PMLR, 2019. 2

[57] Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason We-
ston, and Bernhard Schölkopf. Learning with local and
global consistency. Advances in neural information process-
ing systems, 16, 2003. 6

[58] Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao
Xiang. Deep domain-adversarial image generation for do-
main generalisation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 13025–13032,
2020. 2

[59] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang.
Mixstyle neural networks for domain generalization and
adaptation. arXiv preprint arXiv:2107.02053, 2021. 1, 2

[60] Wei Zhu, Haitian Zheng, Haofu Liao, Weijian Li, and Jiebo
Luo. Learning bias-invariant representation by cross-sample
mutual information minimization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 15002–15012, 2021. 5

7118


