
NICE-SLAM: Neural Implicit Scalable Encoding for SLAM

Zihan Zhu1,2∗ Songyou Peng2,4* Viktor Larsson3 Weiwei Xu1 Hujun Bao1

Zhaopeng Cui1 † Martin R. Oswald2,5 Marc Pollefeys2,6

1State Key Lab of CAD&CG, Zhejiang University 2ETH Zurich 3Lund University
4MPI for Intelligent Systems, Tübingen 5University of Amsterdam 6Microsoft

Abstract

Neural implicit representations have recently shown en-
couraging results in various domains, including promis-
ing progress in simultaneous localization and mapping
(SLAM). Nevertheless, existing methods produce over-
smoothed scene reconstructions and have difficulty scaling
up to large scenes. These limitations are mainly due to their
simple fully-connected network architecture that does not
incorporate local information in the observations. In this
paper, we present NICE-SLAM, a dense SLAM system that
incorporates multi-level local information by introducing
a hierarchical scene representation. Optimizing this rep-
resentation with pre-trained geometric priors enables de-
tailed reconstruction on large indoor scenes. Compared to
recent neural implicit SLAM systems, our approach is more
scalable, efficient, and robust. Experiments on five chal-
lenging datasets demonstrate competitive results of NICE-
SLAM in both mapping and tracking quality. Project page:
https://pengsongyou.github.io/nice-slam.

1. Introduction
Dense visual Simultaneous Localization and Mapping

(SLAM) is a fundamental problem in 3D computer vi-
sion with many applications in autonomous driving, indoor
robotics, mixed reality, etc. In order to make a SLAM sys-
tem truly useful for real-world applications, the following
properties are essential. First, we desire the SLAM system
to be real-time. Next, the system should have the ability
to make reasonable predictions for regions without obser-
vations. Moreover, the system should be able to scale up to
large scenes. Last but not least, it is crucial to be robust to
noisy or missing observations.

In the scope of real-time dense visual SLAM system,
many methods have been introduced for RGB-D cameras in
the past years. Traditional dense visual SLAM systems [29,

*Equal contribution.
†Corresponding author.

Figure 1. Multi-room Apartment 3D Reconstruction using
NICE-SLAM. A hierarchical feature grid jointly encodes geome-
try and color information and is used for both mapping and track-
ing. We depict the final mesh and camera tracking trajectory.

41, 58, 59] fulfil the real-time requirement and can be used
in large-scale scenes, but they are unable to make plausible
geometry estimation for unobserved regions. On the other
hand, learning-based SLAM approaches [3,12,47,67] attain
a certain level of predictive power since they typically train
on task-specific datasets. Moreover, learning-based meth-
ods tend to better deal with noises and outliers. However,
these methods are typically only working in small scenes
with multiple objects. Recently, Sucar et al. [46] applied a
neural implicit representation in the real-time dense SLAM
system (called iMAP), and they showed decent tracking
and mapping results for room-sized datasets. Nevertheless,
when scaling up to larger scenes, e.g., an apartment con-
sisting of multiple rooms, significant performance drops are
observed in both the dense reconstruction and camera track-
ing accuracy.

The key limiting factor of iMAP [46] stems from its use
of a single multi-layer perceptron (MLP) to represent the
entire scene, which can only be updated globally with every
new, potentially partial RGB-D observations. In contrast,
recent works [37, 48] demonstrate that establishing multi-

12786



level grid-based features can help to preserve geometric de-
tails and enable reconstructing complex scenes, but these
are offline methods without real-time capability.

In this work, we seek to combine the strengths of hier-
archical scene representations with those of neural implicit
representations for the task of dense RGB-D SLAM. To this
end, we introduce NICE-SLAM, a dense RGB-D SLAM
system that can be applied to large-scale scenes while pre-
serving the predictive ability. Our key idea is to represent
the scene geometry and appearance with hierarchical fea-
ture grids and incorporate the inductive biases of neural
implicit decoders pretrained at different spatial resolutions.
With the rendered depth and color images from the occu-
pancy and color decoder outputs, we can optimize the fea-
tures grids only within the viewing frustum by minimizing
the re-rendering losses. We perform extensive evaluations
on a wide variety of indoor RGB-D sequences and demon-
strate the scalability and predictive ability of our method.
Overall, we make the following contributions:
• We present NICE-SLAM, a dense RGB-D SLAM system

that is real-time capable, scalable, predictive, and robust
to various challenging scenarios.

• The core of NICE-SLAM is a hierarchical, grid-based
neural implicit encoding. In contrast to global neural
scene encodings, this representation allows for local up-
dates, which is a prerequisite for large-scale approaches.

• We conduct extensive evaluations on various datasets
which demonstrate competitive performance in both map-
ping and tracking.

The code is available at https://github.com/cvg/nice-slam.

2. Related Work

Dense Visual SLAM. Most modern methods for visual
SLAM follow the overall architecture introduced in the
seminal work by Klein et al. [19], decomposing the task
into mapping and tracking. The map representations can
be generally divided into two categories: view-centric and
world-centric. The first anchors 3D geometry to specific
keyframes, often represented as depth maps in the dense
setting. One of the early examples of this category was
DTAM [29]. Because of its simplicity, DTAM has been
widely adapted in many recent learning-based SLAM sys-
tems. For example, [54, 68] regress both depth and pose
updates. DeepV2D [51] similarly alternates between re-
gressing depth and pose estimation but uses test-time op-
timization. BA-Net [50] and DeepFactors [12] simplify
the optimization problem by using a set of basis depth
maps. There are also some methods, e.g., CodeSLAM [3],
SceneCode [67] and NodeSLAM [47], which optimize a la-
tent representation that decodes into the keyframe or ob-
ject depth maps. DROID-SLAM [52] uses regressed opti-
cal flow to define geometrical residuals for its refinement.

TANDEM [20] combines multi-view stereo with DSO [15]
for a real-time dense SLAM system. On the other hand,
the world-centric map representation anchors the 3D geom-
etry in uniform world coordinates, and can be further di-
vided into surfels [42, 58] and voxel grids, typically storing
occupancies or TSDF values [11]. Voxel grids have been
used extensively in RGB-D SLAM, e.g., KinectFusion [28]
among other works [5, 14, 18, 33]. In our proposed pipeline
we also adopt the voxel-grid representation. In contrast to
previous SLAM approaches, we store implicit latent codes
of the geometry and directly optimize them during mapping.
This richer representation allows us to achieve more accu-
rate geometry at lower grid resolutions.
Neural Implicit Representations. Recently, neural im-
plicit representations demonstrated promising results for
object geometry representation [8, 22, 24, 32, 34–36, 40, 55,
60, 63, 64], scene completion [6, 17, 37], novel view syn-
thesis [23, 25, 38, 66] and also generative modelling [7, 30,
31, 43]. A few recent papers [1, 4, 9, 27, 48, 57, 61] at-
tempt to predict scene-level geometry with RGB-(D) inputs,
but they all assume given camera poses. Another set of
works [21, 56, 65] tackle the problem of camera pose opti-
mization, but they need a rather long optimization process,
which is not suitable for real-time applications.

The most related work to our method is iMAP [46].
Given an RGB-D sequence, they introduce a real-time
dense SLAM system that uses a single multi-layer percep-
tron (MLP) to compactly represent the entire scene. Never-
theless, due to the limited model capacity of a single MLP,
iMAP fails to produce detailed scene geometry and accurate
camera tracking, especially for larger scenes. In contrast,
we provide a scalable solution akin to iMAP, that combines
learnable latent embeddings with a pretrained continuous
implicit decoder. In this way, our method can reconstruct
complex geometry and predict detailed textures for larger
indoor scenes, while maintaining much less computation
and faster convergence. Notably, the works [17, 37] also
combine traditional grid structures with learned feature rep-
resentations for scalability, but neither of them is real-time
capable. Moreover, DI-Fusion [16] also optimizes a feature
grid given an RGB-D sequence, but their reconstruction of-
ten contain holes and their camera tracking is not robust for
the pure surface rendering loss.

3. Method
We provide an overview of our method in Fig. 2. We rep-

resent the scene geometry and appearance using four feature
grids and their corresponding decoders (Sec. 3.1). We trace
the viewing rays for every pixel using the estimated cam-
era calibration. By sampling points along a viewing ray and
querying the network, we can render both depth and color
values of this ray (Sec. 3.2). By minimizing the re-rendering
losses for depth and color, we are able to optimize both the

12787



Figure 2. System Overview. Our method takes an RGB-D image stream as input and outputs both the camera pose as well as a learned
scene representation in form of a hierarchical feature grid. From right-to-left, our pipeline can be interpreted as a generative model which
renders depth and color images from a given scene representation and camera pose. At test time we estimate both the scene representation
and camera pose by solving the inverse problem via backpropagating the image and depth reconstruction loss through a differentiable
renderer (left-to-right). Both entities are estimated within an alternating optimization: Mapping: The backpropagation only updates the
hierarchical scene representation; Tracking: The backpropagation only updates the camera pose. For better readability we joined the
fine-scale grid for geometry encoding with the equally-sized color grid and show them as one grid with two attributes (red and orange).

camera pose and the scene geometry in an alternating fash-
ion (Sec. 3.3) for selected keyframes (Sec. 3.4).

3.1. Hierarchical Scene Representation

We now introduce our hierarchical scene representation
that combines multi-level grid features with pre-trained de-
coders for occupancy predictions. The geometry is encoded
into three feature grids ϕlθ and their corresponding MLP de-
coders f l, where l ∈ {0, 1, 2} is referred to coarse, mid
and fine-level scene details. In addition, we also have a sin-
gle feature grid ψω and decoder gω to model the scene ap-
pearance. Here θ and ω indicate the optimizable parameters
for geometry and color, i.e., the features in the grid and the
weights in the color decoder.
Mid-&Fine-level Geometric Representation. The ob-
served scene geometry is represented in the mid- and fine-
level feature grids. In the reconstruction process we use
these two grids in a coarse-to-fine approach where the ge-
ometry is first reconstructed by optimizing the mid-level
feature grid, followed by a refinement using the fine-level.
In the implementation we use voxel grids with side lengths
of 32cm and 16cm respectively, except for TUM RGB-
D [45] we use 16cm and 8cm. For the mid-level, the fea-
tures are directly decoded into occupancy values using the
associated MLP f1. For any point p ∈ R3, we get the oc-
cupancy as

o1p = f1(p, ϕ1θ(p)), (1)

where ϕ1θ(p) denotes that the feature grid is tri-linearly in-
terpolated at the point p. The relatively low-resolution al-

low us to efficiently optimize the grid features to fit the
observations. To capture smaller high-frequency details in
the scene geometry we add in the fine-level features in a
residual manner. In particular, the fine-level feature decoder
takes as input both the corresponding mid-level feature and
the fine-level feature and outputs an offset from the mid-
level occupancy, i.e.,

∆o1p = f2(p, ϕ1θ(p), ϕ
2
θ(p)), (2)

where the final occupancy for a point is given by

op = o1p +∆o1p. (3)

Note that we fix the pre-trained decoders f1 and f2, and
only optimize the feature grids ϕ1θ and ϕ2θ throughout the
entire optimization process. We demonstrate that this helps
to stabilize the optimization and learn consistent geometry.
Coarse-level Geometric Representation. The coarse-
level feature grid aims to capture the high-level geometry
of the scene (e.g., walls, floor, etc), and is optimized in-
dependently from the mid- and fine-level. The goal of the
coarse-grid is to be able to predict approximate occupancy
values outside of the observed geometry (which is encoded
in the mid/fine-levels), even when each coarse voxel has
only been partially observed. For this reason we use a very
low resolution, with a side-length of 2m in the implementa-
tion. Similarly to the mid-level grid, we decode directly into
occupancy values by interpolating the features and passing
through the MLP f0, i.e.,

o0p = f0(p, ϕ0θ(p)). (4)

12788



During tracking, the coarse-level occupancy values are only
used for predicting the scene parts which are previously un-
observed. This forecasted geometry allows us to track even
when a large of the current image is previously unseen.
Pre-training Feature Decoders. In our framework we use
three different fixed MLPs to decode the grid features into
occupancy values. The coarse and mid-level decoders are
pre-trained as part of ConvONet [37] which consists of a
CNN encoder and an MLP decoder. We train both the en-
coder/decoder using the binary cross-entropy loss between
the predicted and the ground-truth value, same as in [37].
After training, we only use the decoder MLP, as we will di-
rectly optimize the features to fit the observations in our
reconstruction pipeline. In this way the pre-trained de-
coder can leverage resolution-specific priors learned from
the training set, when decoding our optimized features.

The same strategy is used to pre-train the fine-level
decoder, except that we simply concatenate the feature
ϕ1θ(p) from the mid-level together with the fine-level fea-
ture ϕ2θ(p) before inputting to the decoder.
Color Representation. While we are mainly interested in
the scene geometry, we also encode the color information
allowing us to render RGB images which provides addi-
tional signals for tracking. To encode the color in the scene,
we apply another feature grid ψω and decoder gω:

cp = gω(p, ψω(p)), (5)

where ω indicates learnable parameters during optimiza-
tion. Different from the geometry that has strong prior
knowledge, we empirically found that jointly optimizing the
color featuresψω and decoder gω improves the tracking per-
formance (c.f. Table 5). Note that, similarly to iMAP [46],
this can lead to forgetting problems and the color is only
consistent locally. If we want to visualize the color for
the entire scene, it can be optimized globally as a post-
processing step.
Network Design. For all MLP decoders, we use a hidden
feature dimension of 32 and 5 fully-connected blocks. Ex-
cept for the coarse-level geometric representation, we apply
a learnable Gaussian positional encoding [46, 49] to p be-
fore serving as input to MLP decoders. We observe this al-
lows discovery of high frequency details for both geometry
and appearance.

3.2. Depth and Color Rendering

Inspired by the recent success of volume rendering in
NeRF [25], we propose to also use a differentiable render-
ing process which integrates the predicted occupancy and
colors from our scene representation in Section 3.1.

Given camera intrinsic parameters and current camera
pose, we can calculate the viewing direction r of a pixel
coordinate. We first sample along this ray Nstrat points for
stratified sampling, and also uniformly sample Nimp points

near to the depth1. In total we sample N = Nstrat + Nimp
points for each ray. More formally, let pi = o + dir, i ∈
{1, · · · , N} denote the sampling points on the ray r given
the camera origin o, and di corresponds to the depth value
of pi along this ray. For every point pi, we can calculate
their coarse-level occupancy probability o0pi

, fine-level oc-
cupancy probability opi , and color value cpi using Eq. (4),
Eq. (3), and Eq. (5). Similar to [34], we model the ray ter-
mination probability at point pi aswc

i = o0pi

∏i−1
j=1(1−o0pj

)

for coarse level, andwf
i = opi

∏i−1
j=1(1−opj ) for fine level.

Finally for each ray, the depth at both coarse and fine
level, and color can be rendered as:

D̂c =

N∑
i=1

wc
idi, D̂f =

N∑
i=1

wf
i di, Î =

N∑
i=1

wf
i ci. (6)

Moreover, we also calculate depth variances along the ray:

D̂c
var =

N∑
i=1

wc
i (D̂

c − di)
2 D̂f

var =

N∑
i=1

wf
i (D̂

f − di)
2.

(7)

3.3. Mapping and Tracking

In this section, we provide details on the optimization of
the scene geometry θ and appearance ω parameters of our
hierarchical scene representation, and of the camera poses.
Mapping. To optimize the scene representation mentioned
in Section 3.1, we uniformly sample totalM pixels from the
current frame and the selected keyframes. Next, we perform
optimization in a staged fashion to minimize the geometric
and photometric losses.

The geometric loss is simply an L1 loss between the ob-
servations and predicted depths at coarse or fine level:

Ll
g =

1

M

M∑
m=1

∣∣∣Dm − D̂l
m

∣∣∣, l ∈ {c, f}. (8)

The photometric loss is also an L1 loss between the ren-
dered and observed color values for M sampled pixel:

Lp =
1

M

M∑
m=1

∣∣∣Im − Îm

∣∣∣ . (9)

At the first stage, we optimize only the mid-level feature
grid ϕ1θ using the geometric loss Lf

g in Eq. (8). Next, we
jointly optimize both the mid and fine-level ϕ1θ, ϕ

2
θ features

with the same fine-level depth loss Lf
g . Finally, we conduct

a local bundle adjustment (BA) to jointly optimize feature
grids at all levels, the color decoder, as well as the camera
extrinsic parameters {Ri, ti} of K selected keyframes:

min
θ,ω,{Ri,ti}

(Lc
g + Lf

g + λpLp) , (10)

1We empirically define the sampling interval as ±0.05D, where D is
the depth value of the current ray.

12789



where λp is the loss weighting factor.
This multi-stage optimization scheme leads to better

convergence as the higher-resolution appearance and fine-
level features can rely on the already refined geometry com-
ing from mid-level feature grid.

Note that we parallelize our system in three threads to
speed up the optimization process: one thread for coarse-
level mapping, one for mid-&fine-level geometric and color
optimization, and another one for camera tracking.
Camera Tracking. In addition to optimizing the scene
representation, we also run in parallel camera tracking to
optimize the camera poses of the current frame, i.e., rotation
and translation {R, t}. To this end, we sample Mt pixels
in the current frame and apply the same photometric loss
in Eq. (9) but use a modified geometric loss:

Lg var =
1

Mt

Mt∑
m=1

∣∣∣Dm − D̂c
m

∣∣∣√
D̂c

var

+

∣∣∣Dm − D̂f
m

∣∣∣√
D̂f

var

. (11)

The modified loss down-weights less certain regions in the
reconstructed geometry [46, 62], e.g., object edges. The
camera tracking is finally formulated as the following min-
imization problem:

min
R,t

(Lg var + λptLp) . (12)

The coarse feature grid is able to perform short-range pre-
dictions of the scene geometry. This extrapolated geometry
provides a meaningful signal for the tracking as the camera
moves into previously unobserved areas. Making it more
robust to sudden frame loss or fast camera movement. We
provide experiments in the supplementary material.
Robustness to Dynamic Objects. To make the optimiza-
tion more robust to dynamic objects during tracking, we fil-
ter pixels with large depth/color re-rendering loss. In par-
ticular, we remove any pixel from the optimization where
the loss Eq. (12) is larger than 10× the median loss value
of all pixels in the current frame. Fig. 6 shows an exam-
ple where a dynamic object is ignored since it is not present
in the rendered RGB and depth image. Note that for this
task, we only optimize the scene representation during the
mapping. Jointly optimizing camera parameters and scene
representations under dynamic environments is non-trivial,
and we consider it as an interesting future direction.

3.4. Keyframe Selection

Similar to other SLAM systems, we continuously opti-
mize our hierarchical scene representation with a set of se-
lected keyframes. We maintain a global keyframe list in
the same spirit of iMAP [46], where we incrementally add
new keyframes based on the information gain. However, in
contrast to iMAP [46], we only include keyframes which

have visual overlap with the current frame when optimiz-
ing the scene geometry. This is possible since we are able
to make local updates to our grid-based representation, and
we do not suffer from the same forgetting problems as [46].
This keyframe selection strategy not only ensures the ge-
ometry outside of the current view remains static, but also
results in a very efficient optimization problem as we only
optimize the necessary parameters each time. In practice,
we first randomly sample pixels and back-project the cor-
responding depths using the optimized camera pose. Then,
we project the point cloud to every keyframe in the global
keyframe list. From those keyframes that have points pro-
jected onto, we randomly select K − 2 frames. In addition,
we also include the most recent keyframe and the current
frame in the scene representation optimization, forming a
total number of K active frames. Please refer to Section 4.4
for an ablation study on the keyframe selection strategy.

4. Experiments
We evaluate our SLAM framework on a wide variety of

datasets, both real and synthetic, of varying size and com-
plexity. We also conduct a comprehensive ablation study
that supports our design choices.

4.1. Experimental Setup

Datasets. We consider 5 versatile datasets: Replica [44],
ScanNet [13], TUM RGB-D dataset [45], Co-Fusion
dataset [39], as well as a self-captured large apartment with
multiple rooms. We follow the same pre-processing step for
TUM RGB-D as in [53].
Baselines. We compare to TSDF-Fusion [11] with our
camera poses with a voxel grid resolution of 2563 (results
of higher resolutions are reported in the supp. material),
DI-Fusion [16] using their official implementation2, as well
as our faithful iMAP [46] re-implementation: iMAP∗. Our
re-implementation has similar performance as the original
iMAP in both scene reconstruction and camera tracking.
Metrics. We use both 2D and 3D metrics to evaluate the
scene geometry. For the 2D metric, we evaluate the L1 loss
on 1000 randomly-sampled depth maps from both recon-
structed and ground truth meshes. For fair comparison, we
apply the bilateral solver [2] to DI-Fusion [16] and TSDF-
Fusion to fill depth holes before calculating the average L1
loss. For 3D metrics, we follow [46] and consider Accu-
racy [cm], Completion [cm], and Completion Ratio [< 5cm
%], except that we remove unseen regions that are not in-
side any camera’s viewing frustum. For the evaluation of
camera tracking, we use ATE RMSE [45]. If not specified
otherwise, by default we report the average results of 5 runs.
Implementation Details. We run our SLAM system on
a desktop PC with a 3.80GHz Intel i7-10700K CPU and

2https://github.com/huangjh-pub/di-fusion

12790



room-2 office-2

iM
A

P∗
[4

6]
N

IC
E

-S
L

A
M

G
T

Figure 3. Reconstruction Results on the Replica Dataset [44].
iMAP∗ refers to our iMAP re-implementation.

TSDF-Fusion [11] iMAP∗ [46] DI-Fusion [16] NICE-SLAM

Mem. (MB) ↓ 67.10 1.04 3.78 12.02

Depth L1 ↓ 7.57 7.64 23.33 3.53
Acc. ↓ 1.60 6.95 19.40 2.85
Comp. ↓ 3.49 5.33 10.19 3.00
Comp. Ratio ↑ 86.08 66.60 72.96 89.33

Table 1. Reconstruction Results for the Replica Dataset [44]
(average over 8 scenes). iMAP∗ indicates our re-implementation
of iMAP. TSDF-Fusion uses camera poses from NICE-SLAM.
Detailed metrics for each scene can be found in the supp. material.

an NVIDIA RTX 3090 GPU. In all our experiments, we
use the number of sampling points on a ray Nstrat = 32
and Nimp = 16, photometric loss weighting λp = 0.2
and λpt = 0.5. For small-scale synthetic datasets (Replica
and Co-Fusion), we select K = 5 keyframes and sam-
ple M = 1000 and Mt = 200 pixels. For large-scale
real datasets (ScanNet and our self-captured scene), we use
K = 10, M = 5000, Mt = 1000. As for the challeng-
ing TUM RGB-D dataset, we use K = 10, M = 5000,
Mt = 5000. For our re-implementation iMAP∗, we follow
all the hyperparameters mentioned in [46] except that we
set the number of sampling pixels to 5000 since it leads to
better performance in both reconstruction and tracking.

4.2. Evaluation of Mapping and Tracking

Evaluation on Replica [44]. To evaluate on Replica [44],
we use the same rendered RGB-D sequence provided by
the authors of iMAP. With the hierarchical scene represen-
tation, our method is able to reconstruct the geometry pre-
cisely within limited iterations. As shown in Table 1, NICE-
SLAM significantly outperforms baseline methods on al-
most all metrics, while keeping a reasonable memory con-
sumption. Qualitatively, we can see from Fig. 3 that our
method produces sharper geometry and less artifacts.
Evaluation on TUM RGB-D [45]. We also evaluate
the camera tracking performance on the small-scale TUM
RGB-D dataset. As shown in Table 2, our method outper-
forms iMAP and DI-Fusion even though ours is by design
more suitable for large scenes. As can be noticed, the state-

fr1/desk fr2/xyz fr3/office

iMAP [46] 4.9 2.0 5.8
iMAP∗ [46] 7.2 2.1 9.0
DI-Fusion [16] 4.4 2.3 15.6
NICE-SLAM 2.7 1.8 3.0

BAD-SLAM [42] 1.7 1.1 1.7
Kintinuous [59] 3.7 2.9 3.0
ORB-SLAM2 [26] 1.6 0.4 1.0

Table 2. Camera Tracking Results on TUM RGB-D [45]. ATE
RMSE [cm] (↓) is used as the evaluation metric. NICE-SLAM
reduces the gap between SLAM methods with neural implicit rep-
resentations and traditional approaches. We report the best out of
5 runs for all methods in this table. The numbers for iMAP, BAD-
SLAM, Kintinuous, and ORB-SLAM2 are taken from [46].

Scene ID 0000 0059 0106 0169 0181 0207 Avg.

iMAP∗ [46] 55.95 32.06 17.50 70.51 32.10 11.91 36.67
DI-Fusion [16] 62.99 128.00 18.50 75.80 87.88 100.19 78.89
NICE-SLAM 8.64 12.25 8.09 10.28 12.93 5.59 9.63

Table 3. Camera Tracking Results on ScanNet [13]. Our ap-
proach yields consistently better results on this dataset. ATE
RMSE (↓) is used as the evaluation metric.

of-the-art approaches for tracking (e.g. BAD-SLAM [42],
ORB-SLAM2 [26]) still outperform the methods based on
implicit scene representations (iMAP [46] and ours). Nev-
ertheless, our method significantly reduces the gap between
these two categories, while retaining the representational
advantages of implicit representations.
Evaluation on ScanNet [13]. We select multiple large
scenes from ScanNet [13] to benchmark the scalability of
different methods. For the geometry shown in Fig. 4, we
can clearly notice that NICE-SLAM produces sharper and
more detailed geometry over TSDF-Fusion, DI-Fusion and
iMAP∗. In terms of tracking, as can be observed, iMAP∗

and DI-Fusion either completely fails or introduces large
drifting, while our method successfully reconstructs the en-
tire scene. Quantitatively speaking, our tracking results are
also significantly more accurate than both DI-Fusion and
iMAP∗ as shown in Table 3.
Evaluation on a Larger Scene. To evaluate the scalabil-
ity of our method we captured a sequence in a large apart-
ment with multiple rooms. Fig. 1 and Fig. 5 show the recon-
structions obtained using NICE-SLAM, DI-Fusion [16] and
iMAP∗ [46]. For reference we also show the 3D reconstruc-
tion using the offline tool Redwood [10] in Open3D [69].
We can see that NICE-SLAM has comparable results with
the offline method, while iMAP∗ and DI-Fusion fails to re-
construct the full sequence.

4.3. Performance Analysis

Besides the evaluation on scene reconstruction and cam-
era tracking on various datasets, in the following we also
evaluate other characteristics of the proposed pipeline.

12791



TSDF-Fusion w/ our pose iMAP∗ [46] DI-Fusion [16] NICE-SLAM ScanNet Mesh

Figure 4. 3D Reconstruction and Tracking on ScanNet [13]. The black trajectory is from ScanNet [13], the red trajectory is the methods’
tracking result. We tried various hyperparameters for iMAP∗ and present the best results which are mostly inferior.

iMAP∗ [46] DI-Fusion [16] NICE-SLAM Redwood [10]

Figure 5. 3D Reconstruction and Tracking on a Multi-room Apartment. The camera tracking trajectory is shown in red. iMAP∗ and
DI-Fusion failed to reconstruct the entire sequence. We also show the result of an offline method [10] for reference.

Computation Complexity. First, we compare the num-
ber of floating point operations (FLOPs) needed for query-
ing color and occupancy/volume density of one 3D point,
see Table 4. Our method requires only 1/4 FLOPs of iMAP.
It is worth mentioning that FLOPs in our approach remain
the same even for very large scenes. In contrast, due to the
use of a single MLP in iMAP, the capacity limit of the MLP
might require more parameters that result in more FLOPs.
Runtime. We also compare in Table 4 the runtime for
tracking and mapping using the same number of pixel sam-
ples (Mt = 200 for tracking and M = 1000 for mapping).
We can notice that our method is over 2× and 3× faster
than iMAP in tracking and mapping. This indicates the ad-
vantage of using feature grids with shallow MLP decoders
over a single heavy MLP.

Robustness to Dynamic Objects. Here we consider the
Co-Fusion dataset [39] which contains dynamically mov-
ing objects. As illustrated in Fig. 6, our method correctly
identifies and ignores pixel samples falling into the dynamic

FLOPs [×103]↓ Tracking [ms]↓ Mapping [ms]↓

iMAP [46] 443.91 101 448
NICE-SLAM 104.16 47 130

Table 4. Computation & Runtime. Our scene representation
does not only improve the reconstruction and tracking quality, but
is also faster. The runtimes for iMAP are taken from [46].

object during optimization, which leads to better scene rep-
resentation modelling (see the rendered RGB and depths).
Furthermore, we also compare with iMAP∗ on the same se-
quence for camera tracking. The ATE RMSE scores of ours
and iMAP∗ is 1.6cm and 7.8cm respectively, which clearly
demonstrates our robustness to dynamic objects.

Geometry Forecast and Hole Filling. As illustrated in
Fig. 7, we are able to complete unobserved scene regions
thanks to the use of coarse-level scene prior. In contrast,
the unseen regions reconstructed by iMAP∗ are very noisy
since no scene prior knowledge is encoded in iMAP∗.

12792



Pixel Samples Our RGB Our Depth

Figure 6. Robustness to Dynamic Objects. We show the sampled
pixels overlaid on an image with a dynamic object in the center
(left), our rendered RGB (middle) and our rendered depth (right)
to illustrate the ability of handling dynamic environments. The
masked pixel samples during tracking are colored in black, while
the used ones are shown in red.

iMAP∗ [46] NICE-SLAM w/o coarse NICE-SLAM

Figure 7. Geometry Forecast and Hole Filling. The white col-
ored area is the region with observations, and cyan indicates the
unobserved but predicted region. Thanks to the use of coarse-level
scene prior, our method has better prediction capability compared
to iMAP∗. This in turn also improves our tracking performance.

4.4. Ablation Study

In this section, we investigate the choice of our hierarchi-
cal architecture and the importance of color representation.
Hierarchical Architecture. Fig. 8 compares our hierarchi-
cal architecture against: a) one feature grid with the same
resolution as our fine-level representation (Only High-res);
b) one feature grid with mid-level resolution (Only Low-
res). Our hierarchical architecture can quickly add geomet-
ric details when the fine-level representation participates in
the optimization, which also leads to better convergence.
Local BA. We verify the effectiveness of local bundle ad-
justment on ScanNet [13]. If we do not jointly optimize
camera poses for K keyframes together with the scene rep-
resentation (w/o Local BA in Table 5), the camera tracking
is not only significantly less accurate, but also less robust.
Color Representation. In Table 5 we compare our method
without the photometric loss Lp in Eq. (9). It shows that,
although our estimated colors are not perfect due to the lim-
ited optimization budget and the lack of sampling points,
learning such a color representation still plays an important
role for accurate camera tracking.
Keyframe Selection. We test our method using iMAP’s
keyframe selection strategy (w/ iMAP keyframes in Table 5)
where they select keyframes from the entire scene. This
is necessary for iMAP to prevent their simple MLP from
forgetting the previous geometry. Nevertheless, it also leads
to slow convergence and inaccurate tracking.

ATE RMSE (↓) w/o Local BA w/o Lp w/ iMAP keyframes Full

Mean 37.74 32.02 12.10 9.63
Std. 30.97 21.98 3.38 0.62

Table 5. Ablation Study. We investigate the usefulness of local
BA, color representation, as well as our keyframe selection strat-
egy. We run each scene 5 times and calculate their mean and stan-
dard deviation of ATE RMSE (↓). We report the average values
over 6 scenes in ScanNet [13].

0 50 100 150 200
Iterations

0

2

4

6

8

10

D
ep

th
L

os
s

(c
m

)

Fine-level optimization begins.

Hierarchical
Only High-res
Only Low-res

Figure 8. Hierarchical Architecture Ablation. Geometry opti-
mization on a single depth image on Replica [44] with different
architectures. The curves are smoothed for better visualization.

5. Conclusion

We presented NICE-SLAM, a dense visual SLAM ap-
proach that combines the advantages of neural implicit rep-
resentations with the scalability of an hierarchical grid-
based scene representation. Compared to a scene repre-
sentation with a single big MLP, our experiments demon-
strate that our representation (tiny MLPs + multi-res feature
grids) not only guarantees fine-detailed mapping and high
tracking accuracy, but also faster speed and much less com-
putation due to the benefit of local scene updates. Besides,
our network is able to fill small holes and extrapolate scene
geometry into unobserved regions which in turn stabilizes
the camera tracking.

Limitations. The predictive ability of our method is re-
stricted to the scale of the coarse representation. In addi-
tion, our method does not perform loop closures, which is
an interesting future direction. Finally, although traditional
methods lack some of the features, there is still a perfor-
mance gap to the learning-based approaches that needs to
be closed.

Acknowledgements. The authors thank the Max Planck
ETH Center for Learning Systems (CLS) for supporting
Songyou Peng. We also thank Edgar Sucar for provid-
ing additional implementation details about iMAP. Spe-
cial thanks to Chi Wang for offering the data collection
site. This work was partially supported by the NSFC
(No. 62102356), Zhejiang Lab (2021PE0AC01). Weiwei
Xu is partially supported by NSFC (No. 61732016).

12793



References
[1] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman,

Matthias Nießner, and Justus Thies. Neural rgb-d surface
reconstruction. In CVPR, 2022. 2

[2] Jonathan T Barron and Ben Poole. The fast bilateral solver.
In European conference on computer vision, pages 617–632.
Springer, 2016. 5

[3] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan
Leutenegger, and Andrew J Davison. Codeslam—learning
a compact, optimisable representation for dense visual slam.
In CVPR, 2018. 1, 2

[4] Aljaž Božič, Pablo Palafox, Justus Thies, Angela Dai, and
Matthias Nießner. Transformerfusion: Monocular rgb scene
reconstruction using transformers. Proc. Neural Information
Processing Systems (NeurIPS), 2021. 2

[5] Erik Bylow, Jürgen Sturm, Christian Kerl, Fredrik Kahl, and
Daniel Cremers. Real-time camera tracking and 3d recon-
struction using signed distance functions. In RSS, 2013. 2

[6] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt,
Julian Straub, Steven Lovegrove, and Richard Newcombe.
Deep local shapes: Learning local sdf priors for detailed 3d
reconstruction. In ECCV, 2020. 2

[7] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,
and Gordon Wetzstein. pi-gan: Periodic implicit genera-
tive adversarial networks for 3d-aware image synthesis. In
CVPR, 2021. 2

[8] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In CVPR, 2019. 2

[9] Jaesung Choe, Sunghoon Im, François Rameau, Minjun
Kang, and In So Kweon. Volumefusion: Deep depth fusion
for 3d scene reconstruction. In ICCV, 2021. 2

[10] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Robust
reconstruction of indoor scenes. In CVPR, 2015. 6, 7

[11] Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. In Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques, 1996. 2, 5, 6

[12] Jan Czarnowski, Tristan Laidlow, Ronald Clark, and An-
drew J Davison. Deepfactors: Real-time probabilistic dense
monocular slam. IEEE Robotics and Automation Letters,
2020. 1, 2

[13] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
CVPR, 2017. 5, 6, 7, 8

[14] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram
Izadi, and Christian Theobalt. Bundlefusion: Real-time
globally consistent 3d reconstruction using on-the-fly surface
reintegration. ACM Transactions on Graphics (ToG), 2017.
2

[15] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct
sparse odometry. IEEE TPAMI, 40(3):611–625, 2017. 2

[16] Jiahui Huang, Shi-Sheng Huang, Haoxuan Song, and Shi-
Min Hu. Di-fusion: Online implicit 3d reconstruction with
deep priors. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8932–
8941, 2021. 2, 5, 6, 7

[17] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei
Huang, Matthias Nießner, Thomas Funkhouser, et al. Local
implicit grid representations for 3d scenes. In CVPR, 2020.
2

[18] Olaf Kähler, Victor Adrian Prisacariu, and David W. Mur-
ray. Real-time large-scale dense 3d reconstruction with loop
closure. In ECCV, 2016. 2

[19] Georg Klein and David Murray. Parallel tracking and map-
ping on a camera phone. In ISMAR, 2009. 2

[20] Lukas Koestler, Nan Yang, Niclas Zeller, and Daniel Cre-
mers. Tandem: Tracking and dense mapping in real-time
using deep multi-view stereo. In CoRL, 2021. 2

[21] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-
mon Lucey. Barf: Bundle-adjusting neural radiance fields.
In ICCV, 2021. 2

[22] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc
Pollefeys, and Zhaopeng Cui. Dist: Rendering deep implicit
signed distance function with differentiable sphere tracing.
In CVPR, 2020. 2

[23] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In CVPR, 2021. 2

[24] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In CVPR,
2019. 2

[25] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R.
Ramamoorthi, and N. Ren. Nerf: Representing scenes as
neural radiance fields for view synthesis. In ECCV, 2020. 2,
4

[26] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: An Open-
Source SLAM System for Monocular, Stereo, and RGB-D
Cameras. IEEE Transactions on Robotics, 2017. 6

[27] Zak Murez, Tarrence van As, James Bartolozzi, Ayan Sinha,
Vijay Badrinarayanan, and Andrew Rabinovich. Atlas: End-
to-end 3d scene reconstruction from posed images. In ECCV,
2020. 2

[28] Richard A Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J Davison, Pushmeet
Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon.
Kinectfusion: Real-time dense surface mapping and track-
ing. In ISMAR, 2011. 2

[29] Richard A Newcombe, Steven J Lovegrove, and Andrew J
Davison. Dtam: Dense tracking and mapping in real-time.
In ICCV, 2011. 1, 2

[30] Michael Niemeyer and Andreas Geiger. Campari: Camera-
aware decomposed generative neural radiance fields. In 3DV,
2021. 2

[31] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields.
In CVPR, 2021. 2

[32] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
CVPR, 2020. 2

12794



[33] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and
Marc Stamminger. Real-time 3d reconstruction at scale us-
ing voxel hashing. ACM Transactions on Graphics (ToG),
2013. 2

[34] Michael Oechsle, Songyou Peng, and Andreas Geiger.
Unisurf: Unifying neural implicit surfaces and radiance
fields for multi-view reconstruction. In ICCV, 2021. 2, 4

[35] Jeong Joon Park, Peter Florence, Julian Straub, Richard A.
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In CVPR, 2019. 2

[36] Songyou Peng, Chiyu ”Max” Jiang, Yiyi Liao, Michael
Niemeyer, Marc Pollefeys, and Andreas Geiger. Shape as
points: A differentiable poisson solver. In NeurIPS, 2021. 2

[37] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In ECCV, 2020. 1, 2, 4

[38] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In ICCV, 2021. 2

[39] Martin Rünz and Lourdes Agapito. Co-fusion: Real-time
segmentation, tracking and fusion of multiple objects. In
ICRA, 2017. 5, 7

[40] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In ICCV, 2019. 2

[41] Thomas Schöps, Torsten Sattler, and Marc Pollefeys. BAD
SLAM: bundle adjusted direct RGB-D SLAM. In IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019, pages 134–
144. Computer Vision Foundation / IEEE, 2019. 1

[42] Thomas Schops, Torsten Sattler, and Marc Pollefeys. BAD
SLAM: Bundle adjusted direct RGB-D SLAM. In CVPR,
2019. 2, 6

[43] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. In NeurIPS, 2020. 2

[44] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J. Engel, Raul Mur-Artal,
Carl Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan,
Brian Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang
Zou, Kimberly Leon, Nigel Carter, Jesus Briales, Tyler
Gillingham, Elias Mueggler, Luis Pesqueira, Manolis Savva,
Dhruv Batra, Hauke M. Strasdat, Renzo De Nardi, Michael
Goesele, Steven Lovegrove, and Richard Newcombe. The
Replica dataset: A digital replica of indoor spaces. arXiv
preprint arXiv:1906.05797, 2019. 5, 6, 8

[45] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram
Burgard, and Daniel Cremers. A benchmark for the eval-
uation of rgb-d slam systems. In IROS, 2012. 3, 5, 6

[46] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew Davi-
son. iMAP: Implicit mapping and positioning in real-time.
In ICCV, 2021. 1, 2, 4, 5, 6, 7, 8

[47] Edgar Sucar, Kentaro Wada, and Andrew Davison.
Nodeslam: Neural object descriptors for multi-view shape
reconstruction. In 3DV, 2020. 1, 2

[48] Jiaming Sun, Yiming Xie, Linghao Chen, Xiaowei Zhou, and
Hujun Bao. Neuralrecon: Real-time coherent 3d reconstruc-
tion from monocular video. In CVPR, 2021. 1, 2

[49] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. In NeurIPS, 2020. 4

[50] Chengzhou Tang and Ping Tan. Ba-net: Dense bundle ad-
justment networks. In ICLR, 2018. 2

[51] Zachary Teed and Jia Deng. Deepv2d: Video to depth with
differentiable structure from motion. In ICLR, 2019. 2

[52] Zachary Teed and Jia Deng. Droid-slam: Deep visual slam
for monocular, stereo, and rgb-d cameras. In NeurIPS, 2021.
2

[53] Zachary Teed and Jia Deng. Tangent space backpropa-
gation for 3d transformation groups. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021. 5

[54] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Niko-
laus Mayer, Eddy Ilg, Alexey Dosovitskiy, and Thomas
Brox. Demon: Depth and motion network for learning
monocular stereo. In CVPR, 2017. 2

[55] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
In NeurIPS, 2021. 2

[56] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen,
and Victor Adrian Prisacariu. Nerf–: Neural radiance
fields without known camera parameters. arXiv preprint
arXiv:2102.07064, 2021. 2

[57] Silvan Weder, Johannes L Schonberger, Marc Pollefeys, and
Martin R Oswald. Neuralfusion: Online depth fusion in la-
tent space. In CVPR, 2021. 2

[58] Thomas Whelan, Stefan Leutenegger, R Salas-Moreno, Ben
Glocker, and Andrew Davison. Elasticfusion: Dense slam
without a pose graph. In RSS, 2015. 1, 2

[59] T. Whelan, J. B. McDonald, M. Kaess, M. Fallon, H. Jo-
hannsson, and J. J. Leonard. Kintinuous: Spatially Extended
KinectFusion. In RSS ’12 Workshop on RGB-D: Advanced
Reasoning with Depth Cameras, 2012. 1, 6

[60] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomı́r
Mech, and Ulrich Neumann. DISN: deep implicit surface
network for high-quality single-view 3d reconstruction. In
NeurIPS, 2019. 2

[61] Zike Yan, Yuxin Tian, Xuesong Shi, Ping Guo, Peng Wang,
and Hongbin Zha. Continual neural mapping: Learning an
implicit scene representation from sequential observations.
In ICCV, 2021. 2

[62] Nan Yang, Lukas von Stumberg, Rui Wang, and Daniel Cre-
mers. D3vo: Deep depth, deep pose and deep uncertainty for
monocular visual odometry. In CVPR, 2020. 5

[63] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. In NeurIPS, 2021.
2

[64] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Ronen Basri, and Yaron Lipman. Multiview neu-

12795



ral surface reconstruction by disentangling geometry and ap-
pearance. In NeurIPS, 2020. 2

[65] Lin Yen-Chen, Pete Florence, Jonathan T Barron, Alberto
Rodriguez, Phillip Isola, and Tsung-Yi Lin. inerf: Inverting
neural radiance fields for pose estimation. In IROS, 2020. 2

[66] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020. 2

[67] Shuaifeng Zhi, Michael Bloesch, Stefan Leutenegger, and
Andrew J Davison. Scenecode: Monocular dense semantic
reconstruction using learned encoded scene representations.
In CVPR, 2019. 1, 2

[68] Huizhong Zhou, Benjamin Ummenhofer, and Thomas Brox.
Deeptam: Deep tracking and mapping. In ECCV, 2018. 2

[69] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv:1801.09847,
2018. 6

12796


