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Abstract

We propose a semi-supervised network for wide-angle
portraits correction. Wide-angle images often suffer from
skew and distortion affected by perspective distortion, espe-
cially noticeable at the face regions. Previous deep learn-
ing based approaches need the ground-truth correction flow
maps for training guidance. However, such labels are ex-
pensive, which can only be obtained manually. In this
work, we design a semi-supervised scheme and build a
high-quality unlabeled dataset with rich scenarios, allow-
ing us to simultaneously use labeled and unlabeled data
to improve performance. Specifically, our semi-supervised
scheme takes advantage of the consistency mechanism, with
several novel components such as direction and range con-
sistency (DRC) and regression consistency (RC). Further-
more, different from the existing methods, we propose the
Multi-Scale Swin-Unet (MS-Unet) based on the multi-scale
swin transformer block (MSTB), which can simultaneously
learn short-distance and long-distance information to avoid
artifacts. Extensive experiments demonstrate that the pro-
posed method is superior to the state-of-the-art methods
and other representative baselines. The source code and
dataset are available at https://github.com/megvii-
research/Portraits_Correction

1. Introduction

In recent years, a growing number of smartphones have
been equipped with wide-angle cameras, which take wide-
angle images with rich contents. However, a wider FOV
camera often causes severe perspective distortions, which
bends straight edges on buildings, and distorts faces, as
shown in Fig. 1(a). Therefore, an ideal intelligent algorithm
is required to correct the distortion image. After correction,
the faces will look more natural while the curved lines in
the background are also corrected, as shown in Fig. 1(b).

The traditional undistortion methods apply perspective
projection using calibrated camera parameters, which cor-

*Equal contribution. †Corresponding authors.
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Figure 1. An example of our method. (a) the original wide-angle
image with curved lines and distorted faces. (b) result by the pro-
posed semi-supervised method, both lines and faces are corrected.

rectly warp the lines at the background to straight [3,8,24].
Nevertheless, faces on the image are stretched unnaturally
due to incorrect projection as a plane. Compared to per-
spective projection, the mercator and stereographic projec-
tions [28] can preserve the shape of faces locally, but they
also bend linear structures in the background [4].

It is obvious that facial regions and background need two
different types of projections for the wide-angle image cor-
rection. Carroll et al. [4] presented a content-preserving
approach that finds an optimal mapping solution accord-
ing to the user-specified lines. Recently, Shih et al. [26]
designed an optimization problem to create a mesh that
adapts stereographic projection on facial regions regionally
and applies perspective projection on background, enabling
a smooth transition between portraits and background by
solving the optimization problem automatically. However,
the method [26] sometimes causes distorted architectures
nearby corrected faces. In addition, it requires portraits seg-
mentation mask and camera parameters as additional inputs.

Tan et al. [29] proposed the first fully-supervised CNN-
based method for wide-angle image correction, which con-
sists of a line correction network and a portraits correction
network. Tan’s method obtained satisfactory results with
the distorted image as input. However, there still exists dis-
advantages in their work. First, it needs many training pho-
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tos under rich scenarios, and each face in the photo must be
manually undistorted by specific tools. Meanwhile, errors
may occur in manual annotation, causing uneven annota-
tion quality or introducing dirty data. Therefore, the whole
data preparation procedure is complex and expensive, mak-
ing it unrealistic to improve performance by enlarging the
training dataset. Second, Tan’s method also creates artifacts
in some cases because it does not use long-range semantic
information for local variations of faces.

To address the above problems, we attempt to lever-
age a novel semi-supervised strategy, aiming to reduce the
cost of preparing an expensive manual corrected dataset.
Specifically, we adopt the semi-supervised strategy, con-
taining direction and range consistency (DRC) and regres-
sion consistency (RC), to make full use of both labeled and
unlabeled data by introducing a surrogate task (segmen-
tation). Besides, compared with Tan et al. [29], we de-
velop a novel network based on the multi-scale swin trans-
former block (MSTB), dubbed as Multi-Scale Swin-Unet
(MS-Unet) which is better suitable for portraits correction.
In particular, we also collect more than 5, 000 unlabeled dis-
tortion images from different phones and scenes to train
MS-Unet by the semi-supervised strategy. Experimental
results show that our approach can correct distortions in
wide-angle portraits with superior performance than previ-
ous methods, and it only needs a small amount of manually
labeled data. In summary, our main contributions are:

• We propose the first semi-supervised learning strategy
for wide-angle portraits correction, which dramatically
reduces the requirement of labeled training data.

• We develop a novel transformer-based network called
MS-Unet, based on MSTB, to fully utilize both local-
scale and long-range semantic information interaction
for wide-angle portraits correction.

• We provide a high-quality unlabeled dataset that can
be used to train semi-supervised wide-angle portraits
correction algorithms.

2. Related Works
2.1. Wide-Angle Portraits Correction

Early wide-angle portraits correction methods always re-
lied on traditional algorithms [4, 40]. Tehrani et al. [31, 32]
presented methods to remove faces distortions and preserve
background features during this process, but their solutions
require user assistance. Shih et al. [26] proposed a mesh-
based algorithm that can strike a balance between straight
lines and faces correction effects automatically. Neverthe-
less, it requires the camera parameters and portraits seg-
mentation as inputs. Recently, Tan et al. [29] proposed a
two-stage deep neural network to complete wide-angle por-
traits correction with only an image as input. However, this

fully-supervised method is limited to the number of labeled
data that requires high-cost manual screening and process-
ing. Fortunately, our method greatly reduces the limitation
of the amount of labeled training dataset and learns the cor-
rection flow maps from distortion image to usual image.

2.2. Deep Semi-Supervised Learning

Deep semi-supervised learning provides a practical and
effective approach to fully utilizing the mixture dataset con-
taining labeled and unlabeled images. It has been widely
used in image classification [13,36,37], semantic segmenta-
tion [1, 35, 38], machine translation [6, 9, 12], crowd count-
ing [21, 23], text classification [15, 17, 18], text segmenta-
tion [30, 34] and so on. These works have proved that the
semi-supervised method can promote the accuracy. There-
fore, we introduce the semi-supervised strategy into the por-
traits correction domain and make a beautiful breakthrough.

2.3. Visual Transformer

The proposal of transformer [33] has been widely used
in natural language processing (NLP). Inspired by their out-
standing achievements, researchers have gradually applied
transformers to the computer vision field recently [11, 16].
More impressively, Liu et al. [22] proposed an excel-
lent hierarchical transformer structure called Swin Trans-
former, which is established upon shifted window partition-
ing mechanism. It has advanced performance on various vi-
sion tasks, including image classification, object detection,
and semantic segmentation. Hu et al. [2] also devised a U-
shaped transformer block called Swin-Unet, which focused
on medical image segmentation and achieved surpassing re-
sults. Based on these works, we propose a new transformer
network that can meet the need for long-distance semantic
information of wide-angle portraits correction.

3. Method
Fig. 2 shows a pipeline of the proposed method. We de-

vise a novel semi-supervised scheme to solve the problem
of limited training data by utilizing both labeled and unla-
beled data. As shown, we assume a single distortion image
as input. Then, we get the correction flow maps and the
segmentation mask as intermediate outputs. The correction
flow maps are used to project the distortion image into a
correction image. The segmentation mask is the bridge be-
tween labeled and unlabeled data.

3.1. Semi-supervised Learning Algorithm

As shown in Fig. 2, in our problem settings, we have a set
of unlabeled images noted as U = (Iuth) and a set of labeled
images L = (I lth, Fth), where Fth represents the labels.
We mix these images and adopt them to train the correction
network through the semi-supervised method composed of
DRC and RC, which are described in detail below.
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Figure 2. The pipeline of semi-supervised wide-angle portraits correction framework with the surrogate task (segmentation). (a) The
network training strategy by utilizing the labeled images. (b) Utilize the unlabeled images to train our network. The training strategy
consists of direction and range consistency (DRC), regression consistency (RC). For an unlabeled image Iuth, when it is sent to the siamese
network, the estimated segmentation mask and the correction flow map are utilized to compute the DRC loss LDRC and RC loss LRC .

3.1.1 Direction and Range Consistency (DRC)

Many existing methods have proved that the estimation
accuracy can be further improved by introducing approxi-
mate surrogate tasks [10, 23]. Inspired by the success, we
attempt to present a surrogate task (segmentation) into the
network that is different from the existing fully-supervised
wide-angle portraits correction method [29]. In particular,
the segmentation mask from the surrogate task can assist
the network to construct a novel direction and range con-
sistency learning strategy, which is helpful to improve the
accuracy of wide-angle portraits correction.

This design is mainly motivated by four aspects: 1) The
portraits correction flow maps represent the offset and di-
rection of each pixel for correcting distortion images. By
introducing the segmentation task to flow maps, the network
pays more attention to learning the direction change of each
pixel. It is conducive to the network to understand the por-
traits correction better. 2) If we generate a binary mask, the
network will pay more attention to the guiding role of direc-
tion but ignore the importance of regional consistency. Thus
the multi-category mask is generated by multiple thresh-
olds to supervise the segmentation task. In the segmentation
mask, the pixels classified into the same category represent
that their values change within the same threshold range.
In other words, the segmentation mask is also helpful to
guide the network to learn the information of regional con-
sistency, so that the correction flow map predicted by the
network will also become smoother. 3) As shown in Fig. 2,
the predicted correction flow map can also be converted to
the segmentation mask. Hence the loss function can be
constructed between portraits correction and segmentation,
making it feasible to introduce unlabeled data for our semi-

supervised scheme. 4) Meanwhile, the segmentation mask
can be generated without extra costs. It is conducive for
the transformation between the flow map and segmentation
mask so. In addition, the unlabeled data can be fully utilized
when conducting our DRC learning strategy.

Semantic segmentation and portraits correction have
similar characteristics, making it possible to learn the con-
sistency between them. When the semantic segmentation
is deployed as the surrogate task in this paper, it predicts
whether the flow map value F (i, j) meets the given di-
rection and range. We judge the offset by the threshold
δ ∈ N+, the pixels whose offset is in the range (−∞, -δ] or
[δ, +∞) keep negative or positive directions, and the offset
in the range (-δ, δ) are merged into one set which indicates
slight movement. The prediction target of the segmentation
task is defined as follows:

S(i, j) =

0, if F (i, j) ⩽ −δ
1, if −δ < F (i, j) < δ
2, if F (i, j) ⩾ δ

, (1)

where S(i, j) denotes the segmentation mask, (i, j) is the
pixel position of mask or flow map, and δ represents the
predefined threshold is set to 5 in our experiments.

The proposed DRC learning strategy is shown in Fig. 2.
As mentioned above, by introducing the surrogate task, the
network can vigorously supervise direction and regional
consistency. For labeled data, the ground truth of the cor-
rection flow map is used for training the portraits correction
task. Meanwhile, it also converts into a multi-classification
mask, which is utilized for training the surrogate task. As
for the unlabeled data, no ground truth is available. Never-
theless, the predicted correction flow map can also generate
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Figure 3. (a) The overview of our proposed Multi-Scale Swin-Unet (MS-Unet). The network mainly consists of encoder, decoder, bottle-
neck and skip fusion blocks (SFB). (b) The architecture of two successive MSTBs. The primary difference between them is the windowing
configurations (window partition and shifted window partition). (c) The detailed architecture of SFB.

the segmentation mask through the multiple thresholds. The
unlabeled data is still allowed to train the network by DRC
loss, and the details will be given in Section 3.3.

3.1.2 Regression Consistency (RC)

Besides the DRC, we also introduce the regression con-
sistency (RC) to improve the network robustness. Fig.2 il-
lustrates the details of RC. Specifically, we can obtain two
different images Iu1th and Iu2th with various augmentation
methods (e.g., noise, smoothing, and sharpening), from an
unlabeled image Iuth. Many previous works have stated that
an image with different perturbations can obtain similar pre-
dictions through a robust network. Therefore, we expand
the MS-Unet into a shared-weight siamese structure. The
unlabeled images Iu1th and Iu2th are respectively fed into the
two networks, and a consistent loss is established between
their outputs. The detailed loss implementation of RC will
be given in Section 3.3.

3.2. Multi-Scale Swin-Unet (MS-Unet)

3.2.1 Architecture Overview

Although the semi-supervised scheme can significantly
boost the performance, the portraits correction depends on a
superior network. Motivated by the success of vision trans-
formers [2,7,11,16], we develop the MS-Unet, derived from
Swin-Unet [2], for the wide-angle portraits correction task.
As shown in Fig. 3(a), our proposed MS-Unet can be di-
vided into four major parts: encoder, decoder, bottleneck

and skip fusion blocks.
Overall, there are two primary differences between MS-

Unet and Swin-Unet. First, as the core unit of Swin-Unet,
the swin transformer block ignores the importance of local-
scale information, which leads to some objects (e.g., faces
with different sizes) being distorted after correction. Sec-
ond, directly employing the skip connection may not be the
optimal scheme for hierarchical features fusion owing to
their difference. To alleviate these issues, we leverage the
MSTB as the basic unit of our MS-Unet to integrate local-
scale and long-range information. Furthermore, the simple
yet efficient SFB is designed to replace the skip connection.

3.2.2 Multi-Scale Swin-Transformer Block (MSTB)

Similar to EMSA of RestT [39], we develop the dense
connection module (DCM) into the MSTB for local multi-
scale information extraction. In Fig.3 (b), two successive
MSTBs are presented. Each MSTB contains the DCM, lay-
ernorm (LN), multi-head self-attention (MSA), skip con-
nection, and multi-layer perceptron (MLP). The window
partitioning (WP) and shifted window partitioning (SWP)
are used in two successive MSTBs.

When the features X ∈ RC×H×W with a height of H
and a width of W are fed into the MSTB, they will pass
through two parallel branches for computing the input of
MSA (the query Q, key K, and value V ). In the left branch,
X are split into non-overlapping windows with a size of
h × w by (S)WP. The features are flattened and reshaped
as Xf ∈ RN×C , where N = h × w. Then a full con-
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nection layer is applied to obtain query Q ∈ RN×d, where
d = C/k and k is the head number. In the right branch, the
features X are first utilized to extract local-scale informa-
tion by DCM. Inspired by [14], the DCM consists of two
1 × 1 layers, and three 3 × 3 depthwise separable convo-
lution layers with different dilation rates D = (1, 2, 3). To
be specific, the 1 × 1 convolution layers are employed to
change the feature dimension. Each 3 × 3 depthwise sep-
arable convolution layer will receive the features from all
preceding layers (i.e, x0, ..., xr−1) as input:

xr = Cr([x0, ..., xr−1]), (2)

where Cr denotes the concatenation operation. Then we
apply the same operations like the left branch on these fea-
tures from the DCM to generate Xm ∈ RN×C . The key
K ∈ RN×d, and value V ∈ RN×d are obtained through
Xm. Afterward, the MSA can be calculated as follows:

MSA(Q,K, V ) = Softmax(
QKT

√
d

+B)V, (3)

where B ∈ RN×N refers to learnable relative position bias.

3.2.3 Skip Fusion Block (SFB)

As mentioned above, the crucial difference among fea-
tures from different hierarchical stages will be ignored when
directly adopting skip connection. Hence, we designed the
simple yet efficient skip fusion block (SFB) to replace the
skip connection. As shown in Fig. 3 (c), before the features
Xi ∈ RN×C , Xj ∈ RN×C (from the ith stage of encoder,
and the jth stage of decoder) are sent to the next stage of
decoder, they pass through the SFB to form new features
Xij

SFB with dimension RN×C . The whole calculation pro-
cess is defined as follows:

Xij
SFB = D(CON(C[D(Xi), D(Xj)])), (4)

where D(·) is dimension permuting, C[·] refers to the con-
catenation, and CON(·) is 1D convolution layer.

3.3. Loss Function

In practice, the MS-Unet is optimized by adopting the
supervised losses on the labeled data L, and the semi-
supervised losses on the unlabeled data U .

3.3.1 Supervised Loss

Our constructed supervised loss Ls is composed of three
parts, including mask-based L1 loss Lm1, mask-based so-
bel loss Lms, and the cross-entropy loss Lce. The detailed
definitions are described as follows:

a) Lm1 Loss: In our method, we introduce the weighted
mask, which uses the weight value of the portraits area to be

greater than that of the background so that the network will
pay more attention to the distorted portraits. Eq. 5 gives the
definition of this loss.

Lm1 =
∣∣∣F ′

− F
∣∣∣M, (5)

where F and F
′

represent the ground truth and estimated
flow maps, respectively, M denotes the weighted mask.

b) Lms Loss: In portraits correction, the object edges
directly affect the overall visual effects of a correction im-
age. Therefore, we introduce the sobel loss, which can be
expressed as follows:

Lms=
[∣∣∣Gx(F

′
)−Gx(F )

∣∣∣+∣∣∣Gy(F
′
)−Gy(F )

∣∣∣]M, (6)

where the Gx and Gy mean the sobel operator in horizontal
and vertical direction, respectively.

c) Lce Loss: To supervise the mask generated from the
segmentation task, we convert the ground truth flow map
into a mask label and deploy the cross-entropy loss. The
loss function is defined as follows:

Lce = Slog(S
′
) + (1− S)log(1− S

′
), (7)

where the S is the ground truth mask converted from the
flow map, and the S

′
refer to the estimated mask. To sum

up, the training loss for a labeled image is:

Ls = Lm1 + λ1Lms + λ2Lce, (8)

where λ1 and λ2 are hyper-parameters of Lms loss and Lce

loss respectively, both being set to 10 in our experiments.

3.3.2 Semi-Supervised Loss

For an unlabeled image, we construct the unsupervised
loss Lu based on the surrogate (segmentation) task and flow
map task, which is used to guide the prediction consistency
of the network. Specifically, The unsupervised loss contains
two parts: the loss of DRC LDRC and RC LRC .

Lu = LRC + LDRC

= [Lm1(F
′

1, F
′

2) + λ2Lms(F
′

1, F
′

2)]+

[Lce(S
′

1, S
′′

1 ) + Lce(S
′

2, S
′′

2 )],

(9)

where the F
′

1 and F
′

2 are the estimated flow maps from both
the branches of the siamese network, S

′

1 and S
′

2 refer to the
segmentation mask converted from F

′

1 and F
′

2, while the S
′′

1

and S
′′

2 indicate the output of the siamese network.

4. Experiments
4.1. Implementation Details

4.1.1 Datasets

Following the existing method [29], we conduct exten-
sive experiments on the wide-angle dataset [29], captured
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(c) Tan’s Result (a) Projection Image (b) Shih’s Result (d) Our Result

Figure 4. Qualitative results of different correction methods. Notice the coordination of lines and face area marked with red boxes.

with 5 different smartphones. The training dataset contains
over 5, 000 images and 129 in the testing dataset. Many
kinds of labels are provided for each image in the dataset,
containing the face mask, correction flow maps, and land-
marks. In addition, we collected more than 5, 000 images
by 4 different smartphones (including Samsung Note 10,
Xiaomi 11, vivo X23 and vivo iQOO) as the unlabeled set.

4.1.2 Training Details

We train the MS-Unet via a two-step scheme. Similar
to [29], the input size is set as 512× 384. Before the semi-
supervised strategy starts, we need to train a correction flow
map predictor, which can provide the pseudo labels for the
surrogate task when both labeled and unlabeled images are
utilized. We found that the predictor can achieve good re-
sults with only 200 epochs. Then, we introduce the surro-
gate task (segmentation) to the network, which can enhance
the learning ability of the network. Based on the surro-
gate task, the semi-supervised method can further improve
the network’s performance. In this stage, the total training
epoch is set to 1, 000. Notably, the supervised loss is uti-
lized for labeled images, while the unsupervised loss is for
unlabeled images. To compute the loss conveniently, each
batch only contains the labeled images or unlabeled images.
For both steps, we use Adam to optimize our model with an
initial learning rate of 1 × 10−4, and the weight decay of
2× 10−4. We trained the MS-Unet (8.82 GFLOPs, Param-
eters: 8.79M) using 4 Geforce RTX 2080Ti, and tested it
with only one GPU, which can run at around 40 FPS.

4.1.3 Evaluation Metrics

We use the same evaluation metrics (LineAcc and Sha-
peAcc) as [29] to evaluate the performance of our method.

More specifically, LineAcc is used to evaluate the curvature
variation of the marked lines and defined as follows:

LS = 1− 1

n

n−1∑
i=0

(
ydi

− ydi−1

xdi
− xdi−1

− yg0 − ygn
xg0 − xgn

)
, (10)

where LS denotes the similarity between slope of these two
lines, n is the number of uniformly sampled points in each
line. (xgi , ygi) and (xdi , ydi) indicate the coordinate of the
corresponding point in the reference and distortion image.

ShapeAcc aims to evaluate the face similarity between
the correction image and the reference image. Based on
face landmarks, the ShapeAcc is described as follows:

FC =
1

n

n−1∑
i=0

∥Lgi∥ ∥Ldi
∥ cosθ, (11)

where FC is the similarity between the corrected and tar-
get face, n is the number of fixed sampled points in each
face. Lg and Ld are the corresponding face landmarks in
the correction image and the reference image.

4.2. Ablation Study

In order to verify the influence of different factors on our
proposed method, we conducted some ablation experiments
on Tan’s dataset [29] and our unlabeled dataset. Notably,
the network structure, the semi-supervised strategy, and the
number of unlabeled samples are all considered below.

4.2.1 Effect of the Correction Network

We explore that how the proposed modules affect the net-
work performance using fully-supervised method. Specifi-
cally, we utilize the Swin-Unet as our baseline, and the per-
formance of three different networks is evaluated. 1) Base-
line: directly employ the Swin-UNet; 2) Baseline+MSTB:
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based on 1), the MSTB is considered to replace the swin
transformer block; 3) Baseline+MSTB+SFB (MS-Unet):
the SFB is added to fuse the hierarchical features, and Ta-
ble 1 presents the results. We can observe that the perfor-
mance boosts significantly with the addition of each module
from the table. Oddly, when both MSTB and SFB are added
to the network, the full MS-Unet can achieve the best Lin-
eAcc (66.825) and ShapeAcc (97.491). These experiments
demonstrate that MSTB indeed promotes the network to ex-
tract more complementary information, which boosts the
correction ability dramatically. Meanwhile, SFB provides
a better feature fusion strategy than skip connections.

In addition, we compared MS-Unet and Tan’s method
under the same conditions, and the experiment shows that
the accuracy of MS-Unet is slightly higher than Tan’s net-
work (LineAcc: 66.784, ShapeAcc: 97.490).

Table 1. Ablations on the structure of proposed MS-Unet.

Index Baseline MSTB SFB LineAcc ShapeAcc
1) ✓ - - 66.514 97.460
2) ✓ ✓ - 66.763 97.487
3) ✓ ✓ ✓ 66.825 97.491

4.2.2 Effect of the Semi-Supervised Strategy

Several experiments are conducted to evaluate the im-
pact of our proposed semi-supervised scheme. In practice,
we first utilize the fully-supervised method to train our MS-
Unet with only Tan’s dataset [29]. The training result is
regarded as the baseline for comparison, and we present it
in the first row shown in Table 2. Then we add the surro-
gate task to the network and train the two-task MS-Unet.
The second row in Table 2 reports the results of the two-
task MS-Unet. Compared with the baseline, it shows a
slight improvement after adding the surrogate task (Lin-
eAcc: 66.825 → 66.871, ShapeAcc: 97.491 → 97.493).
The result indicates that introducing a surrogate task plays
a guiding role in networking training to a certain extent.
Afterward, both labeled (Tan’s dataset) and unlabeled data
are deployed to accomplish the experiments about semi-
supervised strategy. The DRC is conducted based on the
segmentation task, and the third row in Table 2 lists the
comparison result. Compared with the two-task MS-Unet,
adding DRC can further improve the estimation accuracy
of the correction flow maps, especially the LineAcc (from
66.871 to 67.154). Besides, the effect of RC is also evalu-
ated, and the result is presented in the fourth row of Table
2. The result also outperforms the single-task MS-UNet,
which is only trained by the fully-supervised scheme. The
MS-Unet attains the best result (LineAcc: 67.209, Sha-
peAcc: 97.500) when DRC and RC are employed during the
semi-supervised training. These experiment results prove

Table 2. Performance comparison of different semi-supervised
strategies. ’Seg’ indicates a segmentation task without direction
and range consistency. ’DRC’ refers to the direction and range
consistency, and ’RC’ refers to the Regression Consistency.

Baseline Seg DRC RC LineAcc ShapAcc
1) ✓ - - - 66.825 97.491
2) ✓ ✓ - - 66.871 97.493
3) ✓ ✓ ✓ - 67.154 97.494
4) ✓ - - ✓ 66.848 97.497
5) ✓ ✓ ✓ ✓ 67.209 97.500

that our proposed semi-supervised strategy can assist the
consistency learning between portraits correction task and
surrogate and improve the correction performance.

4.2.3 Effect of the Number of Unlabeled Samples

We examine the influence of the number of unlabeled
images on network performance through Tan’s dataset [29]
and our unlabeled data. We change the number of unlabeled
images from 0 to 5, 000 while the number of labeled images
is fixed. The results are listed in Table 3, where it shows
our MS-Unet trained with semi-supervised strategy obtains
consistent superior performance compared with that using
the fully-supervised scheme. Meanwhile, we can draw that
in a specific range, the performance of the MS-Unet will
improve as the amount of unlabeled images increases.

Table 3. The impact of the number of unlabeled images.

Index numbers LineAcc ShapeAcc
1) 0 66.871 97.493
2) 1000 66.929 97.493
3) 2000 66.999 97.494
4) 3000 67.105 97.497
5) 4000 67.155 97.496
6) 5000 67.209 97.500

4.3. Comparison with Other Methods

We also compare our method with previous state-of-the-
art methods on Tan’s and Google’s test sets. Table 4 illus-
trates that our method obtains the highest metric results in
both two test sets. The visual comparisons in Fig. 4 also
confirm the results. Note that the projection image can cor-
rect lines but make faces distorted seriously. Shih [26] and
Tan [29] try to seek the optimal trade-off between the faces
and the background. Unfortunately, several bent structures
still exist in the background, and a few faces are still dis-
torted. From our results, the faces are more natural than
other methods, and the corrected lines in the background
are satisfactory. Generally, both quantitative and qualitative
results verify the superior performance of our method.
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(c) iPhone12’s Result (d) Xiaomi11 ultra’s Result (e) Our Result(b) Projection Image (a) Distortion Image 

Figure 5. Visual comparison between our method and some wide-angle portraits correction methods from smartphones.

Table 4. The results of our proposed method and the two classic
methods on two wide-angle portraits correction test sets.

Method
Tan’s test set Google’s test set

LineAcc ShapeAcc LineAcc ShapeAcc
Shih [26] 66.143 97.253 61.551 97.464
Tan [29] 66.784 97.490 64.650 97.499

Ours 67.209 97.500 66.098 97.512

Fig. 5 depicts the results of our method and other famous
portraits correction algorithms from smartphones (i.e., Xi-
aomi 11 ultra, and iPhone 12). We can observe that serious
stretching of portraits appears in iPhone 12. Although Xi-
aomi 11 ultra improves over the distortion image, there is
still slight deformation on the face and curved lines in the
background. Our method shows better results, as the face is
natural while correcting the lines in the background.

Only a few wide-angle portraits correction works em-
ploy the deep learning methods due to its challenge. Based
on the correction flow maps, the correction task is regarded
as a pixel-level regression problem, which is closely related
to some other tasks, such as crowd counting [10, 21] and
semantic segmentation [2, 5]. Hence, we introduce some
efficient networks from these fields to predict the correc-
tion flow maps. All the networks are trained by the fully-
supervised scheme, and Table 5 shows the results. Notably,
our proposed MS-Unet surpasses all the methods. The pri-
mary reason is that the CNN-based networks focus on learn-
ing local-scale information while the transformer-based net-
works concentrate on long-range information. For wide-
angle portraits, the long-range information can ensure the
corrected image generally looks more natural, and the face
corrected by local information is more authentic. There-
fore, combining both advantages, the MS-Unet will capture
multi-scale information for more accurate estimation.

Finally, our proposed semi-supervised strategy is used to
train these networks. Different from the original network ar-
chitecture, the surrogate task is added to the network during

Table 5. The effectiveness evaluation of the proposed semi-
supervised scheme on different networks.

Method
Fully-Supervised Semi-Supervised

LineAcc ShapeAcc LineAcc ShapeAcc
RefineNet [20] 66.348 97.449 66.569 97.455

UNet [25] 65.246 97.473 66.534 97.475
CSRNet [19] 65.967 97.469 66.236 97.471

Deeplab v3+ [5] 66.200 97.482 66.565 97.487
Swin-Unet [2] 66.514 97.460 66.859 97.469
HRNet [27] 66.748 97.477 66.805 97.491

Ours 66.825 97.491 67.209 97.500

the training process. And all the semi-supervised results are
listed in Table 5. We can observe that the accuracy of these
networks assisted by both labeled and unlabeled data is
improved compared with the conventional fully-supervised
scheme. The experimental results also demonstrate the gen-
eralization ability of our semi-supervised method.

5. Conclusion

In this paper, we develop a novel semi-supervised wide-
angle portraits correction method using a multi-scale trans-
former. By combining DRC and RC in our semi-supervised
manner, we can solve the limitations of labeled data and
fully utilize unlabeled data. In addition, four kinds of smart-
phones are adopted to collect unlabeled data. Furthermore,
we especially propose the MS-Unet, built upon the MSTB,
to capture both local-scale and long-range information for
improving artifacts around portraits. Extensive experimen-
tal results show that our proposed method is much better
than the existing advanced methods and can be popularized
in the application of wide-angle portraits correction.
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