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Abstract

Excellent performance has been achieved on instance
segmentation but the quality on the boundary area remains
unsatisfactory, which leads to a rising attention on bound-
ary refinement. For practical use, an ideal post-processing
refinement scheme are required to be accurate, generic
and efficient. However, most of existing approaches pro-
pose pixel-wise refinement, which either introduce a mas-
sive computation cost or design specifically for different
backbone models. Contour-based models are efficient and
generic to be incorporated with any existing segmentation
methods, but they often generate over-smoothed contour
and tend to fail on corner areas. In this paper, we pro-
pose an efficient contour-based boundary refinement ap-
proach, named SharpContour, to tackle the segmentation of
boundary area. We design a novel contour evolution pro-
cess together with an Instance-aware Point Classifier. Our
method deforms the contour iteratively by updating offsets
in a discrete manner. Differing from existing contour evo-
lution methods, SharpContour estimates each offset more
independently so that it predicts much sharper and accu-
rate contours. Notably, our method is generic to seamlessly
work with diverse existing models with a small computa-
tional cost. Experiments show that SharpContour achieves
competitive gains whilst preserving high efficiency.

1. Introduction

Instance segmentation is a fundamental topic in com-
puter vision which plays important role in scene under-
standing [45], intelligent robots [36], clinical analysis [0,
46] and autonomous driving [10, 14]. The mainstream
of instance segmentation approaches follow the design
of detection-then-segmentation framework like Mask R-
CNN [13] and achieve promising performance. However,
high fidelity segmentation of fine details especially in the
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Figure 1. Instance segmentation with SharpContour. Top: A is
the coarse mask predicted by Mask R-CNN and B is the refinement
result of SharpContour. Bottom: C is the coarse contour generated
by DANCE and D is the refinement result of SharpContour. In the
corner areas, SharpContour yields significant improvements.

boundary area remains extremely challenging.

To address this issue, the refinement of boundaries is
raised as a new topic in recent years. A novel evalua-
tion metric called Boundary AP [7] and a number of ap-
proaches [8, 18,33,42] are proposed. Boundary AP [7] fo-
cuses on the accuracy of the object boundary region thus can
better reflect boundary refinement. As for the approaches,
refinement can be generally recognized as a post-processing
operation which is expected to meet three basic require-
ments: accurate, efficient and generic. It is worth mention-
ing that “generic” is also a significant factor. However, ex-
isting top-performing refinement methods mainly focus on
accuracy and lacks consideration of other two factors which
are actually important in the practical application scenar-
ios. For example, Boundary Patch Refinement method [33]
proposed to additionally process patches along boundaries
after the instance segmentation model, resulting in massive
computational cost. RefineMask [42] designed a new archi-
tecture built upon Mask-RCNN [13] to refine the quality of
instance mask with fine-grained features. Though the com-
putational cost is not extremely expensive, this method is
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too specific to be applied to other types of instance segmen-
tation models. It is intrinsically hard for the pixel-wise re-
finement methods to achieve the three requirements at once,
since the dense pixel maps usually bring excessive compu-
tation cost.

Another group of trending segmentation approaches pro-
posed contour-based segmentation methods [1,3,23,27,29,

, 39] which directly process and generate sparse points
along the boundaries. They are advantageous on efficiency
and naturally generic to be appended after mask-based algo-
rithms since it is straightforward to extract a contour from
a mask. Thus, an interesting question can be raised up: “
Is it possible to use contour-based methods to address the
boundary refinement problem?”

However, existing contour-based methods, like
DANCE [26] and DeepSnake [10], tend to produce
over-smoothed contours especially on the sharp turner
areas (as shown in Fig. 1) so that their performances on
boundary areas is still lagging behind. We figure out the
major reason which leads to the oversmoothing problem is
that all the vertices on the contour are tied together by their
feature learning strategies (e.g. circular convolutions [10])
and the smoothness regularization in their contour evo-
lution process. As a result, a slight offset on one vertex
will cause a wide chain reaction on all vertices of the
contour. To address this, we elaborate a drastically different
contour evolution process that estimates the deformation
offsets independently for each vertex. Based on this, we
propose an accurate, efficient and generic refinement
approach, named SharpContour, for boundary area using
contour-based representation.

Specifically, our SharpContour takes a coarse contour as
input and deforms each vertex on the contour individually.
To avoid artefacts caused by the involved “independency”,
we constrain each vertex to move along its normal direc-
tion and conduct the deformation in an iterative procedure,
making the deformation stably. For the sake of balancing
between efficiency and accuracy for each vertex’s move-
ment, instead of directly regressing the offset, we propose
to determine the target position by performing classification
on a few discrete points. Specifically, we first sample some
points along the moving direction and classify them into
“inner/outer” status to obtain the flipping position which in-
dicates the boundary. The classifier plays a pivotal role in
this contour evolution process. Thus, we carefully design
an Instance-aware Point Classifier (IPC), which can predict
“inner/outer” of a vertex with respect to different instance
boundaries in the form of a probability score. There are
two important factors for IPC to achieve high fidelity: 1) It
is required to be instance-aware, which is essential to en-
able generating different results for a pixel with respect to
different instances. For this purpose, the parameters of the
IPC are predicted on-the-fly for each instance. 2) It should

capture the information of the boundary details. Thus IPC
takes the fine-grained feature, which is derived from the
high-resolution feature map, as input to predict the vertex
state.

With IPC, we can determine how to move each vertex
during the deformation. The moving distance is further de-
fined by the object size and IPC probability score. We it-
eratively adjust the vertices of the predicted contour, until
they match the object boundary. In this process, SharpCon-
tour avoids the high-dependency over neighbouring vertices
without using any smooth term, thus overcoming the over-
smoothing issue. Notably, SharpContour only introduces a
handful of parameters and involves a negligible amount of
points in the calculation. Therefore, our approach is consid-
erably efficient. Experiments manifest that SharpContour
can work seamlessly with various segmentation models by
introducing a small computational cost and producing high-
quality object boundaries.

We validate the effectiveness of our SharpContour ap-
proach quantitatively and qualitatively on various large
scale segmentation benchmarks. On COCO datasets [22],
we use both AP and the Boundary AP metrics. Coupled
with DANCE [26], SharpContour brings significant im-
provements of 1.5 AP and 3.2 Boundary AP. Coupled with
the Mask R-CNN [13] and CondInst [34] as the refinement
approach, our approach surpasses the baseline by a signifi-
cant gain of 2.3, 2.2 AP and 3.4, 3.3 Boundary AP respec-
tively. On Cityscapes datasets [9], SharpContour achieves
3.9 AP boost when combined with Mask R-CNN [13].
Compared with other boundary refinement models, Sharp-
Contour consistently produces high-quality boundaries with
a low computational cost. Taking the output of the state-of-
the-art contour refinement method, RefineMask, as initial
contour, SharpContour still gains 0.5 AP and 1.1 Bound-
ary AP. The qualitative results further demonstrate the ef-
fectiveness of our approach.

2. Related Work

Mask-based methods. The mainstream mask-based ap-
proaches can be broadly categorized into top-down and
bottom-up methods. The typical top-down approaches [2,

,5,8,13,19,24,34,37,43] follow the pipeline of Mask-
RCNN [13], which detects each instance first and predicts a
pixel-wise binary map for each instance. Models can be cat-
egorized into two-stage [5, 8,24] and one-stage [2,4, 19,34,

,40] according to their pipelines. However, they usually
rely on a pooling operation to extract canonical-size fea-
tures from the feature maps for each instance, which loses
many boundaries details. CondINST [34] removed the Rol
operation and use dynamic convolution layer to generate
segmentation masks, but it still losses many details around
boundaries. Bottom-up approaches [11, 17,25,28, 32, 44]
first generate semantic segmentation and then cluster pixels
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Figure 2. Contour Evolution of SharpContour. SharpContour obtains the initial contour from coarse segmentation results and deforms
the contour to achieve boundary refinement. In the deformation process, 1) SharpContour obtains the normal direction. 2) SharpContour
predicts the inner/outer state of vertex to decide negative/positive normal direction of deformation. 3) SharpContour decides the step size.
4) SharpContour obtains the moving step number based upon the position of the flipping point. 5) SharpContour estimates the offsets and

deforms the contour.

into different instances. In all the pixel-wised methods, the
boundary points only occupy a very small proportion (less
than 1% [17]) so that their accuracy is usually over com-
promised during the optimization. Our method avoids these
drawbacks and can work together with various models to
enhance their performance on boundaries.

Boundary refinement To tackle the aforementioned
limitations, various boundary refinement methods [8, 18,20,

,41,42] are proposed. Meanwhile, to evaluate the bound-
ary performance more accurate, a novel evaluation metric
Boundary AP [7] is proposed, which can solve the desen-
sitization problem of the current evaluation metric (AP) for
object boundary region. As for the approaches, BPR [33]
adopts a post-processing scheme, refining predicted in-
stance boundary patches in detail to improve mask qual-
ity. Another top-performing model, PolyTransform [20]
proposes the first contour-based refinement approach which
uses the results of the mask-based model as initial con-
tour and refines the contour by Transformer network [35].
These methods achieve superior performance while intro-
ducing a large computational cost and scarifying the effi-
ciency. Some other methods try to balance the performance
enhancement and the extra computational overheads. For
example, PointRend [18] only performs point-based seg-
mentation around the boundary blurred areas to obtain high-
quality mask. RefineMask [42] achieves high-quality re-
sults by introducing fine-grained features during the upsam-
pling process to refine entire objects. However, these two
methods lack of generality since they can only refine the
results of specific mask-based methods. In contrast, our re-
finement approach can not only achieve accurate and effi-

cient refinement but also be generic to refine the results of
both mask-based and contour-based models.

Contour-based methods Neural contour-based mod-
els [15,23,27,30,38,39] for segmentation are widely stud-
ied in recent years due to their potential advantage on ef-
ficiency. Most of them formulate the contour as poly-
gons and propose various regression methods to estimate
the coordinate of vertices on the polygons. [27, 39] pro-
pose CNN-based models which can learn high-level and ex-
pressive features for deformation. [23] proposes a contour-
based model which utilizes Graph Convolution Networks
(GCN) to regress the offsets of vertices on the contour. Fol-
lowing the pipeline of traditional Snake model [16], Deep-
Snake [29] proposes a two-stage contour evolution process
and designs circular convolution to exploit the features on
the contour. DANCE [26] follows the pipeline of Deep-
Snake [29] and introduces edge attention module and im-
proves the matching scheme in the contour evolution pro-
cess. DANCE [26] achieves state-of-the-art results for the
contour-based instance segmentation methods. However,
all of these regression-based contour evolution methods still
suffer severe performance degradation in approximating the
corners or cusps of instance. This is because their regres-
sion method needs to balance the regression error and the
smoothness of the current contour and the offsets are highly
dependent on each other during feature learning. Our ap-
proach elaborates a drastically different evolution method.
In our deformation stage, the offset of each vertex on the
polygon is estimated by discrete moving steps rather than
regression. Incorporated with DANCE [26], our approach
is proved to be more effective than all the existing contour-
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based methods, yielding accurate and high-fidelity segmen-
tation results even for significant challenging areas.

3. Methodology

We propose a contour refinement approach, SharpCon-
tour, which coupled with existing instance segmentation
models (either mask-based or contour-based), can produce
high-quality boundary segmentation results. Let C'(*)
{z; |i =1, ..., N} be an initial contour, which is obtained
by off-the-shelf instance segmentation methods. The con-
tour is defined by a sequence of vertices z;. SharpContour
iteratively moves the vertices to approach the actual bound-
ary of an instance. To perform the contour evolution, we de-
sign an iteration process to deform the vertices along their
normal. The key challenge of the contour evolution meth-
ods is to predict the offset for each vertex accurately. In
contrast to existing methods that directly regress the offsets
for all the vertices at once, which is often error-prone and
leads to over-smoothed contours, we propose to adjust the
vertices iteratively in a discrete manner inspired by [31].
Due to the inherent challenge of directly regressing offsets,
we cast this problem to be a classification-based formula.
Specifically, we propose an Instance-aware Point Classifier
(IPC) ¢(z;) which predicts a state for the vertex x; indicat-
ing its relative position to the actual object boundary (i.e.,
inside or outside), such that we can determine whether a
vertex should march along the positive or negative normal
direction. Our approach greatly reduces the dependency
on the offsets of neighbour vertices and allows for delicate
segmentation details on complex and challenging boundary
areas, such as the corner and cusps areas where the exist-
ing methods struggle. An overview of SharpContour can be
found in Fig. 2.

3.1. Contour Evolution

Given a vertex x; which is off the object boundary, its
evolution process in one iteration can be written as

T = i + ms;d;, (1)

where d; is the moving direction, s; the moving step and m
the step number. For each vertex, ¢(x;) will output a scalar
value in [0, 1], indicating the probability of z; being outside
(i.e., o(x;) = 1) or inside (i.e., p(z;) = 0) the object. v(x;)
= 0.5 means that IPC is not sure whether the point is inside
or outside the object, implying the point is probably located
on the boundary. More details of IPC will be introduced
in Sec. 3.2. Next, we describe how we obtain the moving
step s; and the step number m. They together define the
moving distance.

To define the moving step, we take into account the ob-
ject size (in terms of the area of the bounding box, denoted
as A) and the uncertainty of the vertex state from IPC. In-
tuitively, if the object is larger, the step size should also be
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Figure 3. Deformation of SharpContour. Value flipping indi-
cates the position of instance boundary. SharpContour uses the
position of flipping points to update the contour.

larger, and vice versa. If the uncertainty of vertex is higher,
the step size should be smaller to reach finer prediction, and
vice versa. To reflect these, concretely, we define the step
size as s; = A\/A|p(x;) — 0.5], where \ is an empirical
deformation ratio which we set to 0.003 in experiments.
|o(x;) — 0.5] indicates the uncertainty of state of x; for
IPC, the closer ¢(x;) is to 0.5, the higher the uncertainty
of state of z; for IPC, so smaller step size for x; should be
assigned for accuracy. For the moving step number, ideally,
we expect the vertex to progressively move towards the ac-
tual object boundary. Therefore, we move the vertex along
d; step-by-step, and after each move, we examine the value
of ¢ on the current location. If we reach a location that ¢
indicates the vertex is moved from inside to outside of the
boundary or the other way around, then we stop. We call
this location flipping point. The number of moves from the
original location to the flipping point is then our moving
step number m. To avoid the vertex moving towards an im-
proper direction too far away, we set an upper bound for the
move, i.e., for each move if after M steps, a flipping point
is still not reached, we then set m = M.

Iteratively Evolution We perform the above evolution
process for each vertex of C'(*) to obtain an updated con-
tour C). We then run another evolution cycle for C'!) to
update the vertices. We iteratively run the evolution process
and generate a series of contours {C'(?), ¢V .. C( .}
to approach actual object boundary progressively. Note that
during each iteration, if a vertex reaches a flipping point,
which indicates that it has reaches the object boundary, it
will not participate the subsequent deformation process any-
more. This further improves the efficiency of SharpContour.

3.2. Instance-aware Point Classifier

Here, we introduce our Instance-aware Point Classifier
(IPC) ¢, which aims at predicting a state for a given vertex
x; to tell its relative position to the actual object boundary.
In a nutshell, IPC takes the fine-grained feature of x; de-
rived from the high-resolution feature map and the relative
location of z; to its corresponding bounding box as input to
predict the probability indicating whether x; is located in-
side or outside the object. Importantly, the parameters of ¢
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are dynamically predicted for each instance on the fly, such
that ¢ is instance-aware, which plays an important role at
inferring vertices relative location to the instance.

Fine-grained Feature To be able to identify the subtle
details for the vertex evolution, we employ the fine-grained
features from the high-resolution feature map produced by
the instance segmentation backbone as the input for . We
append a convolution layer on the high-resolution feature
map to further encode feature to benefit ¢ for contour re-
finement and reduce the dimension. Let the encoded fine-
grained feature for z; be f;.we concatenate f; with the rel-
ative coordinates c¢; of x; to the instance bounding box,
forming a new fine-grained location-aware feature vector
ff = [fi; ci], which serves as the input of ¢ to predict
the state probability. Taking Mask R-CNN as example, we
utilize the highest resolution feature map from the feature
pyramid network (FPN), which is 1/4 of the image size.
To decrease the parameters number of IPC and enhance the
utilization of the high-resolution feature, we attach a 3 x 3
convolution layer to this feature map and reduce its channel
from 256 to 16. From the resulting feature map, we extract
the fine-grained feature for each vertex.

Instance-aware Dynamic Parameters Only equipped
with the fine-grained feature, the classifier still struggles
at the determination. For example, a point with the same
feature can be outside one instance but inside another in-
stance. To deal with this problem, our classifier needs to
be instance-aware and has strong ability to grasp holistic
information to identify each instance. Inspired by [34], we
propose to dynamically predict the parameters 6 of the clas-
sifier ¢ for each instance, based on the feature of each in-
stance. This strategy can capture strong instance-aware in-
formation therefore it can discriminate the state of a ver-
tex w.r.t different instance. For example, we incorporate
a boundary controller head inspired by [34] for Mask R-
CNN to obtain the dynamic parameters for each instance.
The boundary controller head is a very compact and light-
weight network with three fully connected layers. The out-
put dimension of this controller head is the same with the
parameter number of IPC. By sharing feature with the orig-
inal mask head of Mask R-CNN, we can make better use
the instance-aware feature while only introducing a small
computation cost. Our IPC can therefore be written as
o(x;) = po([firci]). I p(x;) > 0.5, x; is considered
as outside the object predicting the label g; as 1, otherwise
inside the object predicting the label ¢; as 0. In our imple-
mentation, IPC is simply realized an MLP with three hidden
layers with the ReLU activation. The sigmoid activation ap-
plied to its output layer. Hence, the extra cost introduced by
the IPC is marginal.

3.3. Instance Segmentation with SharpContour

In this section, we describe how to combine our Sharp-
Contour with different types of instance segmentation mod-
els, including mask-based models and contour-based mod-
els. In the training stage, we train the head which gener-
ates parameters of IPC by randomly sampling pixels near
the ground-truth instance boundary. In the inference stage,
SharpContour obtains the initial contour from the coarse
segmentation results and the contour evolution process can
be iterated for refinement. In general, when working with
existing instance segmentation methods, the SharpContour
takes three inputs: initial contour, fine-grained features and
dynamic parameters. Methods to obtain these three inputs
vary from different instance segmentation methods. Here
we introduce how to apply SharpContour to three typical
instance segmentation methods. For contour-based models
such as DANCE [26], the predicted contour of their model
can be used directly as the initial contour for our SharpCon-
tour. For Mask-based models such as Mask R-CNN [13]
and Condlnst [34], we extract the initial contour by trans-
ferring the predicted mask into contour representation. To
obtain the fine-grained features, we use convolution layers
to encode the feature maps of highest resolution from their
backbone and use the encoded feature map to extract fine-
grained features. To obtain the dynamic parameters, we tai-
lor the boundary controller head to incorporate it with var-
ious instance segmentation models. The detailed network
structure and parameters settings are provided in the sup-
plementary.

3.4. Loss Function

We use the focal loss [2 1] to train the boundary controller
head which generates parameters of IPC and the convolu-
tion layer which encodes the fine-grained features. Since
the points sampled around ground-truth boundary for train-
ing is random, the ratio between positive and negative sam-
ples is not fixed. To compensate this, we exploit the focal
loss with a dynamic coefficient o, which is the ratio of cur-
rent positive and negative samples. The loss can be written

a _ AL 5 4 —
Lipc = oL gl oglo =1,
—(1 = a)(#:)log(1 — i), yi = 0
where ¢ denotes the predicted label, « is dynamically deter-
mined by the proportion of positive and negative samples in
the current batch and +y is the difficulty factor which we set
to 2 in our experiments.

After combining our SharpContour with a baseline in-
stance segmentation model, we jointly train our SharpCon-
tour and with the coupled instance segmentation model.
The overall loss function can be expressed as

L=L,+puLrpc, (3)
where L is the original loss of the instance segmentation
model. We set the weight ;1 = 10 in our experiments.
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Figure 4. Qualitative results on COCO dataset. We use SharpContour to refine the segmentation results of different models. The top
line is the results of DANCE while the bottom line is the results of Mask-RCNN. For each example, the left is the result before refinement
while the right is our result. As is illustrated, SharpContour can refine the segmentation results near instance boundary.

APy, AP, Boundary AP | AP* | APxg | APy | AP« | FPS | Inference time (ms/per image)
Mask R-CNN 34.6 34.7 - 36.8 | 22.6 437 520 | 123 81.3
Mask R-CNN* 355 35.2 21.2 376 | 228 44.7 538 | 175 57.1
DANCE 34.6 34.5 20.2 - - - - 16.5 60.6
CondlInst 354 35.7 21.6 - - - - 17.4 57.5
PointRend 36.8 | 36.3(+1.1) | 23.5(+2.3) | 397 | 229 46.7 574 ] 13.0 76.9 (+19.8)
RefineMask 37.6 | 37.3(+2.1) | 24.7(+3.5) | 409 | 24.1 48.8 58.0 | 13.0 76.9 (+19.8)
DANCE + SharpContour 36.3 | 36.1 (+1.5) | 23.9(+3.7) - - - - 13.6 73.5
Mask R-CNN# + SharpContour | 37.7 | 37.5(+2.3) | 24.6(+34) | 412 | 242 49.1 585 | 15.0 66.7 (+9.6)
Condlnst + SharpContour 37.7 | 379 (+2.2) | 24.9(+3.3) - - - - 154 64.9
RefineMask + SharpContour 38.0 | 37.8(+0.5) | 25.8(+1.1) | 41.9 | 243 49.4 59.1 | 121 82.6 (+5.7)

Table 1. Comparisons on COCO val2017 and test-dev. AP, denotes the evaluation results on test —dev, and other columns denotes the
evaluation results on val2017. “Mask R-CNN” is a original Mask R-CNN, and “Mask R-CNN*” is the improved version in Detectron2. All
methods are trained with 1x schedule using R50-FPN backbone. The FPS is measured on a single Tesla V100 GPU. SharpContour brings
significant AP enhancement for DANCE, Mask R-CNN and CondInst. Moreover, SharpContour can achieve competitive performance

compared with other boundary refinement approaches with the highest efficiency.

Method AP APs | APy | APy

Mask R-CNN 33.8 12.0 | 31.5 | 51.8
PointRend 35.8(+2.0) - - -

RefineMask 37.6(+3.8) | 14.6 | 34.0 | 58.1

Mask R-CNN + SharpContour | 37.7(+3.9) | 144 | 342 | 58.3

Table 2. Results on Cityscapes validation set. The training set-
ting for all models are same: trained on fine annotations for 64
epochs, using multi-scale training and ResNet-50 with FPN.

4. Experiments
4.1. Impementation Details

Training strategy We train the SharpContour with the
DANCE, Mask R-CNN and the CondlInst together to en-
hance the performance. For each combination model, we
conduct experiments using totally the same training settings
with coupled model, including training epoch, learning rate
schedule, data augmentation methods, etc, to ensure fair-
ness. We set the deformation ratio A = 0.003, the number
of sampling points M/ = 10 and the resolution of the poly-
gon N = 128. The iteration number of evolution is set to be
3. More detailed training settings will be described in supp.

4.2. Benchmarks and Metrics

We evaluate the efficiency and the effectiveness of
SharpContour on three standard benchmarks, which are
Cityscapes [9] and Microsoft COCO [22]. Following the

prior work, we use Mask AP as the evaluation metrics. To
further demonstrate the effectiveness of SharpContour, we
report Boundary AP on the COCO datasets. (Unless explic-
itly stated, AP denotes Mask AP in this paper. )

COCO [22] is one of the most common benchmarks to
evaluate the models for object detection and segmentation
tasks, and we mainly report the results on COCO. Our
models were trained on train2017. Following PointRend
and RefineMask, we also report AP*, which evaluates the
COCO categories using LVIS annotations, since LVIS an-
notations have much higher quality mask. The results of
AP* are obtained by the same model trained on COCO.
Cityscapes [9] is a large-scale dataset for pixel-level and
instance-level segmentation evaluation, which provides a
massive amount of video records of daytime urban street
scenes from 50 cities. Cityscapes contain a rich set of an-
notations including 5,000 images with fine pixel-level an-
notations and 20, 000 images with coarse annotations. It is
one of the most widely used and challenging benchmarks.

4.3. Comparison with the state-of-the-art

Effectiveness for contour-based model We apply Sharp-
Contour to the DANCE [26], which follows the idea of
DeepSnake [29] and achieves current state-of-the-art per-
formance for contour-based instance segmentation meth-
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Figure 5. Qualitative comparison results of complex contours
SharpContour+MaskRCNN (Right) performs better than Refine-
Mask(Left) at challenging regions.
Training Scheme AP AP*
joint training 37.5(+2.3) | 41.2(+3.6)
training alone 36.2(+1.0) | 39.8(+2.2)
Table 3. Results of Different training scheme on COCO
val2017. The performance is reported on “Mask R-CNN + Sharp-
Contour” combination.
Mask R-CNN  Mask R-CNN*  Mask R-CNN+SharpContour
AP 352 355 375
AP* 37.6 38.0 41.2
Table 4. Results on COCO val2017. Mask R-CNN™ is the re-
sults of Mask R-CNN trained with SharpContour. It demonstrates
that original model can get benefits from joint training, and our
proposed module indeed improve the mask quality.

ods. We conduct experiments on the COCO datasets. As
is shown in the Tab. 1, SharpContour brings 1.5AP and 3.7
Boundary AP improvement.

Effectiveness for Mask-based methods We apply Sharp-
Contour to the Mask R-CNN [13] and the CondlInst [34]
and complete experiments on the COCO and Cityscapes
datasets. On COCO datasets, we further report the AP*
measured using the higher quality LVIS [12] annotations.
1) For Mask R-CNN [13], SharpContour outperforms
baseline model 2.3AP, 3.4 Boundary AP and 3.6AP* on
COCO datasets (Tab. 1) and yields 3.9AP enhancement on
CityScapes datasets(Tab. 2). 2) For CondlInst [34], Sharp-
Contour achieves an improvement of 2.2AP and 3.3 Bound-
ary AP on the COCO [22] datasets. Besides, ‘Refine-
Mask + SharpContour’ combination in Tab. | represents:
we directly run ‘Mask R-CNN + SharpContour’ model on
the contour simply extracted from the output mask of Re-
fineMask, it still gains 0.5AP and 1.1 Boundary AP im-
provement. SharpContour gains larger improvements on
Cityscapes compared with COCO. The probable reason is
that the classes of Cityscapes is much less than COCO,
which leads to a better IPC. This further proves the effec-
tiveness of SharpContour.

Efficiency We compare the efficiency with other boundary
refinement methods, including PointRend [18] and Refine-
Mask [42], on the COCO and Cityscapes dataset. For fair-
ness, 1) These methods are built on Mask R-CNN. 2) All
the methods adopt ResNet-50 with FPN as the backbone,
3) All the models are trained for the same epochs. As is
shown in Tab. 1, 2, comparing with PointRend [|&]and Re-
fineMask [42], SharpContour achieves better performance
with higher efficiency. Notably, PointRend [18] and Re-
fineMask [42] incorporate their methods after Mask R-CNN
and introduce additional inference time of 19.8ms. Com-
pared with them, our SharpContour only introduce infer-

ence time of 9.6ms, half of theirs, but brings more gains.
Qualitative Comparison Fig. 4 shows the qualitative re-
sults of SharpContour on the COCO datasets. We use
SharpContour to refine two models: DANCE (top line) and
Mask R-CNN (bottom line). For each instance in these fig-
ures, the left one is the result without the SharpContour
while the right one is the result with the SharpContour. As
is illustrated, the SharpContour can ameliorate the contour
near instance boundary since it can extract extra informa-
tion in vertex neighbourhood so that achieve high-fidelity
and accurate results for diverse instances. More results can
be found in the supplementary materials. Fig.5 shows qual-
itative comparison results between RefineMask and Sharp-
Contour+MaskRCNN. SharpContour can deal with objects
with complex contour and perform better at challenging re-
gions (e.g., thin structure region).

4.4. Ablation Study

We conduct ablation experiments to analyze the pro-
posed SharpContour on the COCO datasets. We explore
the influence of different choices of SharpContour.
Training Scheme To demonstrate the effectiveness of
SharpContour in advance, we also adopt the training
scheme which freezes all parameters of the instance seg-
mentation models and only trains the SharpContour inde-
pendently. Specifically, we only train the boundary con-
troller head (Sec. 3.2) used to generate parameters of the
IPC and the convolution layer (Sec. 3.2) used to generate
fine-grained feature. As shown in Tab. 3, SharpContour can
still refine the instance segmentation results of these models
by adopting such training scheme.

Effectiveness for feature extraction SharpContour shares
the backbone with the instance segmentation model to re-
fine. We explore what effects such training strategy casts to
the feature extraction process of the backbone. We examine
the instance segmentation accuracy of the model w/o train-
ing with the SharpContour. As illustrated in Tab. 4, Training
with SharpContour can actually enhance the performance
of the instance segmentation models, which indicates that
SharpContour can ameliorate feature extraction process.
Effects of dynamic step size The output probability of the
IPC indicates the uncertainty of inner/outer state. We ar-
gue that such uncertainty can be used to better control the
moving distance in contour evolution process. We conduct
ablation experiments w/o such dynamic step size on COCO
datasets. As reported in Tab. 5, the dynamic step size yields
0.5AP and 0.9AP* enhancements. Moreover, we notice that
dynamic step size can also stable the inference process.
Larger models, longer training We train SharpContour
together with Mask-RCNN using different backbones, in-
cluding ResNet-101 with FPN and ResNeXt-101 with FPN,
with longer 3x schedule. In the Tab. 6, SharpContour con-
sistently improves the performance of baseline model.
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adaptive step AP AP*
w 37.5 41.2
w/o 37.0(-0.5) | 40.3(-0.9)
Table 5. Effectiveness of adaptive step on COCO val2017.
When combining Mask R-CNN with our SharpContour, the adap-
tive step strategy can bring significant 0.5AP and 0.9AP* improve-
ments, which can also stable the inference process.

backbone AP AP*
Mask R-CNN R50-FPN 37.2 39.5

Mask R-CNN + SharpContour | R50-FPN | 39.3(+2.1) 43.1(+3.6)
Mask R-CNN. R101-FPN 38.6 41.4

Mask R-CNN + SharpContour | R101-FPN | 40.8(+2.2) 45.2(+3.8)
Mask R-CNN. X101-FPN 39.5 42.1

Mask R-CNN + SharpContour | X101-FPN | 41.8(+2.3) 46.0(+3.9)

Table 6. Larger models and longer 3x schedule. Even with
a stronger backbone (ResNet-101) and a longer training sched-
ule (3x), a consistent improvement brought by SharpContour is
achieved as well. AP* is COCO mask AP evaluated using the
higher-quality LVIS annotations.

A APyy |M AP, FPS| N AP,; FPS
0.0015  37.1 5 36.8 154 | 128 375 150
0.003 375 |10 375 15.0 | 256 378 146
0.006 36.6 | 15 372 147 | 348 38,0 142
20 371 143|512 380 137

Table 7. AP, and FPS for different parameters of sampling
strategy on COCO val2017 datasets. The parameters selected
achieve the balance of accuracy and efficiency.

Combined Method | n=1 n=2 n=3 n=4
DANCE 352 357 36.1 362
Mask R-CNN 36.6 37.1 375 377
CondlInst 369 374 379 380

Table 8. Results of different iteration numbers of Evolution
Process. It can be seen that the Iterative Evolution can consis-
tently boost the performance, as well as preserve stability on the
COCO val2017 datasets. As the number of iterations increases,
the improved performance of each iteration continues to decrease,
indicating the convergence of contour.
Reg.1 Reg. 2 SharpContour

AP | 36.1(+0.9) 36.2(+1.0) 37.5(+2.3)
Table 9. Results of Regression-based model Both regression-
based designs can only slightly enhance the AP.

Different parameters of Contour Evolution process
There are three main parameters in the design of the points
sampling strategy, which are the deformation ratio A, the
number of sampling points M and the resolution of the
polygon N. In final version, we set A = 0.003, M = 10
and NV = 128. In this ablation study, we conduct control ex-
periments for each one of these parameters (preserving the
other two parameters the same with the final version) and
the results of three evolution iterations are in Tab. 7.

For ), a) a larger deformation ratio causes performance
degradation with more iterations, which is due to the fast
deformation; b) a smaller deformation ratio requires more
iterations for convergence. From these two experiments, we
can see that our final choice achieves the best performance.

For M, a) a larger number of points will increase the in-
ference time; b) a smaller number of points will decrease
the running time but require more iterations for better per-
formance; c) if the number of points becomes very large, the

performance will decrease as more iterations are performed.
This is because the polygon deforms too fast so that errors
tend to appear in the result.

For N, it shows that denser sampling on the poly-
gon contributes to minor performance improvements, while
greatly increasing the inference time. We use 128-
resolution in the final model for a better trade-off between
accuracy and efficiency.

Different number of Stacked Contour Evolution Process
To comprehensively evaluate the effectiveness of the Sharp-
Contour, we explore the performance of different iterations
of the Contour Evolution Process. The results are reported
in Table. 8. As is shown, if stacking the contour evolution
process of SharpContour more times, a stable enhancement
of accuracy is validated for our methods.
Regression-based Baselines We have explored two
regression-based designs before adopting current discretiza-
tion design: 1) regressing offset vectors (Reg.1); 2)re-
gressing the distance along the normal direction (Reg. 2),
where the proposed instance-aware feature is also used. We
adopted the Mask-RCNN as the basic framework and car-
ried out experiments on COCO datasets. As is shown in
Tab. 9, both regression-based designs can only slightly en-
hance the AP comparing with the SharpContour.

5. Conclusion

We propose a novel contour-based refinement approach
called SharpContour to improve the boundary quality of in-
stance segmentation. The existing mask-based refinement
methods are lack of efficiency or generality and contour-
based approaches prone to generate over-smoothed con-
tours around sharp corners. We address all of their limi-
tations by designing a new contour evolution method and
an Instance-aware Points Classifier. In contrast to the pre-
vious approaches, our approach shows superior accuracy in
a considerable efficient fashion and can refine both mask-
based and contour-based methods. We extensively evalu-
ate the qualitative and quantitative performance of Sharp-
Contour on two large-scale public benchmarks for instance
segmentation. It achieves significant improvement on all

benchmarks when incorporated with different models.
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