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Abstract

Biological intelligence systems of animals perceive the
world by integrating information in different modalities and
processing simultaneously for various tasks. In contrast,
current machine learning research follows a task-specific
paradigm, leading to inefficient collaboration between tasks
and high marginal costs of developing perception models
for new tasks. In this paper, we present a generic perception
architecture named Uni-Perceiver, which processes a vari-
ety of modalities and tasks with unified modeling and shared
parameters. Specifically, Uni-Perceiver encodes different
task inputs and targets from arbitrary modalities into a uni-
fied representation space with a modality-agnostic Trans-
former encoder and lightweight modality-specific tokeniz-
ers. Different perception tasks are modeled as the same
formulation, that is, finding the maximum likelihood target
for each input through the similarity of their representa-
tions. The model is pre-trained on several uni-modal and
multi-modal tasks, and evaluated on a variety of down-
stream tasks, including novel tasks that did not appear in
the pre-training stage. Results show that our pre-trained
model without any tuning can achieve reasonable perfor-
mance even on novel tasks. The performance can be im-
proved to a level close to state-of-the-art methods by con-
ducting prompt tuning on 1% of downstream task data.
Full-data fine-tuning further delivers results on par with or
better than state-of-the-art results. Code and pre-trained
weights shall be released.

1. Introduction
Biological intelligence systems of animals perceive the

world by receiving information in different modalities, inte-
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Figure 1. Comparing previous task-specific perception models
with our proposed Uni-Perceiver, which processes various modal-
ities and tasks with a single siamese model and shared parameters.

grating with the complex central nervous system, and pro-
cessing simultaneously for different tasks. However, de-
signing a generic artificial perception model that handles
multiple modalities and numerous tasks has always been
considered too difficult. To simplify this problem, pre-
vious machine learning research has focused on develop-
ing specialized models for inputs from certain restricted
modality, e.g., Convolutional Neural Networks [45] for vi-
sual recognition and Transformers [80] for natural language
processing. Recently, Transformers have been proved to
have competitive performance in more scenarios such as
image [10, 20, 51, 76, 78, 82, 84, 90] and video [4, 6, 87]
recognition, which triggers a new paradigm of designing
unified architectures for different modalities. Following this
paradigm, recent works [1, 27, 33, 64] adopt Transform-
ers as the backbone for multi-modal applications such as
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visual-linguistic recognition. They convert the inputs from
different modalities into unified input token sequences with
modality-specific tokenizers. Models are pre-trained with
large-scale multi-modal datasets, and then adapted to down-
stream tasks with fine-tuning.

Despite the ability of processing multi-modal informa-
tion with unified architectures, current methods still require
specific design and training for different tasks. This limita-
tion is caused by two reasons. First, the input of a particular
model is the combination of specific modalities required by
its target task. Second, previous works require prediction
heads specifically designed and trained for the target tasks.

We argue that this task-specific paradigm conflicts
with the objective of designing generic perceptual mod-
els. Specifically, during pre-training, the specialised de-
signs for different tasks hinder the collaboration between
tasks, which may hurt the representational capacity. Mean-
while, when a pre-trained model is applied to a new task, the
input format and the prediction head need to be re-designed
and fine-tuned on sufficient downstream data. Considerable
effort in collecting and annotating data is required. Also,
all parameters need to be copied and maintained for each
downstream task, which becomes inefficient and inconve-
nient as the number of tasks and the model size grow. On the
other hand, when fine-tuning is performed with insufficient
training data, it may forget the pre-trained knowledge that
is beneficial to the downstream task, thereby hurting gen-
eralization performance [14]. All of these issues increase
the marginal cost of developing perception models for new
tasks and limit the capability to meet the rapidly grow-
ing demands of diverse scenarios, indicating task-specific
paradigm is not suitable for generic perceptual modeling.

Our core idea is to replace task-specific designs by
encoding different task inputs and targets from arbitrary
modalities into a unified representation space, and model
the joint probability of inputs and targets through the sim-
ilarity of their representations. This design eliminates the
gap between the formulations of different perception tasks,
and therefore encourages the collaboration between differ-
ent modalities and tasks in representation learning. More-
over, by aligning the formulations of pre-training and down-
stream tasks, the knowledge can be better transferred when
applying the pre-trained model to the target tasks. The
model can even conduct zero-shot inference on novel tasks
that do not appear in the pre-training stage.

In this paper, we propose a unified architecture named
Uni-Perceiver, which processes various modalities and
tasks with a single siamese model and shared parameters.
Specifically, the task inputs and targets from arbitrary com-
binations of modalities are first converted into unified to-
ken sequences with lightweight modality-specific tokeniz-
ers. The sequences are then encoded by a modality-agnostic
Transformer encoder into a unified representation space.

Different perception tasks are modeled as the same formu-
lation, finding the maximum likelihood target for each input
through the similarity of their representations, so as to facil-
itate the generic perceptual modeling.

Uni-Perceiver is pre-trained on various uni-modal tasks
such as image / video classification and language model-
ing, and multi-modal tasks such as image-text retrieval and
language modeling with image clues. When applied to
downstream tasks, thanks to the generic modeling of per-
ception tasks, the pre-trained model shows the ability of
zero-shot inference on novel tasks that did not appear in the
pre-training stage. Moreover, the performance can be fur-
ther boosted with additional task-specific data. For the few-
shot scenario, we adapt the model to downstream tasks with
prompt tuning [47], where only a small amount of addi-
tional parameters are optimized for specific tasks. The per-
formance of our model can be further improved with full-
model fine-tuning on sufficient downstream training data.

We pre-train our model on several uni-modal and multi-
modal tasks, and evaluate its performance on a variety of
downstream tasks, including novel tasks that did not ap-
pear in the pre-training stage. Results show that our pre-
trained model without any tuning can achieve reasonable
performance even on novel tasks. Its performance can be
boosted to a level close to state-of-the-art methods by con-
ducting prompt tuning with 1% of the downstream task data.
When fine-tuning the pre-trained model with 100% of the
target data, our model achieves result on par with or better
than state-of-the-art methods on almost all the tasks, which
demonstrates the strong representation ability.

2. Related Works
Architecture. For visual recognition, Convolutional Neu-
ral Networks (CNN) [45] used to be the main architec-
ture paradigm. Motivated by the success of Transformers
in natural language processing [8, 18, 37, 40, 50, 80], at-
tempts have been made to apply Transformers to image and
video modalities. For image recognition, vision Transform-
ers [10, 20, 51, 76, 78, 82, 84, 90] replace CNNs by an
image patch tokenizer and a transformer encoder, which
have been proved to obtain competitive performance as
CNNs. [4, 6, 87] make attempts to apply Transformers on
video recognition in a convolution-free fashion. For visual-
linguistic recognition, recent works [15, 42, 43, 54, 61, 72,
75, 92] also adopt Transformers as the backbone, while they
usually take regional features as inputs, which are typically
extracted by off-the-shelf object detectors (e.g., Faster R-
CNN [65] pre-trained on Visual Genome [36]). [29] at-
tempts to eliminate the need for object detectors by di-
rectly extracting features from the raw pixels with CNNs.
[1, 27, 33, 64] take a further step by applying Transform-
ers to raw image patches and word tokens. Transformers
have enabled a unified architecture paradigm for different
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modalities, which only need the modality-specific tokeniz-
ers to convert inputs from different modalities into unified
input token sequences.

Nevertheless, previous architecture requires prediction
heads specifically designed and trained for different per-
ception tasks. Instead, we replace the task-specific design
by encoding different task inputs and targets into a unified
representation space, and model their relationship by repre-
sentational similarity. This modification enables our model
to conduct zero-shot inference even on novel downstream
tasks that did not appear in the pre-training stage.

Pre-training. Large-scale pre-training has achieved great
success in the field of deep learning, which can alleviate
the data-hungry challenge and improve the performance of
downstream tasks [83]. For image recognition, pre-training
is usually performed on image classification datasets, e.g.,
ImageNet [17]. Video recognition networks are either
pre-trained on image classification or video classification
datasets, e.g., Moments in Time [57] and Kinetics [32].
In natural language processing, self-supervised language
modeling [8, 18, 37, 40, 50] is adopted for pre-training on
large-scale unlabeled corpora [62]. Specifically, GPT [8]
performs the auto-regressive pre-training, which optimizes
the probability of the next word conditioned on previous
words. BERT [18] uses masked language modeling (MLM)
and next sentence prediction (NSP) for pre-training. These
pre-trained models can serve as robust feature extractors for
downstream tasks with small architecture modifications.

Recent years have witnessed interest in large-scale cross-
modal pre-training [83]. Compared with uni-modal pre-
training, cross-modal pre-training needs to align informa-
tion from different modalities. Such pre-training is usu-
ally performed on image-text pairs collected from Inter-
net [9, 31, 58, 68] and manual annotated visual-linguistic
datasets [36, 46, 58]. Moreover, various pre-training objec-
tives are proposed to utilize these datasets effectively. The
most widely used objectives are image-text retrieval [2, 5,
43, 55, 63, 73, 74, 75], masked language modeling with im-
age clues [2, 23, 43, 55, 72, 73, 74, 75], and masked region
modeling [15, 55, 72, 73, 75]. Among them, masked re-
gion modeling requires regional features extracted by off-
the-shelf object detectors. More recently, CLIP [63] has
verified the effectiveness of only performing image-text re-
trieval pre-training on huge webly collected data.

Previous multi-task pre-training requires task-specific
heads, which hinders the collaboration among different
tasks. Instead, we encode different task inputs and targets
into a unified representation space, and model their relation-
ship by a unified representational similarity, which enables
the collaboration between different modalities and tasks.
Our pre-training tasks include image and video classifica-
tion, language modeling with and without image clues, and
image-text retrieval. We do not use regional features and

the corresponding pre-training tasks.

Prompt Tuning. As an alternative solution to fine-tuning,
prompt tuning has recently been proposed in the NLP com-
munity, which originated from prompting methods [47]. In
prompting, specially designed natural language tokens, or
namely prompts, are inserted into the input sequence as
hints for the target tasks. These prompt inputs are used
to query a large language model (e.g., GPT-3 [8]). Meth-
ods [30, 69] have been proposed to automate the prompt en-
gineering process. The prompting process does not tune any
of the parameters, which is empirically sub-optimal com-
pared to fine-tuning [49].

Prompt tuning [39] is proposed to replace hard language
prompts with learnable prompt tokens that can be updated
through gradient back-propagation, while other parameters
are still kept fixed. Other than adding learnable input to-
kens, Prefix-Tuning [44] adds learnable prompts to each
layer of the Transformer to boost the model capacity. For
few-shot scenario, [25] proves that prompt tuning can be
much better than traditional fine-tuning. When the train-
ing data is sufficient, prompt tuning performs slightly worse
than fine-tuning [49]. However, the performance gap from
full-model fine-tuning closes up as the pre-trained model
gets larger [39, 48]. Inspired by the success of prompt tun-
ing in NLP, [91] applies prompt tuning to visual-linguistic
pre-trained models (e.g., CLIP [63]) to perform few-shot
image classification. [59, 66] further apply a residual fea-
ture adapter to improve the few-shot performance.

In this paper, we focus on the zero-shot and few-shot sce-
narios, where the downstream tasks may not even appear in
the pre-training stage. For few-shot learning, we adapt the
model with prompt tuning proposed by [47]. The perfor-
mance of our model can be further improved by fine-tuning
the whole model with sufficient downstream training data.

3. Method

3.1. Unified Architecture for Generic Perception

In this section, we will describe our unified architecture
for various modalities and tasks. Fig. 2 illustrates the archi-
tecture. Specifically, the model first converts different task
inputs and targets from arbitrary combinations of modalities
into token sequences with modality-specific tokenizers. A
modality-agnostic Transformer encoder, which shares pa-
rameters for different input modalities and target tasks, is
then employed to encode different token sequences into a
shared representation space. Any perception task can be
modeled in a single unified formulation, which finds the
maximum likelihood target for each input through the sim-
ilarity of their representations.

Tokenization. Given the raw inputs from text, image, and
video modalities, modality-specific tokenizers are applied
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Figure 2. Overview of our unified architecture for generic perception. Different task inputs and targets from arbitrary modalities are
converted into unified token sequences with modality-specific tokenizers. A modality-agnostic weight-sharing Transformer encoder is then
applied to encode these token sequences into the shared representation space. Any perception task can be modeled as finding the maximum
likelihood target for each input through the similarity of their representations.

to generate the input token sequences for the Transformer
encoder. Here, we use the BPE tokenizer [67] for text
modality, the image patch tokenizer [20] for image modal-
ity, and the temporal frame patch tokenizer [7] for video
modality. These outputted tokens are attached with addi-
tional modality type embeddings to identify which modal-
ity the raw input belongs to. Details of the modality-specific
tokenizers are described in the Appendix.

As illustrated in Fig. 2, depending on the task require-
ments, the input sequence x of the Transformer encoder
can be composed of different combinations of text token
sequence xT , image token sequence xI , and video to-
ken sequence xV . At the beginning of the sequence x,
a special token <SPE> is always inserted. For exam-
ple, x = [<SPE>, xI , xT ] for image-text pair inputs, and
x = [<SPE>, xV ] for video-only inputs, where [ ] denotes
the sequence concatenation. The feature of <SPE> at the
encoder output serves as the representation of the input.

Generic Modeling of Perception Tasks. We model dif-
ferent perception tasks with a unified architecture, whose
parameters are shared for all target tasks. Each task is de-
fined with a set of inputs X and a set of candidate targets Y .
Given an input x ∈ X , the task is formulated as finding the
maximum likelihood target y ∈ Y as

ŷ = argmax
y∈Y

P (x, y), (1)

where P (x, y) is the joint probability distribution. The joint
probability is estimated through calculating the cosine sim-
ilarity between the representation of x and y as

P (x, y) ∝ exp
(
cos

(
f(x), f(y)

)
/τ

)
, (2)

where f(·) is the Transformer encoder, and τ > 0 is a learn-
able temperature parameter.

To obtain generic modeling capability, our unified archi-
tecture is pre-trained on a variety of multi-modal tasks si-

multaneously. Suppose a series of pre-training tasks is de-
noted as {X1,Y1}, {X2,Y2}, ..., {Xn,Yn}, where Xi and
Yi is the input set and target set of the i-th task, respectively.
Then the pre-training loss is defined as

L =

n∑
i=1

E
{x,y}∈{Xi,Yi}

[
− log

P (x, y)∑
z∈Yi

P (x, z)

]
, (3)

where E is the mathematical expectation, and {x, y} ∈
{Xi,Yi} indicates a ground-truth input-target pair sampled
from the dataset of the i-th task.

Our unified architecture is suitable for any task, as long
as its input set X and target set Y are composed of images,
texts, and videos. For example, the target set Y in classifica-
tion tasks can be a set of class names, a set of class descrip-
tions, or even a set of images with handwritten numbers
representing class indexes. Detailed instances of X and Y
will be introduced in the next subsection. Note that we cur-
rently focus on text, image, and video modalities, but more
modalities are also applicable, as long as the corresponding
tokenizers are applied.

Relation to Previous Perception Models. Our method
shares the same goal of learning multi-modal representa-
tions as previous perception models. However, existing
works follow a task-specific paradigm, while our method
is designed for generic perceptual modeling. The main dif-
ference lies in two parts:

1) Previous works focus on inputs from certain combina-
tions of modalities required by their target tasks, while our
method handles arbitrary combinations of modalities with a
unified architecture and shared parameters.

2) Previous works require prediction heads specifically
designed and trained for each perception task, while our
method models different tasks with the same formulation
and processes them with unified modeling.

Therefore, when transferred to a new task, previous
methods need to re-design their input formats and predic-
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Figure 3. Input and target formats of pre-training tasks. For each
task, the left column represents the format of input sequence x, and
the right column represents the format of the target sequence y.
f(x) and f(y) indicate the representations used for calculating the
joint probability distribution as in Eq. (2). Here, we have omitted
the tokenizer and encoder for concision.

tion heads accordingly. Models require fine-tuning on suffi-
cient task-specific data, resulting in remarkable human and
computational costs. In contrast, our method can directly
conduct zero-shot inference on novel tasks that do not ap-
pear in the pre-training stage. The performance can be fur-
ther boosted with prompt tuning on few-shot downstream
data and fine-tuning on sufficient downstream data.

3.2. Pre-training on Multi-Modal Tasks

Our model is pre-trained on a variety of tasks simulta-
neously to learn the multi-modal generic representations.
The pre-training tasks are illustrated in Fig. 3. Specifi-
cally, for uni-modal pre-training tasks, we adopt the most
widely-used image classification, video classification, and
language modeling tasks. To further enhance the relation-
ships between different modalities, some cross-modal tasks
are also employed, such as language modeling with image
clues and image-text retrieval tasks. Note that for image and
video classification tasks, we regard each class name (e.g.,
tigershark) as a text sequence. This provides weak su-
pervision for bridging the gap among the representations of
images, videos, and texts.

Image and Video Classification. In image and video clas-
sification tasks, X denotes the set of all possible images or
videos in the training dataset, and Y consists of candidate

class labels in each dataset. Each class name is regarded as
a text sequence to provide weak supervision of the relation-
ship to texts. Both the input x ∈ X and target y ∈ Y start
with an <SPE> token, whose feature at the encoder output
represents the corresponding sequence.

Language Modeling with and without Image Clues. The
language modeling task aims to predict the masked words
according to the context. Both auto-regressive [8] and auto-
encoding [18] language modeling are adopted. When inputs
have no image, the auto-regressive and auto-encoding tasks
correspond to the text generation and the masked language
modeling tasks, respectively. When inputs have images, the
auto-regressive and auto-encoding tasks correspond to the
image caption and the masked language modeling with im-
age clues tasks, respectively.

For auto-encoding language modeling, we follow the
practice in BERT [18] to mask out 15% words from the
text randomly. The model predicts each masked word based
on all inputs. For auto-regressive language modeling, the
model predicts each word based on its previous text and im-
age (if any). Please refer to the Appendix for an efficient
implementation of auto-regressive language modeling.

In this task, X consists of language sentences or image-
text pairs. Y denotes the set of all words in the vocabulary,
where each word is regarded as a single text sequence. Each
word that needs to be predicted in x ∈ X is replaced by a
<SPE> token, whose feature at the encoder output is used
to match the words in the vocabulary Y .

Image and Text Retrieval. For image-text retrieval, the
input sets X and Y are composed of images and text se-
quences respectively, or vice versa. For text-only retrieval,
the input sets X and Y are both text sequences. Each se-
quence in X and Y has a special token <SPE> at the begin-
ning, whose feature at the output of the encoder serves as
the final representation.

3.3. Zero-shot, Prompt Tuning and Fine-tuning

During the pre-training stage, our unified architecture
learns to model the joint distribution of input and target se-
quences from arbitrary modalities. Thanks to the generic
perceptual modeling, our pre-trained model can perform
zero-shot inference on completely novel tasks that do not
appear in the pre-training stage. Our model can be further
adapted to downstream tasks with task-specific additional
training data. For the few-shot scenario, we employ the
prompt tuning [47] scheme, which only adds a few addi-
tional task-specific parameters to the model. The perfor-
mance on specific tasks can be further improved by fine-
tuning the whole model on sufficient downstream data.
Zero-shot Inference on Novel Tasks. Our model has the
potential to perform zero-shot inference on any perception
task that can be modeled by a joint probability distribu-
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Dataset #Images #Videos #Text

ImageNet-21k [17] 14.2M 0 21K
Kinetics-700 [32] 0 542K 700

Moments in Time [57] 0 792K 339
Books&Wiki [93] 0 0 101M

PAQ [41] 0 0 65M
CC3M [68] 3.0M 0 3.0M
CC12M [9] 11.1M 0 11.1M

COCO Caption [12] 113K 0 567K
Visual Genome [36] 108K 0 5.41M

SBU [58] 830K 0 830K
YFCC [31] 14.8M 0 14.8M

Table 1. Pre-training dataset statistics. #Images, #Videos and
#Text represent the number of images, video clips, and textual
sentences (or phrases), respectively.

tion. For a task with input x ∈ X and a candidate target
y ∈ Y , we firstly tokenize x and y into two sequences. The
joint probability P (x, y) is then estimated following Eq. (2).
Zero-shot inference can be conducted by maximum likeli-
hood estimation, as described in Eq. (1). Performance can
also be improved through prompt engineering, similar to
the prompting [47] for language models such as GPT-3 [8],
where network training is not required.
Prompt Tuning. For the few-shot scenario with limited
training data, we adopt prompt tuning, which is memory-
efficient and has been proved to be better than the fine-
tuning scheme in few-shot NLP [25]. In prompt tuning,
most pre-trained parameters are fixed, leaving only a small
portion of task-specific parameters to be optimized. Specif-
ically, following P-Tuning v2 [48], learnable prompt tokens
with random initialization are added at each layer of the
Transformer encoder, and class labels with linear heads are
added for classification tasks. The <SPE> token and layer
norm parameters are also tuned. We refer the readers to the
Appendix for more details.
Fine-Tuning. For downstream tasks with sufficient train-
ing data, our model can also be fine-tuned to further im-
prove its performance. During fine-tuning, our model can
serve as a joint probability estimator (same as our proposed
generic perceptual modeling), or a feature extractor (same
as traditional pre-trained models). Under the setting of joint
probability estimation, the downstream tasks are formulated
in the same unified manner as in pre-training. On the other
hand, similar to previous perception models, our model can
also be used as a feature extractor by adding a task-specific
head on the top of the encoder. We empirically find these
two schemes achieve very similar performance, and hence
the scheme of joint probability distribution estimator is used
by default for consistency.

4. Experiments
4.1. Datasets

Our model is pre-trained on a variety of tasks, whose
statistics are listed in Tab. 1. We pre-train image classifi-

Method Pre-training Data ImageNet-1k Kinetics-400
#Images #Videos Acc Acc

DeiT [77] 1.28M 0 81.8 -
TimeSformer [7] 1.28M 650k - 75.5

Ours w/o Tuning 44.14M 1.33M 78.0 73.5

Ours PT (0.1%) 44.14M 1.33M 79.4 73.6
Ours FT (0.1%) 44.14M 1.33M 78.8 73.5

Ours PT (1%) 44.14M 1.33M 80.2 73.6
Ours FT (1%) 44.14M 1.33M 80.2 73.6

Ours FT (100%) 44.14M 1.33M 83.8 75.8

Table 2. Image and video classification performance under dif-
ferent tuning settings. PT means prompt-tuning, and FT means
fine-tuning. The percentage of data used in tuning is noted. In ad-
dition, the data statistics for training or pre-training are also listed.

cation on ImageNet-21k [17]. For video classification, we
pre-train on Kinetics-700 [32] and Moments in Time [57].
We pre-train language modeling on BookCorpora [93] &
English Wikipedia (Books&Wiki) and PAQ [41]. For
language modeling with image clues and image-text re-
trieval, we use a combination of COCO Caption [13], SBU
Captions (SBU) [58], Visual Genome [36], CC3M [68],
CC12M [9] and YFCC [31]. To evaluate the effectiveness of
our method and verify the generalization of our pre-trained
model, we also use several novel datasets that did not appear
in pre-training, i.e., Flickr30k [60], MSVD [11], VQA [26],
and GLUE [81]. See Appendix for the details of datasets.

4.2. Implementation Details

The Transformer encoder used for experiments is of the
same configuration with BERTBASE [18]. It is a 12-layer
encoder with the embedding dimension of 768 and the at-
tention head number of 12. The hidden dimension size in
FFN is 3072. We pre-train the model with multiple tasks
simultaneously. In each iteration, each GPU independently
samples a single task and dataset. The gradients of different
GPUs are synchronized after the gradient back-propagation.
We use AdamW [34] optimizer with a base learning rate of
0.0002 and a weight decay of 0.05. Gradient clipping with
5.0 is used to stabilize training. We also use drop path [38]
with a probability of 0.1 during training. The model is pre-
trained on 128 Tesla V100 GPUs in a distributed fashion
for 500k iterations. We use the cosine learning rate sched-
ule with 50k iterations of linear warmup. See Appendix for
more implementation details.

4.3. Evaluation on Pre-training Tasks

We first evaluate our pre-trained model on tasks that have
been involved in the pre-training stage, while the datasets
might be different. The widely used Imagenet-1k [17] and
Kinetics-400 [32] are used for evaluating the image and
video classification tasks, respectively. COCO Caption and
Flickr30k are the typical datasets used to evaluate the per-
formance on image caption and image-text retrieval.
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Method Pre-training Data Text Retrieval Image Retrieval
Flickr30k COCO Caption Flickr30k COCO Caption

#Images #Videos #Text R@1 R@5 R10 R@1 R@5 R10 R@1 R@5 R10 R@1 R@5 R10

ImageBERT [61] w/o Tuning 6.0M 0 6.0M 70.7 90.2 94.0 44.0 71.2 80.4 54.3 79.6 87.5 32.3 59.0 70.2
UNITER-B [15] w/o Tuning 4.2M 0 9.6M 80.7 95.7 98.0 - - - 66.2 88.4 92.9 - - -

ViLT [33] w/o Tuning 4.2M 0 9.6M 73.2 93.6 96.5 56.5 82.6 89.6 55.0 82.5 89.8 40.4 70.0 81.1

Unicoder-VL [28] 3.8M 0 3.8M 86.2 96.3 99.0 62.3 87.1 92.8 71.5 91.2 95.2 48.4 76.7 85.9
UNITER-B 4.2M 0 9.6M 85.9 97.1 98.8 64.4 87.4 93.1 72.5 92.4 96.1 50.3 78.5 87.2

ViLT 4.2M 0 9.6M 83.5 96.7 98.6 61.5 86.3 92.7 64.4 88.7 93.8 42.7 72.9 83.1

Ours w/o Tuning 44.14M 1.33M 201M 74.8 94.8 98.2 57.7 85.6 92.3 65.8 88.8 93.6 46.3 75.0 84.0

Ours PT (1%) 44.14M 1.33M 201M 84.4 97.8 99.2 61.4 86.7 93.2 71.1 91.6 95.1 47.0 75.3 84.3
Ours FT (1%) 44.14M 1.33M 201M 78.4 95.7 97.8 60.2 85.1 90.6 61.0 85.7 91.0 43.6 70.9 80.5

Ours PT (10%) 44.14M 1.33M 201M 86.4 98.2 99.5 61.6 87.0 93.2 72.5 92.3 95.7 47.2 75.4 84.3
Ours FT (10%) 44.14M 1.33M 201M 84.9 97.4 98.3 60.9 85.5 92.1 67.9 89.4 92.9 45.6 73.4 82.6

Ours FT (100%) 44.14M 1.33M 201M 87.9 98.2 99.1 64.7 87.8 93.7 74.9 93.5 96.0 48.3 75.9 84.5

Table 3. Image-text retrieval performance under different tuning settings. PT means prompt-tuning, and FT means fine-tuning. The
percentage of data used in tuning is noted. In addition, the pre-training dataset statistics of competitive methods are also listed.

Method COCO Caption Flickr30k
B@4 M C S B@4 M C S

Unified VLP [92] 36.5 28.4 116.9 21.2 30.1 23.0 67.4 17.0

Ours w/o Tuning 33.6 27.0 109.8 20.3 17.0 16.2 41.2 11.2

Ours PT (1%) 34.3 27.2 109.6 21.2 28.1 21.6 59.1 15.6
Ours FT (1%) 28.0 26.8 100.1 20.2 18.9 19.7 45.3 14.3

Ours PT (10%) 35.0 27.9 114.1 21.3 28.8 22.1 61.7 16.8
Ours FT (10%) 32.7 27.5 109.0 21.1 26.9 21.6 52.1 14.5

Ours FT (100%) 35.6 28.1 116.5 21.5 30.1 24.5 72.7 18.2

Table 4. Image caption performance under different tuning set-
tings. B@4, M, C, S stand for BLEU-4, METEOR, CIDEr, and
SPICE scores, respectively. Additionally, Unified VLP [92] con-
ducted pre-training with around 3.0M image-text pairs.

Results. Tab. 2, Tab. 3, and Tab. 4 present the evaluation
results of our models on four pre-training tasks, i.e., image
classification, video classification, image-text retrieval, and
image caption. We compare our model with task-specific
SOTA methods having the similar model size.

Results show that without any tuning, our pre-trained
model reaches reasonable performance on these tasks. Al-
though the performance is slightly worse than the SOTA
methods. We speculate that the performance gap is due to
the limited capacity of our model, which may have a neg-
ative impact on the representation ability. Note that our
method shares a similar model size with other methods,
but need to simultaneously process much more pre-training
tasks from various datasets and modalities.

By conducting prompt tuning on each task with 1%
downstream data, the performance is boosted to a level
close to SOTA performance. It’s worth noting that all pa-
rameters of other methods are specifically trained on the tar-
get tasks. While for our prompt tuning, only a small amount
of parameters are tuned, and the encoder is still fixed and
shared among different tasks, indicating that our method
can handle different tasks with low marginal cost.

We further fine-tune the pre-trained model with 100% of
the downstream data. With full-data fine-tuning, our model
achieves performance on-par with or better than the SOTA

Method Pre-training Data MSVD
#Images #Videos #Text B@4 M R C S

ORG-TRL [88] 1.4M 650k - 54.3 36.4 73.9 95.2 -

Ours w/o Tuning 44.14M 1.33M 201M 20.3 25.8 52.1 45.7 6.5

Ours PT (1%) 44.14M 1.33M 201M 54.8 38.9 74.7 104.8 6.6
Ours FT (1%) 44.14M 1.33M 201M 47.3 35.8 66.2 80.1 6.2

Ours PT (10%) 44.14M 1.33M 201M 57.2 39.1 75.6 112.1 6.8
Ours FT (10%) 44.14M 1.33M 201M 56.7 38.7 70.0 88.2 6.7

Ours FT (100%) 44.14M 1.33M 201M 61.5 42.3 79.0 131.0 7.7

Table 5. Video caption (novel task) performance under differ-
ent tuning settings. Note that this task did not appear in our
pre-training. The only task related to video modality in our pre-
training is video classification. In addition, the pre-training statis-
tics of competitive methods are also listed.

Method
Pre-training Data

Text Retrieval Video Retrieval
MSVD MSVD

#Images #Videos #Text R@1 R@5 R10 R@1 R@5 R@10

CLIP4clip [56] 400M 380k 400M 56.6 79.7 84.3 46.2 76.1 84.6
CLIP2video [21] 400M 0 400M 58.7 85.6 91.6 47.0 76.8 85.9

Ours w/o Tuning 44.14M 1.33M 201M 42.7 69.1 79.6 34.6 64.5 75.4

Ours PT (1%) 44.14M 1.33M 201M 61.2 83.7 89.0 42.6 73.3 82.5
Ours FT (1%) 44.14M 1.33M 201M 49.6 75.8 83.7 37.5 68.2 79.3

Ours PT (10%)) 44.14M 1.33M 201M 61.3 84.8 90.9 43.1 74.2 83.4
Ours FT (10%)) 44.14M 1.33M 201M 59.1 81.9 87.4 41.7 71.6 81.3

Ours FT (100%) 44.14M 1.33M 201M 61.5 83.5 90.2 45.4 75.8 85.0

Table 6. Video-text retrieval (novel task) performance under dif-
ferent tuning settings. Note that this task did not appear in our
pre-training. In addition, the pre-training statistics of competitive
methods are also listed.

methods on all these tasks, which proves our model has
learned high-quality representations. We also compare the
performance of prompt tuning and fine-tuning in the sce-
nario of few-shot learning. On all of these tasks, prompt
tuning shows a consistently better performance than fine-
tuning with the same amount of data, which demonstrates
its superiority under few-shot scenarios.

4.4. Generalization to Novel Tasks

Thanks to the generic perceptual modeling, our pre-
trained model can generalize to novel tasks by convert-
ing the tasks into our unified task formulation. We eval-
uate zero-shot inference on tasks that did not appear in
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Method
Pre-training Data VQA v2 test-dev

#Images #Videos #Text Yes/No Numbers Others

Unified VLP [92] 3.1M 0 - 87.2 52.1 60.3

Ours w/o Tuning 44.14M 1.33M 201M 0.9 3.0 25.5

Ours PT (0.1%) 44.14M 1.33M 201M 63.0 31.8 49.6
Ours FT (0.1%) 44.14M 1.33M 201M 63.0 30.6 49.1

Ours PT (1%) 44.14M 1.33M 201M 70.8 41.3 57.7
Ours FT (1%) 44.14M 1.33M 201M 71.0 42.4 57.5

Ours FT (100%) 44.14M 1.33M 201M 84.8 47.4 61.8

Table 7. Visual question answering (novel task) performance un-
der different tuning settings. Note that this task did not appear in
our pre-training.

Method
GLUE

MNLI QNLI QQP RTE SST-2 MRPC
(Acc) (Acc) (F1) (Acc) (Acc) (F1)

PLM [3] w/o tuning 49.4 50.7 46.6 53.8 70.6 44.2
BERTBASE [81] 84.6 92.7 71.2 66.4 93.5 88.9

RoBERTaBASE[50] 87.6 92.8 91.9 78.7 94.8 90.2

Ours w/o Tuning 49.6 51.0 53.6 55.6 70.6 76.1

Ours PT (1%) 60.1 76.0 70.2 56.3 80.9 80.3
Ours FT (1%) 47.3 60.6 68.9 49.1 69.7 72.3

Ours PT (10%) 68.5 83.2 77.0 58.2 83.4 83.2
Ours FT (10%) 60.5 71.5 71.4 50.5 79.1 80.6

Ours FT (100%) 81.7 89.9 87.1 64.3 90.2 86.6

Table 8. Natural language understanding (novel task) performance
under different tuning settings. Note that this task did not appear
in our pre-training.

pre-training, i.e., video caption, video-text retrieval, visual
question answering, and natural language understanding.

Video Caption and Video-Text Retrieval. Our pre-trained
model is evaluated on MSVD [11] dataset. Specifically, for
video caption, X1 consists of the concatenation of video and
language sequences that have been predicted, and X2 de-
notes the set of all words in the vocabulary. For the video-
text retrieval, the input sets X1 and X2 consist of possible
video and text sequences, or vice versa.

Visual Question Answering. In visual question answer-
ing, the model is asked to answer a question w.r.t a refer-
ence image from a list of answer candidates. We evaluate
our pre-trained model on VQA [26] dataset. X1 is a set
of image-text sequence, where the text is the question to-
kens followed by a <SPE> token used to predict the an-
swers. Each x2 ∈ X2 is an answer sequence beginning with
<SPE>. Inference is achieved by computing the similarity
between output features of <SPE> in x1 and x2.

Natural Language Understanding. Six language-only
tasks are chosen from GLUE benchmark [81] to evaluate the
natural language understanding ability of our pre-trained
model. These tasks are either single sentence classification
or sentence-pair classification tasks. We follow [24] to con-
struct the textual class labels for each dataset. Here, the
input sequence x1 ∈ X1 denotes the input single sentence
or the sentence-pair, and the sequence x2 ∈ X2 represents

the class labels in each dataset.

Result. Tab. 5, Tab. 6 and Tab. 7 show the results on video
caption and video-text retrieval and visual question answer-
ing, respectively. Our pre-trained model can obtain rea-
sonable zero-shot performance on these novel tasks. Note
that none of previous works can perform this type of zero-
shot inference at all. From Tab. 7, we note that our model
shows unsatisfactory zero-shot performance on “Yes/No”
and “Number” subsets in VQA. We speculate that it may be
due to the distribution difference between those answers and
our pre-training corpora. We futher conduct prompt tuning
on these tasks with only 1% data, which brings our model
to a level close to the SOTA results. By further fine-tuning
with 100% downstream data, our model can achieve results
on par with or better than the SOTA methods.

On the GLUE benchmark, our model can achieve com-
parable performance with [3] in zero-shot evaluation. When
fine-tuning the pre-trained model with 100% downstream
data, our model performs slightly worse than BERTBASE.
Since our model has the same number of parameters as
BERTBASE, but need to process much more tasks from var-
ious datasets and modalities, we speculate that the perfor-
mance drop is due to the limited capacity of the model.

5. Conclusion
In this paper, we propose a unified perception architec-

ture that processes various modalities and tasks with a sin-
gle model and shared parameters. With pre-training on uni-
modal and multi-modal tasks, our model shows the ability
of zero-shot inference on novel tasks, and can reach the per-
formance close to SOTA results by prompt tuning with only
a small amount of downstream data. The performance can
be further improved to be on par with or superior to SOTA
results by full-data fine-tuning.
Limitations. Our method is currently only applicable when
the target set is discrete, such as classification and retrieval.
Whether our model can be extended to regression tasks is
still questionable. Future work may explore the unified per-
ception model of both discrete and continuous target sets.
Potential Negative Societal Impact. This work may share
the common negative impacts of large-scale training, which
may consume lots of electricity and result in increased car-
bon emissions. This method also learns from a large number
of datasets that may contain data biases. Future work may
seek for more efficient and unbiased training.
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