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Abstract

Modeling latent variables with priors and hyperpriors
is an essential problem in variational image compression.
Formally, trade-off between rate and distortion is handled
well if priors and hyperpriors precisely describe latent vari-
ables. Current practices only adopt univariate priors and
process each variable individually. However, we find inter-
correlations and intra-correlations exist when observing la-
tent variables in a vectorized perspective. These findings
reveal visual redundancies to improve rate-distortion per-
formance and parallel processing ability to speed up com-
pression. This encourages us to propose a novel vectorized
prior. Specifically, a multivariate Gaussian mixture is pro-
posed with means and covariances to be estimated. Then,
a novel probabilistic vector quantization is utilized to effec-
tively approximate means, and remaining covariances are
further induced to a unified mixture and solved by cascaded
estimation without context models involved. Furthermore,
codebooks involved in quantization are extended to multi-
codebooks for complexity reduction, which formulates an
efficient compression procedure. Extensive experiments on
benchmark datasets against state-of-the-art indicate our
model has better rate-distortion performance and an im-
pressive 3.18× compression speed up, giving us the ability
to perform real-time, high-quality variational image com-
pression in practice. Our source code is publicly available
at https://github.com/xiaosu-zhu/McQuic.

1. Introduction
As a crucial technique in image processing, lossy im-

age compression has been studied for an extended pe-

riod [17, 20, 30, 38]. The goal is to achieve high perceptual

reconstruction performance, extreme compression rate, and

efficient processing pipeline. Classical lossy image com-

pression standards, e.g., JPEG [33,39], BPG [6], HEIF [35],

VVC [8], have been widely applied and adopted as fun-
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(a) y1 (b) y2 =
(
y1 − y1

)
↓

Figure 1. UMAP [24] projection of 128-d latent vectors with a toy

2-level 32-codeword model from 24 Kodak images. Left: Latent

vectors extracted from analysis transform are correlated and can be

described by multivariate Gaussian mixture. Right: Next level’s

latents are under similar distribution.

damental components in almost all image processing soft-

ware. However, the explosion of multimedia content in the

digital era still raises urgent requests to find an effective and

efficient compressor to tackle storage costs.

Distinct from the above traditional codecs, learnable

neural image compression is proposed by exploiting advan-

tages of deep neural networks. It adopts neural networks

as nonlinear transforms to extract binaries from images and

restore them, while essential research problem is to han-

dle the trade-off between rate and distortion [7]. Recent

studies propose variational image compression and arrange

above trade-off as a Lagrange multiplier for joint optimiza-

tion [3, 4, 9, 25, 26]. They introduce univariate priors and

hyperpriors to describe latent variables and make a break-

through to control rate. We summarize advances in this task

as a series of operational diagrams in Figs. 2(a) to 2(c).

To design an effective compressor in variational image

compression, an appropriate prior that precisely describes

quantized latent variables is needed [4, 9, 26]. Fig. 1(a)

demonstrates observation of latent variables grouped by

channels. This vectorized perspective reveals correlations

of latents that help us to find a prior. Note that latent vec-

tor comes from a specific region of an image and repre-

sents this region’s visual appearance, correlations between
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(a) Factorized prior [3]. (b) Hyperprior [4, 26, 29]. (c) Discretized Gaussians [9]. (d) Vectorized prior.

Figure 2. Operational diagrams of different methods. We generalize prior as a unified multivariate Gaussian mixture.

vectors can be summarized as inter-correlation and intra-

correlation. Inter-correlation comes from facts that im-

ages have spatial redundancy [29] i.e. vectors extracted

from visually-similar regions or patches are closed together.

Meanwhile, similar regions still have differences in details,

resulting in intra-correlation i.e. covariances. Two proper-

ties guide us to find a vectorized prior which could describe

two correlations by means and covariances.

Univariate priors previous works adopt may not be suffi-

cient to describe above observations, because they process

each scalar value individually and lack a whole view over

vectors. In other words, adopting a vectorized prior mainly

has two impacts. Firstly, it treats latents as vectors along

channels other than scalars, helping to summarize inter- and

intra-correlations. Secondly, vectorized processing has the

potential to speed up compression procedure. Therefore in

this paper, we propose a novel vectorized prior for varia-

tional image compression. Specifically, a unified multivari-

ate Gaussian mixture is proposed to describe latents. Then,

a probabilistic vector quantization with cascaded estima-

tion is designed to effectively and efficiently estimate means

and covariances without context models involved. Multi-

codebooks are further incorporated into quantization to re-

duce complexity and enable flexible rate control. The whole

procedure is demonstrated in Fig. 2(d) and our contribution

is summarized below:

1. We propose a new vectorized perspective for vari-

ational image compression. Unlike previous works, ours

considers correlations between latent vectors and formu-

lates a unified multivariate Gaussian mixture. We further

propose a probabilistic vector quantization with cascaded

estimation to estimate means and covariances.

2. A multi-codebook structure is further incorporated

into quantization to reduce complexity and enable flexible

rate control. Overall framework is able to perform effective

and efficient compression with the help of vectorized prior.

3. Extensive experiments on benchmark datasets re-

veal impacts of vectorized prior. Compared to state-of-the-

art, our method achieves better rate-distortion performance

with an impressive 3.18× speed up for compression latency.

These results reveal possibility to provide practical varia-

tional image compression with vectorized prior.

2. Related Works
This paper focuses on variational image compression.

Formally, this approach utilizes an auto-encoder to process

latents in order to compress images. Studies focus on han-

dling trade-off between rate and distortion. Specifically, la-

tents are quantized by rounding to the nearest integer [3]

or prototype [25] in order to perform entropy coding with

e.g. range coder. Ballé et al. [3] propose an entropy model

and train network end-to-end (Fig. 2(a)). Subsequently, Hy-

perprior model [4] performs variational inference by hyper-

prior prediction. Figs. 2(b) and 2(c) give two mainstream

styles of hyperpriors. The first [4, 26] is under a shifted and

scaled Gaussian distribution, while the second [9] general-

izes distribution to Gaussian mixture. Both of them could

take an auxiliary context model [9, 26, 29, 32] for precise

estimation and further reduce compression rate.

Other than scalar quantization they adopt, a vector quan-

tization (VQ) is adapted to our proposed vectorized prior.

Studies on VQ for image compression have a long history

early to 1980s [2, 15, 27]. The core problem of VQ to inte-

grate into deep networks is to tackle the non-differentiable

argmax operation involved in quantization. Agustsson et
al. [1] relax argmax to Softmax and propose a soft-to-

hard end-to-end quantization. Van den Oord et al. [36] and

Esser et al. [13] instead utilize a straight-through estima-

tor and directly pass quantized latents to decoder. Similar

approaches are also applied to many other tasks [5, 14, 34].

3. Proposed Method
In this section, we firstly give preliminaries and overall

demonstration of our proposed method.

Given an arbitrary image x, variational image compres-

sion takes an analysis transform ga to produce latent vari-

able y = ga (x), which will be quantized ŷ = q (y). A

synthesis transform gs restores x̂ = gs (ŷ) from ŷ. Distor-

tion between x and x̂ is measured by a perceptual metric

d (x, x̂). Meanwhile, size of compressed ŷ is controlled

by an entropy model pŷ . Therefore, trade-off between rate:
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(a) (b)

Figure 3. (a) Proposed network utilizes cascaded estimation with probabilistic vector quantization (Q) and reverse (D) to model vectorized

prior. “↓”, “↑” denotes down- and up-sampling blocks. (b) Proposed probabilistic vector quantization constructs Categorical distribution

parameterized by φ to sample b and quantize y.

min
ga,gs

R = Ex [− log2 pŷ (ŷ)] (1)

and distortion:

min
ga,gs

D = Ex [d (x, x̂)] (2)

is the essential optimization objective. To enable end-to-end

training, above compressed values ·̂ are approximated by ·̃.
Framework. We put overall framework in Fig. 3(a).

Specifically, analysis and synthesis transforms are similar

as [9] where residual and attention blocks are involved.

Then, to quantize and transmit latent variables, cascaded es-

timation adopts a series of down-sampling or up-sampling

blocks followed by probabilistic vector quantization Q or

dequantization D , respectively. Take a look at a single Q�

at level �, it accepts latent y� ⊆ R
h�×w�×N with N chan-

nels, h� × w� size, then produces intermediate latent y� in

same shape using codebook C� ⊆ R
K×N . Corresponding

binary code b� ⊆ {0, 1}h�×w�×log2 K is transmitted to the

decoder side, and residual y�−y� is passed to the next level.

D� does symmetrical thing. It restores y� by C�
b� . Then,

y� and upper level ỹ�+1 are added up to get ỹ�. Therefore,

the core pipeline of encoding and decoding is defined as

following recursive functions:⎧⎨
⎩

(
y�, b�

)
= Q�

(
y�; C�

)
,

y�+1 =
(
y� − y�

)
↓, 1 ≤ � ≤ L,

(3)

⎧⎪⎨
⎪⎩

y� = D�
(
b�; C�

)
,

ỹ� = y� +
(
ỹ�+1

)
↑
, 1 ≤ � < L,

(4)

where (·)↓, (·)↑ denote down-sampling and up-sampling.

Explaining these equations requires us to give definition

of vectorized prior (Sec. 3.1.1), way to perform quantization

and estimation (Sec. 3.1.2) and a generalization on prior by

cascaded estimation (Sec. 3.1.3).

3.1. Unified Multivariate Gaussian Mixture

3.1.1 Vectorized Prior

An intuition to work with y1 is to group it by channels:

Y = {y1
j ⊆ R

N , 1 ≤ j ≤ h�w�} where j is the spatial

location in latent feature map. For simplicity, we rearrange

y ∈ Y as a N -dim vector. Such arrangement helps to define

pY (y) as a mixture of N -dim multivariate Gaussians:

pY (y) =

K∑
k=1

ΦkN (μk,Σk),

where Φ ∼ Categorical(K, φ).

(5)

Here, μk and Σk are mean and covariance matrix of the

k-th Gaussian component. Φ represents a mixture param-

eterized by K-Categorical distribution with un-normalized

log-probabilities φ.

The given vectorized prior is based on two kinds of cor-

relations we summarize from y. Fig. 1(a) reveals these by

UMAP projection with y that directly extracted from back-

bone. Firstly, inter-correlations between ys show similar-

ities or visual redundancies i.e. extracted latent vectors are

close if their original visual pattern are similar. This helps to

cluster ys into several distinct Gaussian components where

cluster centroids are equivalent to means μk. Secondly,

vectors clustered in a same component are not identical but

have covariance Σk, since they still have subtle differences.

To further quantize vectors in Y , a vector quantization to

estimate μ and Σ is needed.

3.1.2 Probabilistic Vector Quantization

We propose a learnable, probabilistic vector quantization

that makes an approximation on above distribution, which

is demonstrated in Fig. 3(b). Specifically, it maintains a

codebook C ⊆ R
K×N consists of K codewords. Input y

is quantized by assigning a specific codeword to it, which is
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expressed as the following discrete conditional distribution:

pY|Y (y | y; C) =

K∏
k=1

ζ(φ)
{y=Ck}

k ,

where φk = −‖y −Ck‖22 , 1 ≤ k ≤ K.

(6)

Correspondingly, Y is set of centroids y. pY|Y formulates

a Categorical distribution where y is assigned to the k-th

codeword with probability ζ(φ)k. ζ the Softmax function,

φ the negative Euclidean distance between y and codeword,

{·} the characteristic function. To obtain y, we sample

above distribution:

y ∼ Q(y; C) = pY|Y (y | y; C) (7)

which results in one-of-K codeword of C. Intuitively, prob-

ability to choose Ck will be high if y is close to Ck.

After a sample is drawn from pY|Y , b is immediately

obtained by index of picked codeword, which will be en-

coded into binary stream to transmit. On decoding side, D
retrieves identical picked codeword by Cb to restore y since

codebook C is a shared parameter between Q and D .

Above quantization defines a probabilistic model. By

minimizing Eq. (2), codewords in C is derived to approxi-

mately estimate means of Gaussian components of pY
1:

Ck :≈ E{y ∈ Y | Φk = 1} = μk (8)

which automatically perform alignment between codewords

and means. Compared to commonly used k-means, the pro-

posed quantization chooses codeword stochastically other

than directly pick the nearest one in a deterministic way.

It models partial of pY (y) and aggregates into codebook.

Moreover, introduced randomness may help network to es-

cape the local optima during training.

3.1.3 Cascaded Estimation

It is worth noting that above proposed quantization is un-

able to estimate covariance matrix Σ according to previous

derivation. Noticed that:

Σk = E {(Y k − μk) (Y k − μk)
ᵀ} ,

where Y k = {y ∈ Y | Φk = 1}. (9)

An intuition is raised to tackle this by designing a resid-

ual connection, since:

E {y − y | Φk = 1} = E {Y k −Ck}
≈ E {Y k − μk} .

(10)

That is why Eqs. (3) and (4) are proposed. We take former

level’s y − y as inputs of latter level, and let latter level’s

1The proof is placed in the supplementary materials.

Figure 4. Multi-codebook structure. y is split into M groups and

quantize them separately with sub-codebooks. Each sub-codebook

parameterizes an individual distribution to model y(m).

neural network to predict Σ. Fig. 1(b) tells us a trick to

assume residuals on every level to be also under Gaussian

mixture, helping us to expand Eq. (5) and give completed

definition of the unified multivariate Gaussian mixture:

pY �|Y �+1

(
y� | y�+1

)
=

K∑
k=1

Φ�
kN

(
μ�

k,y
�+1

)
(11)

and model the compressed signal ỹ by:

p
Ỹ

�|Ỹ �+1

(
ỹ� | ỹ�+1

)
=

K∑
k=1

Φ�
kN

(
C�

k, ỹ
�+1

)
. (12)

We should emphasize that “y�+1”, “ỹ�+1” here are not

strictly covariance matrices but are used to estimate covari-

ance. Restoration of ỹ starts from ỹL, and produces ỹ�

level-by-level according to Eq. (4).

3.2. Reduce Complexity with Multi-Codebooks

We could handle above quantization by maintaining a

codebook C� on each level. If all of them have codebook

size K, codebook size will be L ·K ·N and output b for any

vector has a maximum bit-length of log2 K. Unfortunately,

K is not allowed to be extremely large otherwise network is

unaffordable heavy. Considering trade-off between model

complexity and compress ability, we further utilize multi-

codebooks to generalize our method. As Fig. 4 shows, y� is

sliced into M groups along channels. Each piece y(�,m) is

quantized by individual sub-codebook C(�,m) whose total

size is still L ·K ·M · N/M = L ·K ·N .

Introduced multi-codebook structure has several im-

pacts. Firstly, since each part y(�,m) has a choice out of

K codewords, the set of all possible combinations of code-

book C(�) is a Cartesian product of sub-codebooks:

C(�) = C(�,1) ×C(�,2) × · · · ×C(�,M) (13)

which makes the maximum bit length become M log2 K =
log2 K

M with significantly small size of codebook M ·
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K. Secondly, with multi-codebooks, we could generalize

Eq. (11) to be a combination of several individual multivari-

ate Gaussian mixture. M = 1 gives the original Eq. (11),

while M = N degenerates to univariate prior.

L,K,M are hyper-parameters for us to control rate. In

practice, introducing multi-codebooks will not significantly

downgrade performance with much smaller codebook size

compared to M = 1 quantization under same bit-length.

3.3. Compression

At inference time, encoding and decoding are composed

as follows: On encoder side, latents are quantized and bina-

ries are rolled out by greedy assignments:

b(�,m) = argmax
k

−
∥∥∥y(�,m) −C

(�,m)
k

∥∥∥
2
, (14)

y(�,m) = C
(�,m)

b(�,m) , (15)

which consumes O (K · N/M) time complexity for encod-

ing a single vector. b(�,m) is compressed based on estimated

occurrence frequency. As for decoder, restoration of y(�,m)

only involves O (1) lookup according to Eq. (14). Last but

not least, these operations are highly paralleled which is

GPU-friendly, gives us ability to perform high-efficient en-

coding and decoding in actual developments.

4. Discussions
In this section, we handle a few questions about model

design and compare our proposed method with other works.

Training. The model is trained in an end-to-end manner.

However, to achieve this, our quantization (Sec. 3.1.2) uti-

lizes stochastic computation graph for sampling, which is

intractable to optimize. Fortunately, there are many studies

to handle it. In our experiments, Gumbel reparameteriza-

tion with straight-through estimator [18] has the best per-

formance. Overall optimization is formulated as follows:

L = D = d (x, x̃) , Θ ← Θ− η∇ΘL, (16)

where Θ is the set of all trainable parameters in network

and η is learning-rate. Such optimization can be done by

any gradient-based optimizers.

Controlling the size of compressed binaries. The

above objective only involves distortion but not rate.

The reason is based on how we control size of com-

pressed binaries, which is determined by b. As aforemen-

tioned, the theoretical upper bound size of b is derived

as
∑

l M · log2 K · h� · w� for all levels and all groups.

Different from previous works, this upper bound is much

smaller (which will be revealed in Sec. 5). We benefits from

this to control bit rate by varying L, M , K or adjusting la-

tent feature map size h�, w�. Then the rate of encoded bi-

naries will gradually approach theoretical upper bound as

training progresses without explicit objective to control it.

№ N L M K sup bpp

1
128

3

2

[8192, 2048, 512]

0.1274
2 6 0.3823
3

192
9 0.5098

4 12 0.7646
5 16 1.0195

Table 1. Model specifications target different rates. Empirically,

we set N = 128 for small models while 192 for large. L = 3 and

K = [8192, 2048, 512] for all models achieves expected results

with affordable model sizes. M is varied from 2 to 16 to control

bpp. Theoretical upper bounds of bpp are in the last column.

Relations to hyperprior models. Proposed method has

a strong relation to hyperprior models. Minnen et al. [26]

and Cheng et al. [9] also model quantized latents as a Gaus-

sian mixture while our approach extends it to N -dim multi-

variate. If we set M = N , then our prior is degenerated to

univariate version. The key differences is: Firstly, our vec-

torized prior provide rich statistics by μ and Σ to describe

latents and summarize visual redundancies. Secondly, side

information μ and Σ are automatically estimates by prob-

abilistic vector quantization and cascaded estimation. In

practice, they are sufficient to perform decoding without

context model involved to give a speed up for compression.

Relations to other VQ-based generative models.
There are a few works on compressing or generating im-

ages with help of VQ, e.g., SHVQ [1], VQ-VAE(-2) [31,36]

and VQ-GAN [13]. Generally, they employ a k-means style

quantizer which assigns the closest codeword to latent as we

have discussed in Sec. 3.1.2. In order to perform end-to-end

training, codebook is updated by two-stage E-M style al-

gorithms or straight-through estimators. Nevertheless, ours

includes covariance of latents while theirs could not han-

dle. Furthermore, our framework generalizes quantization

by multi-codebook structure other than a global codebook.

Proposed multi-codebook structure shares similar ideas

with product quantization [19], group convolution [22] and

multi-head attention [37]. They are widely applied to vi-

sion/language tasks for rich feature learning with low costs.

5. Experiments
We conduct extensive experiments to evaluate effective-

ness and efficiency of our proposed method. Specifically,

we first show R-D performance comparisons with other

methods. Then, we measure encoder and decoder latency

to demonstrate the network efficiency. Other analysis i.e.

ablation study and visualization are further given.

5.1. Setup

Training datasets. The training dataset is a chosen sub-

set of ImageNet [11] combined with CLIC [10] Profes-

sional training set. Specifically, we filter images from Im-
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Rate (bpp)
Kodak CLIC

Rate (bpp)
Kodak CLIC

Rate (bpp)
Kodak CLIC

Rate (bpp)
Kodak CLIC

JPEG [39]

JPEG-2000 [33]

BPG(HEVC-intra) [6]

VVC VTM 14.2-intra [8]

*Ballé’18(ICLR’18) [4]

SHVQ(NeurIPS’17) [1]

*Minnen’18(NeurIPS’18) [26]

*Minnen’18 w/o context [26]

*Cheng’20(CVPR’20) [9]

*Lee’19(ICLR’19) [23]

*Qian’21(ICLR’21) [29]

Ours(MSE)

*Ours(MS-SSIM)

Figure 5. R-D curves on Kodak (left 2) and CLIC valid set (right 2). *: Models are optimized for MS-SSIM when with MS-SSIM metric.

Methods

Latency (ms)

Encoder Decoder

Abs Rel Abs Rel

Ballé’18 30.66 1.09× 35.54 1.21×

Minnen’18

w/o 32.89 1.17× 36.24 1.24×
→ 2656.66 94.58× 1799.47 61.36×

59.13 2.11× 40.40 1.38×
Cheng’20

→ 2697.58 96.04× 1835.80 62.60×
94.11 3.35× 88.04 3.00×

Ours 28.09 1.00× 29.32 1.00×

Table 2. Encoding and decoding latency comparisons for image

size 768 × 512. For theirs, we test context-free (the firs two row)

and context-enabled (row 3 ∼ 6) models. “→” means serial con-

text model [26] while “ ” denotes parallel [16]. Our model is № 5.

Ours is the fastest model, with up to 79.32× and 3.18× speed up

than two kinds of context-enabled models for whole compression,

respectively. Ours is even faster than context-free models, since

they need more than one passes to encode and decode latents.

ageNet to have more than one million pixels and randomly

sample 7, 415 images from them. The whole CLIC training

set with 585 images is merged (8, 000 images in total).

Model Specs. Our method to be tested is model №1 ∼ 5
targeting different rate by varying codebook sizes. The

choices consider model complexity by tuning N , M , K and

L, placed in Tab. 1. To train the model, we adopt LAMB

optimizer [40]. Training images are random-cropped to

512 × 512 and batched into 8. Initial learning rate is set at

2×10−3 and annealed to 2×10−6 at end with cosine learn-

ing rate scheduler for 1, 000 epochs. All experiments are

conducted with a single NVIDIA V100 GPU. The model is

implemented with PyTorch [28].

5.2. Rate-Distortion Performance

To show rate-distortion performance, rate-distortion (R-

D) points are observed and R-D curves are plotted. Specif-

ically, to measure rate, bits-per-pixel (bpp) is calculated2.

2They use various ways to control it, resulting in various bpp.

While for distortion, we adopt two perceptual metrics:

PSNR and MS-SSIM (converted to decibels by −10 ·
log10 (1− value)). Tests involve two image sets: Ko-
dak [21] (24 images) and CLIC Professional valid set (41
images). Methods to compare include a few famous tradi-

tional standards: JPEG [39], JPEG 2000 [33], BPG [6], an

upcoming new standard: VVC VTM 14.2 [8] and 6 deep

image compression models: SHVQ [1], Ballé’18 [4], Min-

nen’18 [26], Lee’19 [23], Qian’21 [29] and Cheng’20 [9].

The R-D points are obtained from either public benchmarks

or their paper3. For Minnen’18, both context-free and

context-involved results are reported. Since two datasets

have a few images, we adopt jackknife resampling and esti-

mation strategy to report mean value and standard error on

the plot by error bars [12]. More comparisons are provided

in supplementary materials.

Results of Kodak and CLIC are shown in Fig. 5, respec-

tively. For Kodak, ours outperforms state-of-the-art, while

for CLIC, our model has nearly the same performance with

the best deep method. Specifically, since ours adopts the

same backbone as Cheng’20’s, the key component to af-

fect R-D performance is our proposed quantizers and cas-

caded estimators. From results we confirm our components

do not hinder performance and show same or even better

compress ability with state-of-the-art. Furthermore, ours

achieve state-of-the-art performance without context model

involved. This not only indicates effectiveness of the vec-

torized prior but also removes a bottleneck that slow down

compression, which will be revealed in next section. Also,

as rates increase, our model has a steady performance. This

indicates introduced multi-codebooks are able to scale to

large models by increasing M to provide satisfying perfor-

mance with affordable codebook size.

5.3. Encoding and Decoding Latency

Evaluating encoding and decoding latency reveals model

efficiency, which is important in actual developments. To

3https://github.com/tensorflow/compression. If not

specified, models are trained using corresponding distortion metrics.
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Figure 6. Visualization for a 3-level model. y is extracted latent, y is quantized latents. By calculating
(
y� − y�

)
, visual redundancies are

removed. b is corresponding binary (index of picked codewords). Brighter pixels in the last column mean more bits allocation.

conduct such test, following models are adopted: Ballé’18,

Minnen’18 (“w/o”, “→”, “ ”), and Cheng’20 (“→”, “ ”).

Specifically, “w/o” means no context model involved, and

“→”, “ ” are serial [32] and parallel [16] context model

variants. Our model to be tested is № 5. To precisely mea-

sure the latency, we feed a batch of images from Kodak with

size 768 × 512 and track the CUDA events of encoder and

decoder separately. Measurements are based on their public

models or reimplementations4.

As Tab. 2 shows, our network is the fastest method

among all other models. In particular, compared to mod-

els utilizing context, ours achieves up to 79.32× faster than

the serials and 3.18× faster than the parallels for whole

compression, respectively. This efficiency gap comes from

our introduced cascaded estimation that do not need con-

text model. Furthermore, our model is even faster than

context-free models i.e. Ballé’18 and Minnen’18 (w/o),

based on how we perform (de)quantization. Ours only in-

volves O (K · N/M) to quantize and O (1) to dequantize,

and is highly paralleled running in GPU. Meanwhile, our

encoders and decoders only require one forward pass, but

they need two or more. In summary of Secs. 5.2 and 5.3,

our model achieves better R-D performance with an impres-

sive compression latency, enabling us the ability to perform

practical image compression with our vectorized prior.

5.4. Ablation Study

To investigate impacts of proposed method, we con-

duct ablation study and report BD-rate w.r.t. original model

(lower is better) and latency (Tab. 3):

Impacts of cascaded estimation. The level L reflects

how much parameters involved in estimation, e.g., L = 1
does not perform cascaded estimation (“w/o cascaded”),

4Tested latencies of [16] are slightly slower than their report.

Variants BD-rate
Latency

Encoder Decoder

w/o cascaded 8.87% 27.13 28.29
2-levels 2.33% 27.62 28.77
4-levels −0.64% 28.93 30.27

one-codebook 24.40%

28.09 29.32
cos-quantizer 4.64%

[13]-quantizer 16.20%
[1]-quantizer 11.48%

Ours -

Table 3. Ablation study on 6 variants where BD-rate w.r.t. original

model (lower is better) and latency is reported. The first three row

vary level L, “one-codebook” uses a global codebook. And the

5th∼7th rows modify quantizers’ formulation.

while L = 4 will add an extra residual compared to original

L = 3 model (“4-levels”). The first three rows of Tab. 3 give

results of three variants L = 1, 2, 4. As level increases, BD-

rate continuously decreases. “2-levels” is much better than

“w/o cascaded” while “4-levels” obtains nearly no improve-

ment compared to original model. The former indicates in-

troducing cascaded estimation actually has a positive effect,

while the latter tells us setting L = 3 is sufficient otherwise

model will be large and may hard to train. The 2nd col-

umn of table show latency between different models. Intro-

ducing more levels does not significantly slow model down,

which indicates that cascaded estimation is not computa-

tional heavy for real scenario applications.

Impacts of multi-codebook structure. We use a global

shared codebook as variant “one-codebook” to study im-

pacts of multi-codebook structure. Results in the 3rd row

of Tab. 3 shows significant performance downgrade when

using global codebook. It proves the effectiveness of multi-
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Original “kodim24.png” Ours (MSE), bpp: 0.1259

PSNR: 25.97dB, MS-SSIM:11.82dB

Ours (MS-SSIM), bpp: 0.1277

PSNR: 23.41dB, MS-SSIM:13.52dB

VVC, bpp: 0.1350

PSNR: 25.93dB, MS-SSIM:10.12dB

BPG, bpp: 0.1383

PSNR: 25.42dB, MS-SSIM:9.76dB

JPEG-2000, bpp: 0.1319

PSNR: 23.61dB, MS-SSIM:7.67dB

Figure 7. Visualization of “kodim24.png” for different codecs. Zoomed-in view on the right shows differences.

codebooks that model precise distributions since they adopt

different parameters for different levels or groups.

Impacts of quantization. Quantization performance is

affected in two way: a) Use a different similarity mea-

sure e.g. cosine similarity (“cos-quantizer”) to define φ in

Eq. (6), b) Use a deterministic quantizer i.e. same as [13] or

[1] (“[13]-quantizer, [1]-quantizer”). The last three rows of

Tab. 3 shows difference of three quantizers. “cos-quantizer”

adopts cosine similarity which is not a distance metric since

it breaks the triangle inequality. We find this may cause

performance drop. When training “[13]-quantizer” or “[1]-

quantizer”, we find network is trapped in local-optima i.e.

most of vectors are quantized to a few codewords, and some

codes are never assigned. We think this makes two kinds of

variants have performance gap with ours.

5.5. Visualization

We pick image from Kodak to show compression qual-

ity. Compared codecs are JPEG-2000, BPG and VVC. All

methods are set to bpp ≈ 0.13 while compression ratio is

about 185 : 1. As Fig. 7 shows, “kodim24.png” from

Kodak dataset on the top-left is reference image. From

zoomed-in view, we could find “Ours (MS-SSIM)” pre-

serves more visual details, especially wall paintings and pat-

terns. Meanwhile, it also achieves the highest MS-SSIM

among all methods with the smallest bpp. Our MSE op-

timized model gives higher PSNR but is slightly blurred.

It achieves comparable performance with VVC with a still

small bpp. More perceptual measures and image compar-

isons are placed in supplementary materials.

We also give 2-d projection visualization of y1,y2 on a

toy model trained with N = 128,M = 1, L = 2,K =
32, shown in Fig. 1. Specifically, latent vectors are ex-

tracted from 24 Kodak images and projected to 2-d points

by UMAP [24]. They are colored by codewords, i.e., two

points are with same color if they are assigned to same code-

word. The visualization satisfy our vectorized prior. Latents

can be clustered by these codewords (left), while residuals

are under similar distribution (right). Therefore, we can in-

duce all latents to a unified, vectorized prior.

6. Conclusion and Future Work
In this paper, we propose a novel vectorized prior for

variational image compression. We demonstrate latent vec-

tors are correlated and can be induced to a unified multi-

variate Gaussian mixture. To perform estimation, proposed

cascaded estimation with probabilistic vector quantization

effectively approximate means and covariances. Further-

more, multi-codebooks are incorporated into above compo-

nents to give an efficient compression procedure. Extensive

experiments confirm effectiveness and efficiency of our pro-

posed method. Future work will focus on variable-rate con-

trol with our proposed vectorized prior.

Limitation and Broader Impacts. This work introduces a

new perspective in neural image compression, which may inspire

researchers to propose valuable future works. The high perfor-

mance, low latency model may also benefit for real-life digital im-

age storage or online multimedia contents. However, main limita-

tions of our work are extra network parameters and computational

resource requirement. Negative impacts involve vulnerability of

model. We may give uncontrollable images under adversarial ex-

amples. Meanwhile, there seems to have no ethical issues or biases

since the network is trained without supervision. However, train-

ing dataset does influence model with biased or sensitive images.

Therefore, data should be checked to avoid potential issues.
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