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Abstract

Weakly supervised object localization (WSOL) focuses
on localizing objects only with the supervision of image-
level classification masks. Most previous WSOL methods
follow the classification activation map (CAM) that local-
izes objects based on the classification structure with the
multi-instance learning (MIL) mechanism. However, the
MIL mechanism makes CAM only activate discriminative
object parts rather than the whole object, weakening its
performance for localizing objects. To avoid this problem,
this work provides a novel perspective that models WSOL
as a domain adaption (DA) task, where the score estimator
trained on the source/image domain is tested on the tar-
get/pixel domain to locate objects. Under this perspective,
a DA-WSOL pipeline is designed to better engage DA ap-
proaches into WSOL to enhance localization performance.
It utilizes a proposed target sampling strategy to select dif-
ferent types of target samples. Based on these types of tar-
get samples, domain adaption localization (DAL) loss is
elaborated. It aligns the feature distribution between the
two domains by DA and makes the estimator perceive tar-
get domain cues by Universum regularization. Experiments
show that our pipeline outperforms SOTA methods on multi
benchmarks. Code are released at https://github.
com/zh460045050/DA-WSOL_CVPR2022.

1. Introduction

Weakly supervised object localization (WSOL), learning
the location of objects in images using only the image-level
classification mask to supervise, relaxes the requirement
for the dense annotation such as pixel-level segmentation
masks or bounding boxes for the training process, which
saves much manual labor for annotation and attract exten-
sive attention in recent years [33, 4, 28, 1, 31, 2, 13].

The most well-known WSOL method is the classifica-
tion activation map (CAM) [33], which utilizes the classi-
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Figure 1. The comparison of DA-WSOL and other mechanisms.

fication structure to generate the localization score. As in-
dicated in Fig. 1 B, it theoretically serves as classification
under multi-instance learning (MIL) [6], where each image
represents a bag whose label is determined by instances it
contains [29], i.e. the pixels/patches. However, MIL fo-
cuses more on the accuracy of bags (images) rather than the
instances (pixels), which makes CAM only discern the most
discriminative parts but not the whole object. For activat-
ing more objects parts, different technics are adopted to en-
hance CAM, e.g. data augmentations [27, 14, 29, 4], novel
network structures [4, 30, 1, 31], or post-processes [2, 13].
Though these methods somewhat alleviate this problem,
they still follow MIL that basically causes the incomplete
activation of objects and weakens the performance.

From another perspective, CAM is also the same as train-
ing an estimator to classify the image-level feature under
the supervision of image-level masks. This well-trained es-
timator is then projected onto the pixel-level feature to gen-
erate the pixel-level localization scores in the test process-
ing [33]. By viewing image-level and pixel-level features
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as the features respectively extracted from source and target
domain, the goal of WSOL is consistent with the domain
adaption (DA) task, i.e. forcing the estimator trained on the
source (image) domain to perform well on the target (pixel)
domain. Thus, if DA methods can assist WSOL in align-
ing the distribution of these two domains, the estimator can
avoid overfitting the source domain, i.e. only activating the
discriminative parts of objects.

Inspired by this, our paper elaborates a DA-WSOL
pipeline that helps to better engage the DA approaches into
WSOL to enhance the performance. Fig. 1 visually gen-
eralizes our novel DA-WSOL pipeline and its difference
from other mechanisms of WSOL. Compared with the MIL
mechanism, our method adopts DA to align the feature dis-
tribution between source and target domain, enhancing the
accuracy of the estimator when projected onto the pixel fea-
tures. Moreover, both classification and localization scores
can be obtained with a single end-to-end trained structure.
This trait makes our method more concise than another type
of WSOL mechanism [28, 18] shown in Fig. 1 C, which
requires training multi additional stages to generate class-
agnostic region-of-interests (ROI) when localizing objects.

In addition, the specificities of domain adaption in
WSOL are also considered by the proposed DA-WSOL
pipeline. Specifically, the target domain of WSOL is more
complex constructed, which has a much larger scale than the
source domain and contains samples with the source-unseen
label, i.e. the background locations. Thus, a target sampling
strategy is also proposed for our DA-WSOL pipeline to ef-
fectively select the source-related target samples and the un-
seen target samples. The two types of samples are then fed
into a proposed domain adaption localization (DAL) loss,
where the former type is utilized to solve the sample imbal-
ance between two domains, and the latter is viewed as the
Universum [25] to perceive target cues.

In a nutshell, our contributions are fourfold:

• Our work is the first to model WSOL as a DA task and
designs a pipeline to assist WSOL by DA methods.

• A DAL loss is proposed to align the feature distribution
of source and target domain in the WSOL scenario.

• A target sampling strategy is proposed to select differ-
ent types of representative target samples.

• Extensive experiments show our DA-WSOL outper-
forms SOTA methods on multiply WSOL benchmarks.

2. Related Works
2.1. Multi-instance learning based WSOL

MIL-based WSOL methods train a classification net-
work in a MIL manner to ensure that this network can be uti-
lized to localize pixels with certain classes. Zhou et al. [33]

proposed the CAM, which utilizes the classification struc-
ture to localize objects by projecting the classifier onto the
pixel-level feature. Zhang et al. [29] proved its mechanism
is equal to the MIL and improved it by utilizing two adver-
sarial classifiers to catch complementary object parts. For a
similar purpose, Singh et al. [14] randomly hid the patches
of images to force the classification structure to focus more
parts of objects. Junsk et al. [4] then enhanced it by directly
erasing discriminative spatial positions on the feature map.
Yun et al. [27] replace patches of an image by its of other
images to augment the training samples. Except for the data
augmentations, novel network structures were also explored
to enhance the CAM. Typically, Zhang et al. [30] generated
coarse pixel-wise masks based on different stages of the ex-
tractor and used them as additional supervision to force the
later stages. Zhang et al. [31] also adopted the siamese net-
work to ensure stochastic consistency for images with the
same class in a batch. Unlike these methods that follow
MIL mechanism, our method align pixel-level and image-
level features with DA approches to assist WSOL task.

2.2. Separated-structure based WSOL

Instead of viewing WSOL as the image classification
in the MIL manner, Zhang et al. [28] suggested split-
ting WSOL into two independent tasks: the class-agnostic
object localization and the object classification. They
proposed a pseudo-supervised object localization (PSOL)
method with three stages respectively for region proposal,
bounding box regression, and object classification. Lu et
al. [18] attempted to generate ROI with different geome-
try and adopted a generator to produce class-agnostic bi-
nary masks rather than only bounding boxes. Zhang et
al. [32] used the classification stage to obtain both classi-
fication results and localization seeds, which are then used
by the localization stage to generate class-agnostic localiza-
tion maps. More recently, Meng et al. [19] explored jointly
optimizing localization and classification to pursue better
results. Compared with them, our method can obtain both
classification and localization results with only one stage.

2.3. Domain Adaption

Domain adaption aims at learning discriminative mod-
els in the presence of the shift between distributions of
the training and test samples. Some DA methods fo-
cus on catching domain-invariant features with deep neural
networks by minimizing the maximum mean discrepancy
(MMD) [8, 9, 16]. Long et al. [17] enhanced the MMD by
considering the joint distributions for the feature of different
neural network stages. Kang et al. [11] and Zhu et al. [34]
further took the class label of samples into account to mea-
sure both intra-class and inter-class discrepancies. Instead
of measuring the distribution discrepancy, some methods
also adopt adversarial learning to confuse a well-trained do-
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main classifier when learning domain-invariable features.
Typically, Ganin et al. [7] added a gradient reversal layer
right before the domain classifier to enable adversarially
training the domain adaption network in an end-to-end man-
ner. Pei et al. [21] further considered fine-grained alignment
of different data distributions by adopting multiply domain
classifiers with gradient reversal layer. Yu et al. [26] sub-
divided those classifiers into global and sub-domain clas-
sifiers to learn the relationship between the marginal and
conditional distributions. Different from those methods, our
work focus on adopting DA to better assist WSOL task.

3. Method
This section firstly revisits WSOL and provides a novel

perspective that WSOL can be modeled as a DA task with
specific properties. Then, the proposed DAL loss is in-
troduced, which considers the effects of different types of
target samples based on the specificities of WSOL. Next,
we detail the target sampling strategy that assigns the tar-
get samples into the three types. Finally, the entire structure
and workflow of our DA-WSOL pipeline are introduced in
detail. Note that the meanings of all the key symbols are
also given in our Appdenix for clarity.

3.1. Revisiting the WOSL

Given an input image X ∈ R3×N , the object localiza-
tion task aims at discerning whether a position X:,i belongs
to the object of a certain class k, where N is the number
of pixels in the image. For this purpose, a feature extrac-
tor f(·) and a score estimator e(·) are learned to extract the
pixel-level features Z = f(X) ∈ RC×N and estimate the
localization score Y ∗ = e(Z) ∈ RK×N , respectively. For
fully supervised object localization, the pixel-level localiza-
tion mask Y ∈ RK×N is adopted as supervision for Y ∗ to
learn f(·) and e(·). Note that, the element Yk,i identifies
whether or not pixel i belongs to the object of the class k.

As for WSOL, only the image-level classification mask
y =

(
max(Y0,:),max(Y1,:), ...,max(YK−1,:)

)
∈ RK×1

is available for the whole training process. Thus, an addi-
tional aggregator g(·) is added between the feature extractor
and the score estimator to aggregate the pixel-level feature
into image-level, i.e. z = g(Z) ∈ RC×1. This image-level
feature is then fed into the score estimator to generate the
image-level classification score y∗ = e(z) ∈ RK×1. Prof-
ited by this image-level score, the image-level mask y can
supervise the training process with the classification loss,
such as the cross-entropy between y∗ and y. While in the
test time, this estimator is projected back onto the pixel-
level feature Z to predict the localization scores Y ∗.

3.2. Modeling WSOL as Domain Adaption

By mapping all input images into two feature spaces rep-
resented by s = z = (g · f)(X) and {t1, t2, ..., tN} =

{Z1,:,Z2,:, ...,ZN,:} = f(X), two feature sets S : {s} and
T : {t} can be constructed, where we call S and T as the
source (image) domain and target (pixel) domain for clar-
ity. The corresponding label sets of S and T are defined as
Ys : {ys = y} and Yt : {yt = Y:,i}, respectively. Under
this view, WSOL can be seen as fully-supervised training
the score estimator e(·) on the image domain S with la-
bel set Ys, and then taking inference on the pixel domain
T to estimate the localization mask Yt in the test process.
This process is a typical setting of the DA task, which aims
at learning a discriminative model in the presence of the
feature shift between training and test process [26]. Thus,
WSOL is equal to solving the following DA task:

Definition 1 Given an image set X = {X1, ...,XM}, the
source domain and target domain are defined as:{

S : {s = (g · f)(Xm) |m ∈ [1,M ]}
T : {t = f(Xm):,i | i ∈ [1, N ],m ∈ [1,M ]}

. (1)

WSOL aims at minimizing the target risk without accessing
the target label set Yt. It serves as a multi-task problem: 1)
minimizing source risk between e(S) and Ys. 2) minimizing
domain discrepancy between S and T.

Based on the perspective of Theorem. 1, the object of our
proposed DA-WSOL pipeline can be formulated as:

L(S,Ys,T) = Lc(e(S),Ys) + La(S,T) , (2)

where Lc(·) is the classification loss that supervises the ac-
curacy on the source domain. La(·) is the adaption loss
minimizing the discrepancy between the S and T. This ad-
ditional term forces f(·) and g(·) to learn domain-invariant
features between the source (image) domain and target
(pixel) domain, which helps the source trained estimator
e(·) also perform well on target samples. Thus, more ob-
ject locations can be activated in the test processing.

Remark 1 There are also some specific properties for
WSOL that do not exist in the traditional DA task. These
properties weaken the applicability for directly implement-
ing La(·) as the existing DA methods [8, 17, 11, 34, 7, 26].

Property 1 Target domain T contains samples that do not
belong to any object classes of source domain S, i.e. the
background locations. Aligning features of these samples
with the source domain will hurt the performance.

Property 2 The number of samples in the source domain
is much less than the target domain in WSOL, i.e. |S| =
|T|/N . The insufficient samples cause difficulties when per-
ceiving the source distribution during training.

Property 3 The discrepancy between the source domain
and target domain is attributed to the aggregation function
g(·) rather than entirely unknown as traditional DA tasks.
This property can be used as a prior when aligning the fea-
ture distribution of source and target domain.
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Figure 2. The mechanism of our proposed DA-WSOL (best view in color). A. The visualization of the source domain, target domain, and
different types target samples. B. The effects shown when sequentially adding our designed loss function Lc, Ld, and Lu.

3.3. Domain Adaption Localization Loss

To consider these properties, a domain adaption localiza-
tion (DAL) loss is elaborated as La(·). As shown in Fig. 2
A, our DAL loss further divides the target set T into three
subsets based on the above properties: 1) the fake target set
Tf : {tf} contains target samples that are highly correlated
to the source domain. 2) the Universum set Tu : {tu} con-
tains target samples whose label is unseen in source domain,
i.e. background locations.; 3) the real target set Tt : {tt}
contains target samples that do not belong to Tf and Tu.

Specifically, based on Property. 3, the source domain is
constructed by operating spatial aggregation on target sam-
ples. The distribution of some target samples that have high
importance on the aggregation functions g(·) is similar to
the source domain, for example the patches of frog or don-
key head in Fig. 2 A. These samples are contained in Tf

and then used as a supplement to estimate the distribution
of the source domain S that has insufficient samples as dis-
cussed in Property. 2. Moreover, to solve the unmatched
label space between the source and target domain as dis-
cussed in Property. 1, Tu is utilized to contain samples that
have the source-unseen label, for example the patches of
ground or grass in Fig. 2 A. It ensures that T − Tu has the
same label space as the source domain. Finally, by purify-
ing Tf and Tu from T, other samples construct Tt that is
used to estimate the distribution of the target domain.

Based on these three subsets of the target domain, the
DAL loss is defined to minimize the domain discrepancy:

La(S,T) = LDAL(S,T) = λ1Ld(S∪Tf ,Tt)+λ2Lu(Tu) ,
(3)

where λ1, λ2 are two parameters, Ld(·) is the domain adap-
tion loss, and Lu(·) is the Universum regularization [25]. In
detail, the domain adaption loss Ld(·) can be implemented
as unsupervised domain adaption (UDA) approaches [8, 7]

to align the feature distributions between the two domains
without accessing target labels. As visualized in Fig. 2 B,
adding Ld(·) can tighten the source domain (peach circle)
and the target domain (green circle), making the source-
trained estimator also perform better for the target samples.

In addition, Lu(·) adopts the mechanism of Univer-
sum [25] that uses target samples with the source-unseen
label (Tu) to enhance the performance on the target set. It
is implemented as feature-based l1 regularization:

Lu(Tu) =
∑

tui ∈Tu

|tui | , (4)

which minimizes the feature strength of Universum sam-
ples. As visualized in Fig. 2 B, adding Lu pushes the de-
cision boundary into Universum samples, which makes the
decision boundary also concerns target cues [25]. More-
over, this regularization also reduces the domain discrep-
ancy attributed to g(·), because it eliminates noises caused
by Universum samples when generating source feature.

3.4. Target Sampling Strategy

The calculation of DAL loss requires samples of the
three subsets on the target domain. Thus, a target sam-
pling strategy is proposed for selecting the representative
samples of the these subsets from target features of a cer-
tain input image. The core of this strategy is a target sample
assigner (TSA) shown in Fig. 3, which contains a cache ma-
trix M ∈ R C×(K+1). In detail, M:,0 represents the anchor
of Tu and is initialized as the zero vector before training.
Other column vectors, for example M:,k+1, represent the
anchor of Tt for a certain class k. When the image of class
k is first accessed, M:,k+1 is initialized by adding a small
random offset ϵ on its source feature z, i.e. M:,k+1 = z+ϵ.

Profited by the cache matrix M , in the forward pass of
the training process, the TSA can provide the anchors of the
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Tu and Tt based on the image-level mask y:

au = M:,0 , at = M:,k+1 , k = argmax(y) , (5)

where k is the class index. au,at ∈ RC×1 are the anchors
of Tu and Tt, respectively. These two anchors are then com-
bined with the source feature z to form the initial center of
the three subsets, i.e. Cinit = {au,at, z} ∈ RC×3.

Next, based on Cinit, the three-way K-means clustering
is operated on the target samples, i.e. the column vectors of
Z, to assign them a cluster label yci ∈ {0, 1, 2}. Finally, n
samples are randomly sampled for each subset based on the
cluster labels to calculate the DAL loss:

Tu : {Z:,i | yci = 0}
Tt : {Z:,i | yci = 1}
Tf : {Z:,i | yci = 2}

. (6)

In the backward process, the final cluster center C out-
putted by K-means clustering is utilized to optimize M
gradually during the training process:

Mk,: =


r0M:,0 + (1− r0)C:,0 , k = 0

rkM:,k + (1− rk)C:,1 , k ̸= 0, rk ̸= 0

C:,1 , k ̸= 0, rk = 0, ||C:,2 − z|| ≤ ||C:,1 − z||
C:,2 , k ̸= 0, rk = 0, ||C:,2 − z|| > ||C:,1 − z||

(7)
where r ∈ R1×(K+1) contains the update ratio. rk is im-
plemented as reciprocal for the number of the passed images
with class k. Based on Eq. 7, M can approximate the cen-
troid of the Tu and Tt, which enhances the accuracy of the

anchor it provides. Note that, if the anchor of target domain
initialized by z+ϵ, i.e. rk = 0, we choose the cluster center
that has large distance to z as the updated anchor.

3.5. DA-WSOL Pipeline

The proposed target sampling strategy can be easily en-
gaged into current WSOL methods to train them with DAL
loss. It acts as a connection for our DA-WSOL pipeline to
improve the performance of the WSOL method with DA
approaches. Fig. 3 shows the entire structure of the pro-
posed DA-WSOL pipeline. Specifically, in the training pro-
cess, the source domain S and the target domain T for a
batch of images are firstly generated by feeding the input
image into the feature extractor f(·) and the feature aggre-
gator g(·) of a certain WSOL method. Here, we follow the
CAM that implements f(·) as the classification backbone
(ResNet [10], InceptionV3 [22]) and adopts global average
pooling (GAP) [15] as g(·). Moreover, the estimator e(·)
implemented by the fully-connected layer is operated on the
sample of the source domain S to generate the image-level
classification score, which is supervised by their image-
level mask y with cross-entropy:

Lc(e(S),Ys) =
∑

(si,yi)∈(S,Ys)

Lce(e(si),yi) . (8)

Based on these two domains and the image-level mask
y, the proposed target sample assigner selects representa-
tive samples of the three target subsets, Tu (noted by gray
round), Tf (noted by peach round), and Tt (noted by pink
round). Then, the samples of Tu are utilized to calculate
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Table 1. The comparison between our method and other SOTA methods on ImageNet and CUB-200 datasets.
ImageNet dataset CUB-200 dataset

Method Top-1 Loc GT-known BoxAccV2 Top-1 Loc GT-known BoxAccV2 pIoU PxAP
CAM [33] 51.81 64.72 62.69 65.80 72.47 68.28 47.60 66.78
HAS [14] 51.61 64.42 62.40 51.28 70.99 64.50 49.82 71.32
ACoL [29] 45.07 64.21 61.87 42.53 70.09 61.22 41.56 56.78
SPG [30] 46.62 63.71 61.36 53.02 68.82 60.36 44.97 61.20
ADL [4] 49.81 64.67 62.75 44.30 63.31 56.61 42.29 56.59

CutMix [27] 50.64 63.27 61.51 69.37 81.10 68.64 45.89 64.64
CAAM [1] 52.36 67.89 - 64.70 77.35 - - -
DGL [23] 43.41 67.52 - 60.82 76.65 - - -
I2C [31] 54.83 68.50 - - - - - -

ICLCA [12] 48.40 67.62 65.15 56.10 72.79 63.20 - -
PSOL [28] 53.98 65.54 - 70.68 - - - -
SEM [32] 53.84 67.00 - - - - - -
FAM [19] 54.46 64.56 - 73.74 85.73 - - -
PAS [2] 49.42 62.20 64.72 59.53 77.58 66.38 - -
IVR [13] - - 65.57 - - 71.23 - -

Ours 43.26 70.27 68.23 62.40 81.83 69.87 56.18 74.70
Ours∗ 55.84 70.27 68.23 66.65 81.83 69.87 56.18 74.70

∗ Scores in bold style indicate the best. Methods in underline style mean the generated localization maps are class-agnostic.

the Universum regularization Lu with Eq. 4. The samples
of the other two subsets and source domain (noted by pink
square) are fed into existing UDA methods to align features
distribution between source and target domain. Here, we
adopt the MMD [8] as the UDA method:

Ld(S ∪ Tf ,Tt) = −
∑

si∈S∪Tf ,tj∈Tt 2 ∗ h(si, tj)
|S ∪ Tf | ∗ |Tt|

+

∑
si,sj∈S∪Tf h(si, sj)

|S ∪ Tf |2
+

∑
ti,tj∈Tt h(ti, tj)

|Tt|2

(9)

where h(·) is the gaussian kernel. Note that it is convenient
to change the UDA or WSOL method in our DA-WSOL.

In the test processing, localization maps can be generated
by directly feeding the target feature into the source-trained
estimator, i.e. Y ∗ = e(f(X)), whose column vector also
represents the classification score of a target sample.

4. Experiment
In this section, we first introduce the settings and train-

ing details of our experiments. Then the results on three
datasets are given to evaluate the effectiveness of our
method. Next, ablation studies are conducted to explore the
effect of different settings of our method. Finally, our defect
and fail cases are also discussed to inspire future works.

4.1. Settings

Our DA-WSOL adopted the CAM with ResNet50 [10]
as the basic WSOL method and MMD [8] as the UDA ap-

proaches unless otherwise stated. The batch size 32 was
adopted, and the hyper-parameter n was set 32. Random
cropped and random flip with size 224× 224 were adopted
as the augmentation. The SGD optimizer with weight decay
1e-4 and momentum 0.9 was utilized for training.

Experiments were conducted on three widely-used
WSOL benchmarks based on Pytorch toolbox [20] with In-
tel Core i9 CPU and an Nvidia RTX 3090 GPU:
ImageNet dataset [5] contains 1.3 million images of 1,000
classes, where 50,000 images with bounding box annotation
served as the test set, and others were used as the training
set. For the ImageNet dataset, the initial learning rate 1e-5
was set to train our DA-WSOL for total 10 epochs, which
was divided by 10 every 3 epochs. Hyper-parameter λ1 and
λ2 were set as 0.3 and 3, respectively.
CUB-200 dataset [24] contains 11,788 images with 200
fine-grain classes of birds, where 5,794 images that have
both pixel-level masks and bounding-box annotations were
used as the testing set. Additionally, 1,000 extra images an-
notated by Junsuk [3] were used as the validation set. The
initial learning rate 1e-3 was set for the SGD to train our
DA-WSOL 50 epochs on this dataset. The learning rate
was divided by 10 after training 30 epochs. The two hyper-
parameters of DAL loss were set as λ1 = 0.3 and λ2 = 2.
OpenImages dataset [3] contains 37,319 images of 100
classes, where the pixel-level mask annotations were re-
leased for 2,500 validation images and 5,000 test images.
The rest 19,819 images served as the training set to train
our DA-WSOL total 10 epochs with the initial learning rate
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1e-3. The learning rate was divided by 10 every 3 epochs.
Hyper-parameter λ1 and λ2 were set as 0.2 and 3.

The localization accuracy is evaluated by Top-1 localiza-
tion accuracy (Top-1 Loc), ground truth known localization
accuracy (GT-known), and maximal box accuracy (Box-
AccV2) [3] based on bounding boxes annotations. While,
if the pixel-level annotations were available, peak inter-
section over union (pIoU) and the pixel average precision
(PxAP) [3] were adopted as the evaluation metric.

Except for our method (noted by Ours), we implemented
six WSOL methods to fair compare the performance, in-
cluding CAM [33], HAS [14], ACoL [29], SPG [30],
ADL [4], and CutMix [27]. Results of the other SOTA
methods were cited from their papers. In addition, we also
implemented a two-stage version (noted by Ours∗) that uses
an additional stage to output the classification score.

4.2. Results

Table. 1 shows the corresponding results of different
WSOL methods and our proposed method on ImageNet and
CUB-200 datasets with ResNet50 backbone. It shows that
our method outperforms all those methods on all metrics
of the large-scale ImageNet dataset. Specifically, benefited
from eliminating the domain discrepancy between train-
ing and test process, our method achieves 1.77% (about
885 images) and 2.66% higher scores than the best of oth-
ers respectively on GT-known and the BoxAccV2 metric.
Though the classification accuracy is weakened due to the
side-effect of the discrepancy elimination, adding a classi-
fication stage for generating classification results (Ours∗)
can solve this defect and makes our method still outper-
form others on the Top-1 localization scores. As for the
fine-grained CUB-200 dataset, methods that only generate
class-agnostic localization results commonly have better re-
sults than others. This is because the class-agnostic local-
ization can only focus on catching birds rather than differ-
ent types of birds, which contributes to their higher per-
formance. Though lower than this type of methods, our
method achieves the highest GT-known, pIoU and PxAP
scores among the methods that generate class-aware local-
ization maps as ours.

In addition, results on the recently proposed OpenIm-
ages dataset are shown in Table. 2. Though the OpenImages
dataset is more challenging because of its richer content and
finer pixel-level evaluation, our method outperforms the ex-
isting methods by a large margin. Specifically, our method
obtains 49.68% pIoU and 65.42% PxAP, which are 7.48%
and 4.52% higher than the best of others. Two aspects
profit this noticeable improvement. Firstly, the richer con-
text of the OpenImages dataset provides more various sam-
ples, which helps estimate the feature distribution between
source and target domain. This enhances the activation of
the localization map on object locations. Secondly, the Uni-

versum regularization of our method also aligns the decision
boundary to Universum samples, i.e. background locations.
This restrains the activation of the background location and
promotes the pixel-level evaluation metrics. Moreover, our
highest pixel-level evaluation metrics (pIoU and PxAP) of
the CUB-200 dataset shown in Table. 1 also prove this trait.

Table 2. Comparing with SOTA method on OpenImage dataset
ResNet50 InceptionV3

pIoU PxAP pIoU PxAP
CAM [33] 42.95 58.19 47.30 62.66
HAS [14] 41.92 55.10 42.31 58.53
ACoL [29] 41.68 56.37 41.11 55.69
SPG [30] 41.79 55.76 45.58 61.77
ADL [4] 42.05 55.02 45.67 61.52

CutMix [27] 42.73 57.57 46.18 61.18
PAS [2] - 60.90 - 63.30
IVR [13] - 58.90 - 64.08

Ours 49.68 65.42 48.01 64.46

Figure 4. The localization maps and boxes (or masks) for different
WSOL methods under their optimal background threshold.

Except for the quantitive results, Fig. 4 also visualizes
some localization results. It can be seen that our method
activates more object locations than other methods. This is
because our method can reduce the feature distribution be-
tween the image domain and pixel domain, which pushes
the feature of indiscriminative pixels (the body of duck and
orangutan) to the image-level feature and makes them bet-
ter activated by the estimator. This also helps to purify the
uncorrelated objects (the adult or the chair) for the local-
ization map of a certain class (the child). Moreover, ben-
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efiting from our Universum regularization, the localization
map of our method also has the lowest interference on back-
ground locations (the water or the ground). These visualiza-
tion aspects also qualitatively reflect the effectiveness of our
pipeline that adopts domain adaption to assist WSOL.

4.3. Ablation Studies

Ablation studies were conducted on the OpenImages
dataset for our proposed DA-WSOL pipeline. Firstly, we
explored the impact of our sampling strategy and DAL loss,
i.e. the TSA module, the domain adaption loss Ld and the
Universum regularization Lu. Corresponding results are
shown in Table. 3. Compared with the baseline that only
adopts classification loss, simply adding existing DA loss
to align features will cause performance drops, because the
features of Universum samples are also aligned with the fea-
tures of objects, making the classifier discern background as
objects. Under such condition, features of all target samples
are messily distributed, which also disables the proposed
TSA to effectively discern the Universum samples and as-
sign them into Tu. Thus, even though adopting TSA to bal-
ance the sample number between source and target domain
for Ld, the adaption loss still not fully take effect. However,
when utilizing Lu to push feature of Universum samples
(background location) into the decision boundary, TSA can
better discern them from other target samples (object loca-
tions), which obviously promotes 2.22% in pIoU and 3.31%
in PxAP. Thus, adopting the whole DAL loss can improve
the performance to a great content compared with the base-
line (6.73% higher pIoU and 7.24% higher PxAP).

Table 3. Ablating parts of our method with DAs on OpenImages.
Settings MMD DANN

Lc Ld Lu TSA pIoU PxAP pIoU PxAP
✓ 42.95 58.19 42.95 58.19
✓ ✓ 42.88 57.39 43.29 58.19
✓ ✓ ✓ 43.24 58.10 43.67 58.77
✓ ✓ ✓ 45.17 61.50 45.17 61.50
✓ ✓ ✓ ✓ 49.68 65.42 46.71 63.26

To show the generalization of our DA-WSOL pipeline,
results with the InceptionV3 on the OpenImages dataset are
also given in Table. 2. It can be seen that our method also
effectively enhances the performance of CAM. Moreover,
we also adopted different UDA methods and WSOL meth-
ods for our DA-WSOL pipeline. Specifically, except for
the MMD, we also utilized the adversarial learning based
UDA method DANN [7] (structure shown in Appendix)
to enhance three different WSOL methods, including the
CAM [33], HAS [14], CutMix [27] and ADL [4]. Results
in Table. 4 reflect that the performance of all those WSOL
can be enhanced by UDA with our DA-WSOL pipeline.

Table 4. Adopting different UDA and WSOL methods.
UDA pIoU PxAP Train Test

- 42.95 58.19 13.84 69.77
CAM MMD 49.68↑6.73 65.42↑7.23 25.25 70.84

DANN 46.71↑3.76 63.26↑5.07 19.36 70.48
- 41.92 55.10 13.75 70.13

HAS MMD 49.25↑7.33 64.15↑9.05 20.52 70.69
DANN 46.41↑4.49 62.48↑7.38 19.41 71.17

- 42.73 60.64 11.17 69.24
CutMix MMD 49.32↑6.59 64.68↑4.04 31.23 71.05

DANN 48.55↑5.82 64.08↑3.44 28.61 70.40
- 42.05 55.02 8.87 69.32

ADL MMD 43.40↑1.35 60.17↑5.15 20.38 71.38
DANN 43.22↑1.17 60.64↑5.62 16.90 70.26

∗ Train/Test metric is the training/test time (ms per image).

4.4. Limitations

Though the proposed DA-WSOL pipeline helps to en-
gage DA methods to enhance WSOL and refreshes the
SOTA localization performance on the ImageNet and Open-
Images datasets, some limitations of our method should also
be concerned. Firstly, adopting DA for WSOL negatively
affects the strength of the estimator on the source domain,
which is also required for WSOL to choose the localization
map of different classes. This defect weakens the image
classification accuracy when the classification task is chal-
lenged and causes our low Top-1 metric on the ImageNet
and CUB-200 datasets. Moreover, our TSA adopts the time-
consuming K-Means cluster to sample the target samples
and update the anchors of different subsets. Though it does
not influence the model size and the time of the test process,
the training time is increased compared with the WSOL
method adopted by our DA-WSOL pipeline. We hope fu-
ture works can solve these problems to enhance our work.

5. Conclusion
This paper provides a novel perspective that models

WSOL as a DA task and proposes a DA-WSOL pipeline to
assist WSOL with DAs. Our method uses a target sampling
strategy to assign target samples into three subsets, which
are then adopted by DAL loss to concern specificities. Ex-
periments indicate our method outperforms SOTA methods
on multi datasets and can generalize to various baselines.
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