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Abstract

Convolutional image deraining networks have achieved
great success while suffering from tremendous computa-
tional and memory costs. Most model compression methods
require original data for iterative fine-tuning, which is lim-
ited in real-world applications due to storage, privacy, and
transmission constraints. We note that it is overstretched
to fine-tune the compressed model using self-collected data,
as it exhibits poor generalization over images with different
degradation characteristics. To address this problem, we
propose a novel data-free compression framework for de-
raining networks. It is based on our observation that deep
degradation representations can be clustered by degrada-
tion characteristics (types of rain) while independent of im-
age content. Therefore, in our framework, we “dream” di-
verse in-distribution degraded images using a deep inver-
sion paradigm, thus leveraging them to distill the pruned
model. Specifically, we preserve the performance of the
pruned model in a dual-branch way. In one branch, we
invert the pre-trained model (teacher) to reconstruct the de-
graded inputs that resemble the original distribution and
employ the orthogonal regularization for deep features to
yield degradation diversity. In the other branch, the pruned
model (student) is distilled to fit the teacher’s original sta-
tistical modeling on these dreamed inputs. Further, an
adaptive pruning scheme is proposed to determine the hi-
erarchical sparsity, which alleviates the regression drift of
the initial pruned model. Experiments on various derain-
ing datasets demonstrate that our method can reduce about
40% FLOPs of the state-of-the-art models while maintain-
ing comparable performance without original data.

1. Introduction

Convolutional Neural Networks (CNNs) based ap-
proaches have achieved remarkable progress on single im-
age deraining [5, 10, 16, 28, 31]. However, due to the in-
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Figure 1. Pre-trained HINet [5] drops significantly after pruning
30% weights (1b → 1c). Fine-tuning the pruned model with im-
ages from website or Rain100L [29] exhibits poor generalization
to images in Rain100H [29]. We preserve the performance of the
pruned model without the original data.

herent properties of dense prediction tasks, coupled with
the requirements to handle various degradation character-
istics, these CNN models typically suffer from tremendous
computational costs and bulky memory usage. This lim-
its their applications in real scenarios, especially on devices
with constrained computing capacity.

In practice, various attempts have been made to com-
press the heavy CNN models, including quantization [11,
12, 23], pruning [8, 13, 15, 21], distillation [3, 7, 14], and so
on. These approaches require original data for interactive
training to preserve the performance of compressed models.
However, the original training data is often unaccessible due
to storage, privacy, or transmission constraints. To alleviate
this problem, one may naturally acquire paired data by col-
lecting degraded (rainy) images and exporting their pseudo
labels output by the pre-trained model. However, our study
suggests this way exhibits poor generalization. For exam-
ple, state-of-the-art deraining network HINet [5] gets a sig-
nificant performance drop after pruning 30% weights, as
shown in Fig. 1c. Fine-tuning the pruned model with data
collected from the website or Rain100L [29] exhibits poor
generalization to images in Rain100H [29], as shown in
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Fig. 1d and Fig. 1e. Those heavy deraining models typi-
cally achieve promising performance over images with var-
ious degradation characteristics, such as rain steaks or drops
in different orientations and densities. It is impractical to
acquire all types of in-distribution data on which the model
has ever been trained.

Recently, some feasible methods have been proposed
to perform data-free model compression. They mainly at-
tempt to reconstruct the original data for data-free knowl-
edge distillation, either through a model inversion paradigm
[9, 19, 22, 30] similar to DeepDream [1], or by retraining a
generative network [4]. However, these studies focus only
on image recognition tasks, in which argmax of the class
conditional probabilities determine decisions. Moreover,
their synthetic images are visually unnatural and difficult
to yield diversity since constrained mainly by category con-
tent. Thus, these existing data-free approaches for model
compression cannot be employed on a direct basis.

In this paper, we propose a novel data-free deraining
model compression framework by exploring the statistical
priors learned from pre-trained networks. This method is
based on our statistical observations that image deraining
networks can learn deep representations for degradation
characteristics (rain types) independent of image content
(detailed in Sec. 3.1). This motivates us to reconstruct di-
verse and in-distribution degraded images and thus provide
sufficient supervision to compensate for the statistical drift
of the compressed model without original data.

Specifically, given a pre-trained image restoration model
(teacher), we utilize two branches in one stage to optimize
both the random noise input and the pruned model (stu-
dent). In one branch, the random noise forward through the
fixed teacher model, then the output is forced to be close
to the collected clean images (target) under the constraint
of a dream loss. Meanwhile, we employ the orthogonality
regularization of the deep features along the batch dimen-
sion to yield diverse degradation characteristics. In another
branch, these input and output pairs are employed to dis-
till the pruned model supervised by a knowledge distillation
loss. Further, to alleviate the statistical drift caused by prun-
ing before distillation, an adaptive pruning scheme is pro-
posed to determine the hierarchical sparsity by constructing
an explicit metric for pruning sensitivities of different lay-
ers combined with our reconstruction. The contributions of
this paper are summarized as follows:

1) We find that pre-trained deraining networks can learn
deep degradation representations that are independent
of image content. Thus, we propose a novel data-
free compression framework for deraining networks,
in which diverse degraded images are reconstructed
and utilized to distill the pruned model.

2) We further propose an adaptive pruning scheme to de-

termine the hierarchical sparsities and moderate the
statistical drift of the pruned model before fine-tuning.

3) Experiments on various deraining datasets demon-
strate that our method can compress about 40% FLOPs
of the state-of-the-art models while maintaining com-
parable performance without original data.

2. Related Work
Single Image Deraining. Image deraining is an ill-posed
problem and therefore challenging, traditional methods ex-
plore degradation priors to obtain solutions, including ori-
entation histogram [2], spatio-temporally correlation [6],
structural similarity [26], discriminative sparse coding [20],
etc. These handcrafted priors tend to rely on empirical ob-
servations and thus are not generalizable. Recently, CNNs
have made significant achievements in image deraining. A
deep detail network [10] is first proposed to remove rain
from single images. Yang et al. [29] jointly detect and
remove rain streaks using a multi-stream network. More
complicated CNN-based models are designed for better per-
formance, such as [5, 17, 25, 31, 32]. In addition, Qian et
al. [24] use visual attention with a generative adversarial
network to address a different problem of removing rain-
drops from single images. However, with the requirements
to handle various degradation characteristics, such as differ-
ent rain patterns in various densities and orientations, those
performance-designed CNN models [5, 31] typically suffer
from tremendous computational costs.

Data-Free Model Compression. Many data-free model
compression methods have been proposed in recent years
to alleviate the requirement for source training data. For
example, Lopes et al. [19] first propose to use meta data
to reconstruct the original training samples for knowledge
distillation, and Nayak et al. [22] explore the information
of pre-trained models to synthesize useful training samples.
DeepInversion [30] achieves better reconstruction by intro-
ducing the statistics of BatchNorm layers based on Deep-
Dream. Chen et al. [4] retrain a generator based on the pre-
trained network for synthesizing training samples to pro-
vide distillation supervision. However, these methods fo-
cus only on recognition tasks, and generally, adopt one-hot
constraints thus cannot be applied to dense regression tasks
like image deraining. In addition, their reconstructed im-
ages appear unnatural since the reconstruction process is
supervised by semantics merely. Zhang et al. [36] retrain
a generator for super-resolution tasks to synthesize training
samples for distilling a smaller student network. However,
they utilize down-sampling to supervise the reconstruction,
which does not conform to the degradation process of rain.

Our proposed method differs from them in two main
ways. Firstly, we reconstruct degraded images with both
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Figure 2. We observed that deep representations of pre-trained deraining networks can be clustered by degradation characteristics (types
of rain) while independent of image content. This motivates us to invert the pre-trained deraining models and constrain the orthogonality
of their degradation representations to “dream” in-distribution and diverse samples for data-free distillation.

natural appearance and diverse degradation types, which
provides sufficient supervision for model compression to
maintain the performance on various degradation charac-
teristics. Secondly, we optimize the reconstruction and dis-
tillation in one stage with computational efficiency.

3. Data-Free Pruning for Image Deraining
To maintain the original deraining performance while

compressing a pre-trained network without any assump-
tions or dependencies on the source training data, this paper
proposes a novel data-free compression framework.

3.1. Motivation

Convolutional image deraining models can learn strong
statistical priors to map from degraded (rainy) image dis-
tribution to clean image distribution. While model com-
pression inevitably impairs the original statistical modeling,
which is difficult to be compensated without fine-tuning.
In the absence of source training data, a natural idea is to
employ knowledge distillation that leverages the statistical
priors learned by the original bulky model (teacher) to fine-
tune the compressed model (student).

In the case that the reconstructed samples obey the origi-
nal degraded image distribution that can be mapped to clean
images by the teacher, thus providing satisfactory distilla-
tion supervision. However, this distribution is typically dif-
ficult to be formulated, leading to the questions: Given only
a pre-trained model, how to reconstruct the in-distribution
degraded images? We analyze that those images are re-
quired to satisfy two main conditions. First, these images

should appear with natural textures and features. More
importantly, these degradation characteristics should be as
diverse as possible within the preferences of the teacher
model. Hence, it seems that we attempt to solve:

Id = ϕ−1(Ic), (1)

where ϕ denotes the learned deraining mapping from the de-
graded image distribution pd to the clean image distribution
pc. In practice, as the clean image Ic can be easily sampled,
the degraded image Id (∼ pd) ought to be optimized by the
model inversion paradigm similar to DeepDream [1], which
can be formulated as:

Id = argmin
x

L(ϕ(x), Ic), (2)

where x is optimized from random noise to image under the
similarity constraint L.

Although this is an ill-posed problem with the inherent
nature of many-to-one, the optimal inverse (Id) tends to lack
diversity if no prior constraints are imposed. Our intuition
is that the pre-trained deraining network should learn the
degradation representations independent of the image con-
tent. Our observations confirm this and motivate us to ob-
tain the regularization of degradation diversity. As shown
in Fig. 2, we adopt 3 different rain datasets with 100 im-
ages selected separately in each, where Rain100H [29] and
Rain100L [29] are identical in image content but different in
rain types, and Test2800 [10] is different from both of them.
We find that deep representations of the pre-trained derain-
ing network (layer cat12with 64 dimensions in HINet [5])
can be clustered by rain types while independent of image
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Figure 3. Overview of our data-free pruning framework. We jointly “dream” diverse in-distribution rainy images and distill the pruned
model, which preserve the deraining performance without the original data.

content. Therefore, over Eq. (2), we employ the orthogonal
constraint (detailed in Sec. 3.2) on a batch to yield a diver-
sity of degradation representations. As shown by the black
cross in the t-SNE [27] results of Fig. 2, our “dreamed” de-
graded images exhibit a variety of degradation characteris-
tics and bridge the gap with the original distribution.

So far, these diverse and in-distribution data can provide
sufficient supervision for distilling the compressed model.
Further, we jointly perform the model inversion and the dis-
tillation in one-stage learning, and our framework is speci-
fied as follows.

3.2. Framework

Let T be a pre-trained image deraining model, typically
with a huge amount of parameters. Let S be a pruned stu-
dent network, which is more compact than T . Overall, we
employ two branches within the one-stage learning frame-
work respectively inverting T to reconstruct the source de-
graded images and utilizing these data to fine-tune S. Our
overall method is illustrated in Fig. 3.

Dreaming Degraded Images. In this branch, we invert
the pre-trained T by optimizing random input noise to im-
ages, which is analogous to resample from the original de-
graded image distribution.

Specifically, we collect a few clean natural images to
construct the target set Y . Given an arbitrary target im-
age (y ∈ RH×W×C , H,W,C being the height, width, and
color channels), the degraded image x̂ is reconstructed by
optimizing:

min
x
Linv(T , x, y) + λorthLorth(x), (3)

where x ∈ RH×W×C and is initialized randomly. We can
implement Linv by calculating L (T (x), y), where T (·) de-
notes the output of the teacher model T , and L(·) is a sim-
ilarity criterion loss (e.g., ℓ1 loss). And Lorth(x) denotes

the orthogonality constraint in the deep feature space of T ,
which can be expressed as:

Lorth(x) =
∥∥F · FT − I

∥∥
2
, (4)

where F ∈ RB×C represents the deep feature after global
average pooling and then normalizing, and I ∈ RB×B de-
notes the identical matrix. Based on our previous obser-
vations that F can represent the degradation type, we con-
strain its orthogonality to yield batch diversity, as shown in
the right side of Fig. 3.

Then, the loss function of this dreaming branch can be
formulated as:

LDream = E(x,y)∈Pxy
L (T (x), y) + λorthLorth(x), (5)

where Pxy denotes the pairs combined with learnable de-
graded images and fixed clean images.

Knowledge Distillation. The knowledge distillation loss
LKD can be formulated as:

LKD = E(x,y)∈Pxy
L (T (x), S(x)) , (6)

where S(x) denotes the output of the pruned student model
S. When naive pruning is performed, there is a subtle gap
in statistical modeling between the pruned model S and the
original model T . Under the supervision of LKD, we force
S to approximate the original statistical modeling of T .

3.3. Adaptive Pruning Scheme

Further, we observed that different component modules
of T exhibit different pruning sensitivities. For exam-
ple, as shown in Fig. 4, given a pre-trained derain model
(HINet [5]) with a test rainy image, we perform individual
weights pruning based on ℓ1 regularization [13], for each
module (x-axis) of HINet with varying sparsities (y-axis),
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Figure 4. PSNR results (heatmap) of pruning each module (x-axis)
separately with different pruning sparsities (y-axis).

which yields quite different PSNR results (heatmap). How-
ever, most of previous methods implement implicit mea-
sures of the parameter importance, which are difficult to be
applied in image deraining, especially without source train-
ing data. To reduce the statistical drift of the pruned model
S and alleviate the pressure of knowledge distillation, we
propose an adaptive pruning scheme. As shown in Algo-
rithm 1, our algorithm consists of two main steps as follows.

First, we explicitly measure the performance drop of the
pruned model in the absence of the original data. Specifi-
cally, we invert the model T to reconstruct (dream) a batch
of degraded images X using the collection Y . Then, we can
evaluate that a pruning sparsity for a given module is ac-
ceptable if and only if the average PSNR is greater than our
threshold, where this result is calculated by the output pairs
from T and S on X . Second, based on the above measure-
ment, we hierarchically search the optimal pruning rate for
all sub modules of the pre-trained model. For each given
sparsity rate, we can perform pruning using a common reg-
ularization, such as L1 [13]. To speed up the search pro-
cess, we introduce dichotomous approach by starting from
the midpoint of the sparsity interval in each iteration and
then searching up by half if acceptable otherwise down.

3.4. Overall Optimization

Equipped with the adaptive pruning scheme, our frame-
work exhibits enhanced performance, and the overall opti-
mization is summarized as follows.

First, we prune the pre-trained image deraining model
T utilizing our adaptive pruning scheme, as shown in Al-
gorithm 1, and obtain a naive pruned model S which still
suffers from moderate performance drop before fine-tuning.

Then, we employ the proposed framework to distill the
pruned model S without source training data, as shown in
Sec. 3.2. This one-stage loss function can be expressed as:

Ltotal = Linv + λorthLorth︸ ︷︷ ︸
LDream

+λKDLKD. (7)

When this total loss converges after optimization, S can be
distilled by T using diverse in-distribution images.

Algorithm 1: Adaptive Pruning Scheme
Input : A pre-trained image deraining model T
Output: Hierarchical adaptive sparsities

1 Collect natural clean images Y ;
2 Dream X ←

{
argmin

x
L (T (x), y) | y ∈ Y

}
;

3 Initialize PSNR threshold tp;

4 Initialize sparsity precision ϵ← 1 · e−3 ;
5 Initialize student model S ← T ;
6 foreach module in S.modules do
7 Initialize [l, r]← [0, 1] ; /* interval */
8 while r - l ≥ ϵ do
9 spa← (l + r) / 2 ; /* sparsity */

10 TRYPRUNE(module, spa) ;
11 psnr← AVERAGEPSNR (S(X ), T (X )) ;
12 if psnr ≥ tp then
13 l← spa ; /* search up */
14 else
15 r← spa ; /* search down */
16 end
17 end
18 APPENDSPARSITY(spa) ;
19 end

4. Experiments
In this section, we evaluate our data-free pruning based

on state-of-the-art methods across various image deraining
datasets, and analyze the effectiveness of our method.

4.1. Implementation

Datasets. In order to emulate the complexity and diver-
sity of rain types in real-world scenarios, and explore a
more generalizable approach, we attempt to evaluate on
datasets with as diverse rain types as possible. First, we
conduct experiments on five validation rain datasets, re-
spectively Test2800 [10], Test1200 [32], Test100 [33],
Rain100H [29], and Rain100L [29]. State-of-the-art de-
raining methods [5, 31] are proposed to handle these five
datasets (for simplicity, denoted as Rain13k in the fol-
lowing) simultaneously. In addition, considering that real-
world camera sensors or glass windows may be obscured
by raindrops, we evaluate on RainDrop [24] which is cap-
tured with various background scenes and raindrops. Fol-
lowing [5, 24, 31], we adopt PSNR and SSIM as the evalua-
tion metrics for rain removal performance, where the PSNR
is calculated on the Y channel in the YCbCr color space.

Details. We implement our approach with PyTorch.
Adam optimizer is used for training, where the learning rate
for image reconstruction is set to 5 · 10−2, and the learn-
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Test2800 [10] Test1200 [32] Test100 [33] Rain100H [29] Rain100L [29] Average
Model Method FLOPs PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ℓ1 [13] 27.81 0.844 26.32 0.781 24.41 0.782 16.07 0.459 27.72 0.831 24.47 0.739
erk [8] 32.84 0.931 31.82 0.888 28.44 0.868 27.76 0.844 34.32 0.946 31.04 0.895
lamp [15] 33.07 0.934 32.38 0.899 29.09 0.879 28.82 0.864 35.59 0.957 31.79 0.907
Ours

87.9 G

33.40 0.938 32.70 0.912 30.07 0.894 29.19 0.874 36.56 0.965 32.38 0.917

MPRNet
[31]

original 141.0 G 33.64 0.938 32.91 0.916 30.27 0.897 30.41 0.890 36.40 0.965 32.73 0.921
ℓ1 [13] 29.34 0.887 27.49 0.831 24.92 0.816 18.66 0.599 29.49 0.888 25.98 0.804
erk [8] 32.37 0.929 31.09 0.895 25.30 0.835 23.46 0.783 28.74 0.880 28.19 0.864
lamp [15] 33.23 0.936 32.52 0.912 27.58 0.872 27.21 0.862 30.98 0.919 30.30 0.900
Ours

100.0 G

33.79 0.940 32.95 0.919 30.12 0.906 29.54 0.890 36.94 0.969 32.67 0.925

HINet
[5]

original 170.5 G 33.91 0.941 33.05 0.919 30.29 0.906 30.65 0.894 37.28 0.970 33.03 0.926

Table 1. Data-free pruning results on Test2800 [10], Test1200 [32] Test100 [33], Rain100H [29], and Rain100L [29]. We compressed the
pre-trained state-of-the-art deraining models by the same FLOPs, for a fair comparison to the most classical (ℓ1 [13]) and modern (erk [8],
lamp [15]) pruning methods. Best scores of pruned and original model are highlighted and underlined, respectively.

ing rate for fine-tuning models is set to 1 · 10−4. We col-
lect 20 auxiliary clean images for each batch, and random
crop these images to 256 × 256. For hyper-parameters, we
set {λorth, λKD} = {0.05, 1.0} in our framework. We set
PSNR threshold in Algorithm 1 to 50 for a better trade-off
of FLOPs and performance. It takes only 3 epochs with 600
iterations per epoch on a NVIDIA GTX 3090 GPU.

4.2. Data-free Compression Results

Considering that the original data is not available, we
mainly compare with the alternative magnitude-based prun-
ing methods, including the most classical ℓ1 regulariza-
tion [13], and the most modern methods of erk [8] and
lamp [15]. Different from them, we design explicit met-
rics for weight importance and jointly perform data-free
distillation while pruning the deraining models. It is worth
noting that smaller models sometimes yield larger compu-
tations due to different designs, such as progressive archi-
tectures [5, 31] or attention operations [34, 35]. Therefore,
we mainly evaluate FLOPs of all methods, which are more
reflective of practical computational cost than model size.
And to make the comparison fair, we ensure all the pruned
models to hold the same FLOPs, calculated with the input
size of 1× 3× 256× 256 using nni 1 toolkit.

Rain13k. We adopt HINet [5] and MPRNet [31], which
achieve state-of-the-art results and outperform other meth-
ods by a margin. As shown in Table 1, our approach com-
presses the original HINet by 41.3% FLOPs , with drop of
only 0.36 dB PSNR and 0.001 SSIM. We also reduce MPR-
Net by 37.7% flops, with drop of only 0.35 dB PSNR and
0.004 SSIM. And we note that, with the same FLOPs, the
compressed model size are also approximate for all meth-
ods: 77% − 80% of HINet, and 38% − 41% of MPRNet.

1https://github.com/microsoft/nni

TestSet A TestSet B
Model Method FLOPs PSNR SSIM PSNR SSIM

ℓ1 [13] 24.52 0.849 21.81 0.758
erk [8] 28.63 0.906 24.07 0.803
lamp [15] 29.54 0.908 24.69 0.807
Ours

34.7 G

30.42 0.918 25.00 0.813

DuRN
[18]

original 55.9 G 31.24 0.926 25.32 0.817
ℓ1 [13] 14.61 0.725 13.77 0.639
erk [8] 17.83 0.824 16.68 0.732
lamp [15] 19.63 0.822 18.18 0.731
Ours

41.8 G

31.18 0.921 24.82 0.808

AGAN
[24]

original 89.4 G 31.51 0.921 24.92 0.809

Table 2. Data-free pruning results on RainDrop dataset [24].
Best scores of pruned and original model are highlighted and
underlined, respectively.

It can be seen that, with the same compressed computa-
tional cost, other pruning methods inevitably result in sig-
nificant performance drop after pruning. In contrast, we
achieve comparable performance with the original models
on handling various types and scenarios of rain, while prun-
ing without original data.

RainDrop. We adopt representative methods, includ-
ing AGAN [24] which using adversarial training, and
DuRN [18] designed with the “dual residual connection”
style. As shown in Table 2, our approach reduce AGAN
by 53.2% FLOPs, with drop of only 0.215 dB PSNR and
0.0005 SSIM. We also outperform other methods 0.595 dB
PSNR and 0.007 SSIM for DuRNs. It can be noted that
other pruning methods result in drastic performance drop
for AGAN, while our method still maintain the original per-
formance. We conjecture that this is because these methods
may not fit for generative networks. On the contrary, we ex-
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Figure 6. Ablation study on five test datasets. Our Adaptive Prun-
ing scheme (AP) reduce the initial statistical drift of the pruned
model without fine-tuning. And our dreaming for distillation
(Lkd), and batch diversity loss (Lorth) are the keys to bridge the
performance gap with the original model.

ploit strong priors learned by the pre-trained model to pre-
serve the performance of the compressed model.

4.3. Ablation Study

To demonstrate the effectiveness of our approach,
we conduct several ablation experiments on five vali-
dation datasets, including Test2800 [10], Test1200 [32],
Test100 [33], Rain100H [29], and Rain100L [29]. In our
approach, the performance of a pruned model is mainly at-
tributed to two prominent components: the adaptive prun-
ing scheme to moderate its initial statistical drift, and then
dreaming for distillation to provide data-free compensation.

Hence, we study the ablation of Adaptive Pruning (AP) and
Knowledge Distillation (Lkd). Moreover, to explore the im-
pact of reconstruction diversity on distillation, we perform
the ablation of batch diversity loss Lorth.

Effectiveness of Adaptive Pruning Scheme. In this
part, we explore the effectiveness of our adaptive pruning
scheme. We adopt L1 regularization [13] as our baseline,
since it is one of the most commonly used weights pruning
methods. It sorts the weights of layers according to the ℓ1
norm and then removes the lowest given ratio among them.
However this sparsity ratio often relies on handcrafted set-
ting and search. To determine the appropriate sparsity ra-
tios for different layers, we introduce our adaptive prun-
ing scheme based on ℓ1 regularization. For a fair compari-
son, we adopt the same pre-trained HINet [5] with 170.5 G
FLOPs, and ensure that all the models pruned with differ-
ent methods achieve the same FLOPs (100.0 G). As shown
in Fig. 6, adding AP outperforms the baseline average 5.01
dB PSNR and 0.09 SSIM, both without fine-tuning. This
demonstrate that this scheme excels in estimating the dif-
ferent redundancy of different layers.

Effectiveness of Dreaming for Distillation. Although
our adaptive pruning scheme can moderate the performance
drop, the pruned model still struggles to maintain compara-
ble performance with the original model. To address this
issue, we proposed our framework to perform dreaming for
distillation. As shown in Fig. 6, distillation alone (+Lkd,
blue line) in our framework brings an average of 0.9 dB
PSNR and 0.015 SSIM improvement, compared to our ini-
tial pruning (without fine-tuning, purple line). This demon-
strates that our data-free distillation enables the pruned
model to re-fit the statistical modeling of the original model.
And we notice that the improvement margin varies from dif-
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Figure 7. We can dream rainy images with diverse degradation
characteristics using batch diversity loss Lorth, and thus provide
generalizable distillation supervision.

ferent datasets. For example, the improvement is smaller on
Test2800 (0.29 dB), while larger on Rain100H (1.95 dB).
The reason for this, in our analysis, is that rainy samples
synthesized for distillation are not diverse enough.

Effectiveness of Dreaming Diversity. To increase the re-
construction diversity in our framework, we introduce a
constraint (Lorth) on the orthogonality of the deep features
along the batch dimension. As can be seen in Fig. 6, our
diversity loss (+Lorth, redline) brings consistent improve-
ments across five datasets. Even on Rain100H and Test100,
challenging at previous stages, PSNR improvements of 1.3
and 1.8 dB are achieved, respectively. Combining with
the table Table 1, we achieve a comparable performance
to the original HINet after pruning, with an average drop
of only 0.36 dB PSNR and 0.001 SSIM. We employ di-
verse dreamed images for knowledge distillation, and thus
preserve the generalized performance of the pruned model
on restoring images with various degradation characteristics
similar to those ever trained.

4.4. Performance Analysis

Qualitative Results. As shown in Fig. 5, we display the
performance comparison of pruning the pre-trained derain-
ing models with our method and the modern weights prun-
ing method (lamp [15]) on Rain13k and Raindrop datasets.
The input rainy images (first row) appears various degrada-
tion characteristics. For a fair comparison, we ensure that
the computational cost of the pruned models is compressed
to that same level. We can see that, even without the original
data, our pruning method can preserve the original capabil-
ity on handling various degradation characteristics, includ-
ing different rain patterns, directions, and densities.

Visualization of Dreaming. As shown in Fig. 7, we dis-
play the reconstructed images with dreaming approach. We
collect several unseen clean images as the target (as shown
in the black dashed box), and repeat them to form a batch for
our inversion optimization. It can be seen that with the in-
troduced Lorth, these dreamed images appear various types
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Figure 8. Our dreamed images using HINet [5] exhibit diversity in
deep feature space of MPRNet [31] as well.

of rain, including different orientations and densities. In
contrast, without add Lorth, those images optimized within
a batch appear the similar styles. We conjecture that these
local minima in the optimization space are related to some
statistics of the entire source training dataset. And we em-
ploy the orthogonal regularization for the deep degradation
representations and efficiently yield diverse rain types.

Analysis of Generalizability. To further verify the gen-
eralizability of our observed degradation priors, we ob-
tain the degraded images dreamed by HINet and perform
the t-SNE [27] clustering using their deep representations
from MPRNet (the penultimate layer with 56 channels). As
shown in Fig. 8, the deep representations of MPRNet can
also be clustered by rain types while independent of the
image content, which confirms the generalized degradation
priors mentioned above. Those images dreamed by HINet
exhibit diversity in deep feature space of MPRNet as well.
It indicates that these reconstructions may share some com-
mon statistical properties with source training domain, thus
can bridge the performance gap between the compressed
model and the original model.

5. Conclusion
We propose a novel data-free deraining model compres-

sion framework. Firstly, based on our observations that de-
raining networks can learn the content-independent degra-
dation representations, we invert the pre-trained model and
constrain the orthogonality of their degradation representa-
tions to reconstruct diverse and in-distribution rainy data.
Further, we jointly optimize the reconstruction and the dis-
tillation, thus preserving the performance of compressed
models on handling various types of rain.
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