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Abstract

Image denoising has achieved unprecedented progress
as great efforts have been made to exploit effective deep
denoisers. To improve the denoising performance in real-
world, two typical solutions are used in recent trends: de-
vising better noise models for the synthesis of more realistic
training data, and estimating noise level function to guide
non-blind denoisers. In this work, we combine both noise
modeling and estimation, and propose an innovative noise
model estimation and noise synthesis pipeline for realistic
noisy image generation. Specifically, our model learns a
noise estimation model with fine-grained statistical noise
model in a contrastive manner. Then, we use the estimated
noise parameters to model camera-specific noise distribu-
tion, and synthesize realistic noisy training data. The most
striking thing for our work is that by calibrating noise mod-
els of several sensors, our model can be extended to predict
other cameras. In other words, we can estimate camera-
specific noise models for unknown sensors with only test-
ing images, without laborious calibration frames or paired
noisy/clean data. The proposed pipeline endows deep de-
noisers with competitive performances with state-of-the-art
real noise modeling methods.

1. Introduction
Image denoising is a fundamental and significant prob-

lem in the community of low-level vision. Taking
the advantage of powerful deep learning tools, previous
works [40, 48, 49] have achieved nearly perfect perfor-
mances removing noise under Additive White Gaussian
Noise (AWGN) assumption. However, the denoising results
on real photographs from consumer-level cameras and mo-
bile devices are less satisfying [2,10,37]. This phenomenon
is mainly due to the distribution discrepancy between the
noise assumption and real sensor noise distribution, which
brings large domain gap between training and testing data.
To this end, more researchers are dedicated to real noise re-
moval [1,5,12,18,46,51]. There are mainly two significant
issues to be solved for real image denoising.
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A straightforward way is to model real sensor noise dis-
tributions and generate more realistic data [1,9,12,22,42,45,
50]. Some methods present statistical models to mimic real
noise formation, they generally calibrate camera-specific
noise parameters (e.g., noise variance) from specially cap-
tured frames and then generate training data. In this way,
deep networks benefit from more realistic training data. Sta-
tistical noise models, including AWGN, Poisson-Guassian
(P-G, [15]) model, Poisson Mixture model [47], etc., are
commonly used in the early exploration of noise models.
Recently, some noise modeling literatures based on deep
generative models like GAN [9, 12, 22, 45] and Normaliz-
ing Flow [1] have emerged, but fail in the competition with
more fine-grained statistical noise model [42,50] with care-
fully calibrated noise parameters. A limitation for noise
modeling methods is that they depend on real calibration
frames or noisy/clean pairs of certain camera, which is la-
borious or unreachable in some scenarios.

Another important issue is noise estimation. Noise level
functions are usually served as guidance for both filter based
denoising approaches [6, 14] and deep learning based de-
noising networks [49]. Recently, there are several attempts
to estimate noise level functions, based on both computa-
tion [11,16,28–31,38,52] or deep learning [7,8,18,43,49].
Nevertheless, these methods are built upon inferior noise
models like AWGN, and cannot be used for the estimation
of more complex sensor noise corrupted by circuit readout
pattern or source follower. Moreover, existing noise esti-
mation methods basically serve the estimated parameters as
an inference input value and feed them into denoising fil-
ters [14] or end-to-end deep neural networks [18]. They
have not ever tried to exploit more intrinsic attributes of the
camera sensor through these parameters.

In this paper, we propose a novel noise model estima-
tion and noise synthesis pipeline to estimate parameters for
fine-grained noise models using only testing data, liberating
us from the laborious or unreachable calibration for image
sensor. To achieve this, we present a contrastive noise es-
timation model to estimate noise parameters from a single
image under fine-grained noise model. Our contrastive es-
timation framework separates each noise component, and
well approximates noise parameters of a single image, even
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if the camera for taking pictures has never been seen by the
model. Then, with the estimated parameters, we are capa-
ble to estimate the intrinsic joint distribution of an unknown
sensor under state-of-the-art physical noise model. As a re-
sult, we apply our pipeline to real image denoising and fa-
cilitate the training process by synthesizing more realistic
data. Our new camera-specific noise synthesis pipeline re-
lieve the dependencies on sophisticated capturing scheme
and generate promising synthetic noisy images. The main
contributions of our work can be summarized as follows:

1. We present a novel noise model estimation and realis-
tic noise synthesis pipeline, which can estimate cam-
era noise model only from testing data without any
camera-specific training data.

2. We employ a noise estimation framework based on
contrastive learning, which well approximates param-
eters for fine-grained noise model.

3. With our realistic noise synthesis pipeline, deep de-
noisers can reach competitive results with previ-
ous noise generation methods which depend on real
noisy/clean images or calibration frames.

2. Related Work
In this section, we introduce some works that are most

related to the proposed method. First, we review widely
used statistical or deep learning based noise modeling meth-
ods. Then, we introduce existing approaches and applica-
tions of noise estimation.

Noise Modeling. In recent years, the research of noise
removal has been pushed forward greatly via strong deep
learning tools. Though denoising under the long-standing
AWGN model has been well solved [3,6,48], things go dif-
ferent for denoising images captured by real Digital Single
Lens Reflex Camera (DSLR) and sensors of mobile phones.
Actually, AWGN is inferior for not taking signal-dependent
and complex sensor noise into account. A more precise
model is Poisson-Guassian (P-G) model [15], which con-
siders the unstable photon count on the sensor plane. Het-
eroscedastic Gaussian (Hetero-G) model [16,18] is a widely
accepted alternative for P-G, it uses a signal-dependent
Gaussian distribution to replace Poisson distribution. Other
statistical models including Poisson Mixture model [47],
mixed AWGN with Random Value Impulse Noise (RVIN)
[51] and Gaussian Mixture Model [52] are also proposed
to model real noise. Recently, Wei et al. [42] delineate the
full picture of sensor noise and craft fine-grained and pre-
cise statistical model to describe noise distribution, which
greatly boosts the performance in real image denoising, es-
pecially in extremely dark imagery. Later, Zhang et al. [50]
directly sample readout signal-independent noise from real
bias patches. Deep learning based methods are also pre-

sented to implicitly model real sensor noise. For exam-
ple, generative models like GAN [17] and Normalizing
Flow [27] have appeared in recent image modeling stud-
ies [1,9,12,22,25,34,45]. Nevertheless, these methods over-
simplify the modern sensor imaging pipeline, and ignore
the noise sources corrupted by sensor electronics [4,21,24].
Moreover, generative models are unstable to train, and these
methods cannot compete with statistical models which are
carefully calibrated (opposite to directly using the noise pa-
rameters recorded in the image profile). These noise mod-
eling methods have special needs of camera-specific data,
e.g., calibration frames or clean/noisy pairs for each target
camera. Capturing data and calibrating for each camera sen-
sor can be labor-consuming. In addition, in a multitude of
imaging scenarios, these prerequisites are unavailable and
cannot be guaranteed.

Noise Estimation. Noise estimation can be used in many
denoising methods. For traditional non-blind denoising
methods like Non-local Means (NLM) [6] and BM3D [14],
noise estimation can be used to predict noise level, which is
a required input. In early years, numerous works estimate
Gaussian noise level in flat areas [23, 33], but they are af-
fected by the size of flat areas. Pyatykh et al. [38] propose
a principal component analysis (PCA) based noise level es-
timation method. Similarly, Chen et al. [11] carefully ana-
lyze the statistical relationship between noise variance and
eigenvalues to estimate Gaussian parameters. In the last
decade, some works [31, 32] are proposed to estimate P-
G noise from a single image, which is more close to real
data. Very recently, Pimpalkhute et al. [36] present a hybrid
discrete wavelet transform and edge information removal
to estimate Gaussian noise variance. Noise estimation also
frequently appears in deep learning based denoising meth-
ods [7, 18, 49]. They typically introduce a noise level esti-
mation module to guide the denoising network with a noise
level map. Representative methods, like FFDNet [49] and
CBDNet [18], use a noise estimation subnetwork consist-
ing of several convolution layers to predict noise map. FBI-
Denoiser [7] proposed a Poisson-Gaussian Estimation Net
to learn the P-G noise parameters solely from noisy images.
An inevitable limitation for existing noise estimation meth-
ods is that they are built upon less accurate AWGN or P-
G noise models. In addition, the estimation of more fine-
grained noise models are highly ill-posed, none of these
methods can be adapted to estimate such noise model.

In this work, we aim at estimating noise parameters un-
der a much more complete physics-based noise model, and
use those noise parameters for an entirely different purpose.
To separate the features of different noise components in
the latent space, we devise a data augmentation strategy
and learn our estimation model in a contrastive manner [13].
Therefore, we relieve building noise modeling joint distri-
bution from specially captured data.
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Figure 1. The overview of our camera model estimation and noise synthesis pipeline.

3. Method
In this section, we first present a fine-grained noise

model based on the physical formation of images. Then, we
describe our data generation pipeline and contrastive noise
estimation framework. The overall pipeline of our work is
shown in Fig. 1.

3.1. Formulation and Motivation

Existing real noise generation methods [1, 12, 41] suffer
from less accurate noise assumption and require laborious
calibration frames (e.g., dark frames and flat-field frames)
or noisy/clean pairs of a specific camera sensor. In this
work, we design a novel noise synthesis pipeline that esti-
mates noise models solely from testing noisy images. Since
image noise is mainly produced in linear raw space, in this
work, we focus on raw noise modeling and synthesis which
is not influenced by image signal processing pipeline (ISP).

For common CCD and CMOS sensors, the captured raw
signal S can be expressed as

S = C +N, (1)

where C and N denote the potential clean image and the
summation of all noise components. They are corrupted by
the image formation process of CCD/CMOS sensors.

Generally, N has several components, including signal-
dependent noise and signal-independent noise, etc. As a
result, N follows a distribution F which is decided by the
latent clean image C

N ∼ F(C). (2)

The performances of existing data-driven deep learning
denoisers are heavily dependent on a large number of (C, S)

pairs for supervision. However, the precise formulation
of F(C) is not reachable, and capturing large real paired
dataset is extremely laborious and unbearable. Therefore,
many works [1,9,12,22,25,34,45] aim at finding a synthetic
N̂ which is close to real noise N , and accurately modeling
the noise distribution F(C) is of vital importance.

In this work, we target at solving two significant fac-
tors that affect the precision and applicability of existing
noise synthesis works, i.e., less accurate noise models and
laborious training data. We also attempt to estimate statis-
tical noise models in situations where cameras can not be
reached.

3.2. Noise Formation Model

For better noise synthesis, an accurate noise model is in-
dispensable. Here, we formulate a fined-grained noise for-
mation model that is more precise than widely used AWGN
and P-G models.

Digital images are corrupted in many steps of electronic
imaging pipeline. Among all noise sources, the four most
significant components in real-world images are shot noise,
readout noise, color bias and row noise [42].

As is known, due to the quantum nature of light, the
number of photons collected by sensors is unstable. As a
result, inevitable shot noise is added to the original photon
signal, which follows a Poisson distribution [20]. Given the
number of real incident photon I , shot noise Ns can be de-
scribed as

(I +Ns) ∼ P(I), (3)

where P is the Poisson distribution. Previous works usually
replace P with a variance-variant Gaussian distribution, for
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the purpose of easier calibration. In this work, we are dedi-
cated to real Poisson which is more accurate.

Readout noise is generated when the circuit reads elec-
tronic signals and transforms them into voltage level. The
combination of different noise sources makes it close to a
random Gaussian distribution. In addition, the existence of
dark current renders the noise distribution away from zero-
centered. On the basis of these considerations, the readout
noise Nread can be presented as

Nread ∼ N (µc, σ
2), (4)

where µc is the non-zero centered bias. There is obvious
color bias in extremely low environment.

Another important component correlated to the
electrons-to-voltage process is row noise, which is caused
by the row-by-row sensor read out format. We model this
kind of row noise Nrow as a Gaussian distribution

Nrow ∼ N (0, σ2
r). (5)

Let K denote the overall gain from I to the potential
clean image C, i.e., C = KI , the real-world noise forma-
tion model can be expressed as

N = KNs +Nrow +Nread. (6)

For shot noise, given the overall gain K, we can eas-
ily obtain noise by reversing digital signal to the number
of photons, sampling shot noise from a Poisson distribu-
tion, and reversing back to digital signals. Therefore, for
the following noise estimation model, we need to estimate
a four-tuple noise parameter (K,σ, µc, σr).

3.3. Model Estimation and Noise Synthesis Pipeline

Here, we introduce our innovative model estimation
and noise synthesis pipeline. Our pipeline estimates noise
model parameters and liberates the noise generation pro-
cess from the problem of laborious training data and less
accurate noise models. Given a testing denoising datasets
captured from a single camera sensor, our pipeline first es-
timates parameters for the noise models mentioned in Sec-
tion 3.2, and then decides a parameter sampling and noisy
image synthesis strategy to generate realistic training data.
The whole process rely neither on paired training data nor
real calibration frames.

The scheme overview of our noise synthesis pipeline
is illustrated in Fig. 1. Given a noisy test dataset, we
first estimate the noise parameters Pi = (K,σ, µc, σr)
for each single image, and obtain a set of parameter tu-
ples {P1,P2, · · · ,PM}, where M is the size of testing
dataset. Our noise estimation model specially designed for
estimating such fine-grained noise would be described in
Section 3.4. According to previous works [41, 42], we as-
sume that the system overall gain K is proportional to the
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Figure 2. We provide the calibration results of a typical camera
sensor, i.e., Canon EOS5D4, to show the logarithmic linear rela-
tionship between (K,σ) and (K,σr).

ISO setting, and both readout and row noise variance is log-
arithmically proportional to K. Taking Canon EOS5D4 for
example, the statistical relationship between noise param-
eters σ and σr can be well fitted by a logarithmic linear
model with respect to the overall gain K, as shown in Fig. 2.
Therefore, we use a linear regression model to fit the log
linear relationship between K and σ, σr, and obtain the es-
timated bias and slope

log σ = a logK + b,

log σr = ar logK + br.
(7)

From here, we can sample camera gain K from a uniform
distribution from the smallest and largest estimated gain in
testing sets, denoted as Kmin and Kmax. Then, other noise
parameters can be sampled following the joint distribution

log (K) ∼ U
(
log(K̂min), log(K̂max)

)
,

log (σ) | log (K) ∼ N
(
a log(K) + b, σ̂2

)
,

log (σr) | log (K) ∼ N
(
ar log(K) + br, σ̂

2
r

)
,

(8)

where σ̂ and σ̂r are the unbiased estimation for noise stan-
dard deviation.

If it is necessary to synthesize realistic training samples
under any given ISO value O (not limited to discrete ISO
values), we can use a linear model to fit the relationship
between K and O, i.e., K = α·O, and replace the sampling
strategy of K in Eq. (8).

3.4. Contrastive Noise Estimation Model

Although previous noise estimation methods obtain sat-
isfactory performance under AWGN and P-G noise assump-
tions, such noise models are coarse noise models. Besides,
previous noise estimation methods have not tried estimat-
ing a more complex and accurate noise assumption. In
this section, we propose a deep learning based noise es-
timation model to predict the four-tuple noise parameters
(K,σ, µc, σr) from a single noisy image.

Actually, the problem of estimating the noise parame-
ters in Eq. (6) is highly ill-posed and hard to be statisti-
cally solved by existing PCA-based [38] or decomposition-
based [11] noise estimation methods. Moreover, this prob-
lem is challenging even for deep neural networks, for deep
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networks need to distinguish each noise component and es-
timate noise level from different dimensions. To tackle this
problem, we employ a contrastive learning strategy. We first
learn an extractor to extract the most discriminative repre-
sentation for noise estimation, regardless of low frequency
scene information. By contrasting scenes with the same or
different noise parameters, it is easier for noise estimation
networks to learn precise parameter values.

We employ a simple and efficient framework [13]
for contrastive learning. It learns feature representations
by maximizing agreement between differently augmented
views of the same label via a contrastive loss in the projec-
tion space. Our contrastive noise estimation framework is
illustrated at the bottom of Fig. 1. The learning process has
two stages, including an unsupervised contrastive feature
learning stage (bottom right) and a supervised noise esti-
mation stage (bottom left). Besides, we need a stochastic
data augmentation strategy to synthesize positive and neg-
ative samples. The main components for our contrastive
noise estimation model are described in the following.
Data augmentation. Given an anchor noisy image Si syn-
thesized under the i-th scene Ci and parameter Pi, the fea-
ture extractor needs to be fed with positive and negative data
samples. In our case, positive samples share the same noise
parameters with the anchor image, while negative samples
are synthesized with different noise parameters. In addi-
tion, to avoid the influence of scenes, both samples are sam-
pled from a random scene. As a result, positive sample S+

i

and negative sample S−
i are synthesized under (Ck, Pi) and

(Cj , Pj). Considering that the information of noise levels
are typically drawn from the frequency components along
global, vertical or horizontal dimension, we employ a Haar
wavelet transformation t(·) before the feature extractor [19].
Contrastive feature learning. A feature extractor f(·) is
used to extract representations from the frequency image
t(S). For sake of simplicity, we use ResNet as the fea-
ture extractor backbone, and obtain feature h = f(t(S))
for each sample. After that, a small multi-layer percep-
tion (MLP) g(·) is used to project representations to low-
dimensional vector, and we obtain z, z+ and z− for the
anchor, positive and negative sample, respectively. Then,
the contrastive framework learns to enlarge the similarity
between (z, z+), and decrease it between (z, z−). The
similarity calculation function s can be any distance func-
tion, and here we utilize cosine similarity. The loss for con-
trastive learning can be represented as

Lcontrastive = − log
exp(s(z, z+)/τ)∑
exp(s(z, z±)/τ)

, (9)

where τ denotes the temperature parameter.
Noise estimation. By minimizing the contrastive loss
Lcontrastive, the feature extractor f is able to learn the dis-
criminative noise feature of input noisy images. As for our

supervised noise estimation learning, we directly add a pre-
diction tail that consists of fully connected layers on the
extracted feature h. In the training stage, the contrastive
representation learning framework is trained first. Then, the
noise estimation module is added and trained together with
the encoder. We utilize Mean Squre Error (MSE) loss on the
predicted noise parameters. Instead of directly penalizing
on the predicted P̂i, we employ a transformation r to bal-
ance the weight and scale of P̂i. In the experiment, we oper-
ate logarithm on σ and σr, and set weights to (1, 1, 10, 10)
for (K, log σ, µc, log σr). Therefore, the learning loss can
be formulated as

L =

M∑
i

∥r(Pi)− r(P̂i)∥22 + τLcontrastive, (10)

where M is the number of training samples, and τ is set to
0.1 in the experiment.

4. Experiments
In this section, we first provide the experimental settings,

including the used evaluation metrics and datasets. Then,
we conduct experiments on our noise estimation and syn-
thesis pipeline, as well as the downstream denoising task.
Finally, we conduct experiments for ablation study.

4.1. Experimental Setting

Metrices. For noisy image synthesis, we use KL diver-
gence to evaluate the distance between synthetic noise and
noisy data captured by real camera sensor. We follow pre-
vious work [1] to perform discrete KL divergence between
the histogram of noise patches, which can be formulated
as

∑
p(xi) log(p(xi)/q(xi)), where p(xi) and q(xi) are

the normalized histogram bins of real and estimated sam-
ples. As for real denoising experiments, we utilize Signal-
to-Noise Ratio (PSNR) and Structural Similarity (SSIM),
which are used to measure the 2D spatial fidelity. Larger
PSNR and SSIM suggest better results, while smaller KL
divergence shows better synthesis.
Dataset. Our pipeline is evaluated on a widely used real im-
age denoising dataset SIDD [2]. SIDD is collected by five
smartphone cameras, including Samsung Galaxy S6 Edge
(S6), iPhone 7 (IP), Google Pixel (GP), Motorola Nexus 6
(N6) and LG G4 (G4). It contains 320 RAW image pairs for
training and testing. In addition, we also synthesize noise
on other public paired raw datasets, including CRVD [44]
and PMRID [41], aiming to prove the generalization of
our noise synthesis pipeline. To train our noise estimation
network, we follow calibration steps [42] to carefully cali-
brate several camera sensors through real bias and flat-field
frames, which make up our camera noise model dataset.
Specifically, as the noise components in Eq. (6) are additive,
we calibrate them one by one. After the calibration of a for-
mer component, the mean value of this noise is subtracted,
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Figure 3. Noise model estimation Performances. The top two
camera models are estimated on synthetic noisy images, while the
bottom camera models are estimated on real SIDD datasets where
no Ground Truth parameters are available.

to avoid affecting the calibration of other noise components.
Our camera noise model dataset includes Canon EOS 5D4,
Nikon D850, Sony RX100VI and HUAWEI P40 Pro.

Implementations. In the experiment, the losses are min-
imized with the adaptive moment estimation method [26],
with the momentum parameter 0.9. The learning rate is ini-
tially set to 10−4 , and divided by 10 every 50 epochs. Since
larger batch size benefits the learning of contrastive frame-
work, we set batch size as 32 in the training stage. Both es-
timation and denoising process are trained for 200 epochs.
Our model is implemented using the deep learning frame-
work PyTorch [35], and we use an NVIDIA RTX 3090 GPU
to train our model.

4.2. Noise Model Estimation and Noise Synthesis

Noise Model Estimation. We first evaluate the effective-
ness of our contrastive noise estimation model. Our model
is trained on synthetic datasets with noise parameters from
our well-calibrated camera noise model dataset, and then
applied to unknown (or not calibrated) sensor estimation.
In the training stage, we randomly sample noise parame-
ters Pi from these camera candidates to synthesize noisy
images. Our noise estimation model predicts (K,σ, µc, σr)
and these parameters are supervised by ground truth Pi. We
visualize the linear least-square fitting for our noise model
estimation in Fig. 3. For the top two figures, we presents
the estimation on synthetic noisy images, from which we
can see that our contrastive noise estimation model can ac-
curately estimate noise parameters. The bottom two figures
show the estimated model for two mobile sensors of SIDD
dataset. Noting that the part of SIDD dataset we use for
synthesis purposes consists of 6 and 4 ISO levels for Sam-

sung S6 and LG G4, respectively. We observe that the noise
parameters estimated by our model apparently form 6 and 4
clusters in Fig. 3. This phenomenon supports our estimation
model for SIDD cameras.
Noise Synthesis on SIDD. To evaluate our pipeline on
noisy image synthesis, we compare it with several state-of-
the-art noise modeling methods, including: 1) AWGN noise
model 2) P-G noise model, 3) Noiseflow [1] and 4) CAN-
GAN [9]. Among these methods, AWGN and P-G are com-
monly used statistical noise models, Noiseflow is a normal-
izing flow based noise modeling methods, and CANGAN
is a representative GAN based noise generation model. The
training of Noiseflow and CANGAN requires noisy/clean
image pairs. We test all methods in SIDD dataset under dif-
ferent ISOs, and synthesize noise patches of 4 × 64 × 64.
The noise synthesis accuracy of all compared methods and
our pipeline are listed in Table 1. By comparing all the
methods, it can be seen that our generation pipeline pro-
vides promising performance, even if we have never seen
any data beyond testing sets. This is partially due to the ac-
curate contrastive noise estimation, and partially by a more
realistic fine-grained noise model which carefully consid-
ers the image formation process. Though CANGAN also
achieves good performances, it requires paired training data
and an inference noisy image which has the same setting
with the targeted one. Fig. 4 shows the visualization of syn-
thetic noisy images for all compared noise models and our
method. It implies that our pipeline generates more visually
realistic noise patches.
Noise Synthesis on CRVD and PMRID. We also provide
synthesized noisy images on other datasets. Given an noisy
image and its corresponding clean one, we first estimate the
noise parameters by feeding our model another noisy image
which has the same ISO with the targeted image. Then,
we use the estimated noise parameters to generate noise on
the clean image. As shown in Fig. 5, our model produces
realistic noise. Please note that none of the cameras used in
CRVD, PMRID and SIDD are included in our training data,
which means the results can verify the generalization of our
pipeline.

4.3. Applications on Real Image Denoising

Here, we use the noise synthesis methods (AWGN, P-
G, Noiseflow, CANGAN and ours) described in Section 4.2
to generate synthetic training datasets. Then, these datasets
are used to train a common denoising UNet [39], aiming to
evaluate the superiority of our model estimation and noise
generation pipeline in downstream denoising application.
Besides training on synthetic data, we also perform denois-
ing experiments trained on real paired dataset.

Real image denoising experiments are conducted on
SIDD S6 Dataset. We directly use the pretrained synthe-
sis model of Noiseflow and CANGAN, and sample 4 ×
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Table 1. The performance of noise synthesis for all compared methods on SIDD datasets. The quantitative results for five
SIDD cameras are evaluated in KL divergence. Our method provides marginal improvements over other noise synthesis
methods, without feeding any camera-specific training data. The best results are highlighted in bold.

Camera AWGN P-G Noiseflow [1] CANGAN [9] Ours

S6 0.4793 0.1023 0.0617 0.0432 0.0385
IP 0.8367 0.0514 0.0327 0.0178 0.0100
GP 0.6254 0.0316 0.0756 0.0146 0.0219
N6 0.7321 0.0168 0.0731 0.0187 0.0165
G4 1.0987 0.0315 0.0519 0.0161 0.0187

Average 0.7544 0.0467 0.0590 0.0220 0.0211

AWGN P-G Noiseflow [1] CANGAN [9] Ours Real Clean

Figure 4. The synthesized noisy images on SIDD dataset [2]. The results of AWGN/P-G/Noiseflow/CANGAN/ Ours/Real Noisy im-
age/Clean input images are shown from left to right.

C
RV

D
PM

R
ID

Clean Synthesized Real Noise
Figure 5. Our noise synthesis results on CRVD and PMRID.

512 × 512 noisy patches for all methods. Quantitative re-
sults are shown in Table 2. It can be inferred that owing to
the high quality training data generated by our noise synthe-
sis pipeline, the denoising results of our method surpasses
all compared methods in terms of both pixel-wise accuracy
and structural similarity. Another observation is that P-G
outperforms CANGAN, which is opposite to the result of
noise estimation. The reason is that statistical models in-
cluding AWGN, P-G and our model can feed the denoiser
with a wider range of noise under continuous ISO values.
Besides, we would like to stress that though our synthesis
pipeline is built solely on noisy SIDD testing data, it is sur-
prising that our model give similar results compared with
paired real data. These results demonstrate the effectiveness
of our method. Fig. 6 shows the denoising visualization of
all methods, which indicates that our generation pipeline
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Table 2. Quantitative denoising results of S6 camera on SIDD dataset. Without seeing any data beyond testing noisy images, our
noise synthesis pipeline outperforms other generation methods, and even achieves comparable results with paired real data.

ISO Metrices AWGN P-G Noiseflow [1] CANGAN [9] Paired Data Ours

100
PSNR 50.13 53.80 51.82 52.85 53.94 54.12
SSIM 0.9809 0.9957 0.9941 0.9947 0.9962 0.9962

800
PSNR 46.45 48.41 42.75 48.20 48.68 48.82
SSIM 0.9700 0.9935 0.9693 0.9917 0.9942 0.9941

1600
PSNR 47.29 48.92 41.09 47.93 49.10 49.11
SSIM 0.9638 0.9880 0.9281 0.9853 0.9889 0.9885

3200
PSNR 42.16 43.47 34.85 42.90 43.61 43.05
SSIM 0.9429 0.9644 0.8054 0.9621 0.9653 0.9581

All
PSNR 47.55 49.91 44.96 49.19 50.10 50.13
SSIM 0.9698 0.9896 0.9517 0.9879 0.9902 0.9891

Input AWGN P-G Noiseflow [1] CANGAN [9] Paired Data Ours GT

Figure 6. The SIDD [2] S6 denoising results for AWGN/P-G/Noiseflow/CANGAN/Paired Data/Ours are shown from left to right.

Table 3. The ablation study on our contrastive loss and
fine-grained noise model.

Setting PSNR SSIM

w/o Lcontrastive 49.03 0.9868
Hetero-G 50.04 0.9874

Ours 50.13 0.9891

can practically benefit denoising of real photographs.

4.4. Ablation Study

In this section, we perform more experiments to ver-
ify the effectiveness of our contrastive noise model esti-
mation framework. We claim that the contrastive learning
manner helps the model to learn parameters for separable
noise components, and the fine-grained noise model also
contributes to better noise synthesis. Therefore, we con-
duct ablation study, by removing the contrastive loss and
replacing the fine-grained noise model with the predom-
inant Hetero-G. Denoising experiments are conducted for
each case. As indicated in Table 3, our full model achieves
better results, which further validate the superiority of our
contrastive learning strategy and fine-grained noise model.

5. Conclusion

In this paper, we propose a novel noise synthesis pipeline
by estimating camera-specific noise models with only test-
ing data. Our method is based on a fine-grained physics-
based noise model, and we design a noise estimation model
which is learned in a contrastive manner. Without see-
ing any paired images or calibration data, our pipeline can
achieve competitive results with state-of-the-art noise syn-
thesis methods. It is inspring that given only testing noisy
images, our model estimation and noise synthesis pipeline
can be directly used in the modeling of other unknown cam-
eras without retraining. Our model is potential to facilitate
other applications, including low-light enhancement, which
will be remained as our future work.

6. Limitation Discussion and Broader Impact
Our model estimation and noise synthesis pipeline aims

at estimating noise models of unknown sensors. However,
our current model is only used for bayer CFA, and have not
extended to non-bayer CFAs like X-Trans. Thus it would
be risky if we are not sure about the sensor CFA. Our work
has no broader impact.
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