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Abstract

The backbone of most deep-learning-based continuous
sign language recognition (CSLR) models consists of a vi-
sual module, a sequential module, and an alignment mod-
ule. However, such CSLR backbones are hard to be trained
sufficiently with a single connectionist temporal classifica-
tion loss. In this work, we propose two auxiliary constraints
to enhance the CSLR backbones from the perspective of
consistency. The first constraint aims to enhance the vi-
sual module, which easily suffers from the insufficient train-
ing problem. Specifically, since sign languages convey in-
formation mainly with signers’ faces and hands, we insert
a keypoint-guided spatial attention module into the visual
module to enforce it to focus on informative regions, i.e.,
spatial attention consistency. Nevertheless, only enhanc-
ing the visual module may not fully exploit the power of the
backbone. Motivated by that both the output features of the
visual and sequential modules represent the same sentence,
we further impose a sentence embedding consistency con-
straint between them to enhance the representation power
of both the features. Experimental results over three rep-
resentative backbones validate the effectiveness of the two
constraints. More remarkably, with a transformer-based
backbone, our model achieves state-of-the-art or compet-
itive performance on three benchmarks, PHOENIX-2014,
PHOENIX-2014-T, and CSL.

1. Introduction
Hearing-impaired people usually use sign languages as

their communication method. Video-based continuous sign
language recognition (CSLR) aims to transcribe a sign lan-
guage video into a sequence of glosses (basic lexical units
in a sign language). In recent years, deep learning tech-
niques dominate CSLR modeling because of their superior-
ity over traditional methods [31, 32, 55]. According to [32],
the backbone of most deep-learning-based CSLR models
consists of three components: a visual module, a sequen-
tial (contextual) module, and an alignment module. Within
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Figure 1. An overview of the CSLR backbone and the proposed
consistency constraints. First, our SAC constraint leverages pose
keypoints heatmaps to enforce the visual module to focus on in-
formative regions. Second, our SEC constraint aligns the visual
and sequential features at the sentence level, which can enhance
the representation power of both the features simultaneously.

this framework, the visual module first extracts visual fea-
tures from input videos. Then the sequential module ex-
tracts sequential and contextual information from the visual
features. Finally, the alignment module aligns the sequen-
tial features with the gloss label sequence and computes its
probability.

As a common practice, the connectionist temporal clas-
sification (CTC) [14] loss is adopted as the main objec-
tive function to train such CSLR backbones. However,
only using the CTC loss may lead to the insufficient train-
ing problem that the extracted features are not represen-
tative enough to be used to yield accurate recognition re-
sults [10, 11, 17, 31, 37, 39, 55]. Two kinds of methods can
relieve this issue. First, [11, 17, 37–39, 55] use a stage opti-
mization strategy to iteratively refine the extracted features,
which is time-consuming since the model needs to adapt
to a different objective in a new stage [10]. As an alterna-
tive solution, auxiliary learning can keep the whole model
end-to-end trainable by just adding one or more auxiliary
tasks [10,31]. In this work, we propose two novel auxiliary
constraints from the perspective of information consistency.

Our first constraint aims to enhance the visual module,
which plays a key role in feature extraction but easily suffers
from the insufficient training problem [11,31,55]. Since the
information of sign languages is mainly included in signers’
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faces and hands [23,55], to enrich the visual features, some
CSLR models [36,55,56] leverage an off-the-shelf pose de-
tector [7, 43] to locate the face and hands and then crop the
feature maps to form a multi-stream architecture. However,
the multi-stream architecture will introduce many more pa-
rameters and the cropping operation cannot fully exploit the
rich information contained in the pose keypoints heatmaps.
As shown in Figure 1, we find that the heatmaps can re-
flect the importance of different spatial positions, which is
quite similar to the attention mechanism. Thus, as shown
in Figure 2, we insert a lightweight spatial attention module
guided by keypoints heatmaps into the visual module to en-
force it to focus on informative regions, which leads to our
spatial attention consistency (SAC) constraint.

Only enhancing the visual module may not fully exploit
the power of the backbone. Some works [17, 31] show that
explicitly enforcing the consistency between the visual and
sequential modules can strengthen their cooperation, and
give better performance. VAC [31] treats the visual and se-
quential modules as the student and teacher, respectively,
and achieves knowledge distillation between them. Simi-
larly, SMKD [17] achieves knowledge transfer by sharing
classifiers. Knowledge distillation can be seen as a kind of
consistency since the KL-divergence loss used in [31] is a
measurement of the distance between two probability dis-
tributions. However, the above two methods share the same
deficiency that the consistency is measured at the frame
level, i.e., the probability distribution is computed for each
frame independently. We think that there should be differ-
ences between the distributions of the visual and sequential
modules at the frame level since the sequential module gath-
ers contextual information for each frame; otherwise, the
sequential module may be removed. Motivated by that both
the visual and sequential features represent the same sen-
tence, we impose a sentence embedding consistency (SEC)
constraint between them. As shown in Figure 2, we build
a sentence embedding extractor that can be co-trained with
the CSLR backbone, and then minimize the distance be-
tween the sentence embeddings of visual and sequential fea-
tures but maximize the distance between the sentence em-
beddings of visual and negative sequential features.

In summary, our main contributions are:

• We propose a spatial attention consistency constraint,
which can enhance the visual module by leveraging
pose keypoints heatmaps to guide an inner spatial at-
tention module.

• We propose a sentence embedding consistency con-
straint, which can align the visual and sequential fea-
tures at the sentence level and enhance the representa-
tion power of both the features simultaneously.

• Extensive experiments are conducted to validate
that both consistency constraints can enhance the

performance of three representative CSLR back-
bones with negligible extra cost. More remarkably,
with a transformer-based backbone, our consistency-
enhanced CSLR (C2SLR) model can achieve state-of-
the-art (SOTA) or competitive performance on three
benchmarks, while the whole model is trained in an
end-to-end manner.

2. Related Works
2.1. Deep-learning-based CSLR

According to [32], most deep-learning-based CSLR
backbones can be separated into a visual module (2D-CNNs
[17, 31, 55] or 3D-CNNs [39, 54]), a sequential module
(RNNs [17, 31, 37, 39, 55], 1D-CNNs [10, 15], or Trans-
former [5, 32]), and an alignment module (hidden Markov
models [24, 26] or CTC [17, 31, 55]). For sufficient train-
ing, [11] proposes a stage optimization strategy that uses
pseudo labels to iteratively refine the extracted features,
which is widely adopted in [17, 37, 39, 55]. On top of it,
CMA [37] proposes a cross-modality constraint to help the
training. SMKD [17] proposes a three-stage optimization
approach, which is so time-consuming that the model needs
to be trained for 100 epochs. Recently, VAC [31] proposes
two auxiliary constraints over the frame-level probability
distributions to enhance the visual module and to enforce
the consistency between the visual and sequential modules,
which enables the whole model end-to-end trainable. In this
work, we enhance the visual module from a novel view, i.e.,
spatial attention consistency, and align the two modules at
the sentence level, i.e., sentence embedding consistency.

2.2. Spatial Attention

Spatial attention has been proven to be effective on
many computer vision tasks, including image classifica-
tion [6, 19, 28, 46, 49], semantics segmentation [12], and
object detection [6, 49]. However, training the spatial at-
tention module with a task-specific loss function only may
lead to sub-optimal solutions. Some works propose to lever-
age external information to guide the spatial attention mod-
ule. [9] proposes to guide the spatial attention module with
motion information for video captioning. Mask guidance
and relation guidance are proposed in [27, 35] for occluded
pedestrian detection and person re-identification, respec-
tively. GALA [28] leverages click maps collected in a game
to supervise the spatial attention module for image classifi-
cation. In this work, we leverage pose keypoints heatmaps
to guide the spatial attention module to enforce the visual
module to focus on informative regions.

2.3. Sentence Embedding

A common practice to extract sentence embedding is
feeding the word sequence into an LSTM or a bidirectional
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Figure 2. An overview of our C2SLR. For spatial attention consistency (SAC), we first insert a spatial attention module after the m-
th convolution layer, Cm, of the visual module, and then guide it by pre-extracted pose keypoints heatmaps. For sentence embedding
consistency (SEC), we extract the sentence embeddings of visual features, sequential features, and negative sequential features, respectively,
and adopt a triplet loss to train the sentence embedding extractor along with the CSLR backbone. (GAP: global average pooling.)
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Figure 3. The architecture of our spatial attention module. (J ×
K × C: the size of the input feature maps, GAP: global average
pooling, CMP: channel-wise max pooling.)

LSTM (BiLSTM) and taking the last one or two hidden
state(s) as the sentence embedding [29,34]. Recently, some
powerful sentence embedding extractors [8,13,40] are built
based on the BERT architecture [21]. However, it is diffi-
cult for these methods to fit our work because (1) they are
too large to be co-trained along with the backbone; (2) they
are pretrained on spoken languages, which are quite differ-
ent to sign languages. In this work, we build a lightweight
sentence embedding extractor that can be easily co-trained
with the CSLR backbone.

3. Our Proposed Method
3.1. Framework Overview

As shown in Figure 2, the backbone of CSLR models
is composed of a visual module, a sequential module, and
an alignment module. Given a sign language video with
T RGB frames x = {xt}Tt=1 ∈ RT×3×H×W , the visual
module, which is composed of a stack of 2D-CNN1 lay-
ers (C1, . . . , Cn) and a global average pooling (GAP) layer,
first extracts visual features v = {vt}Tt=1 ∈ RT×d. After
that, the sequential module further extracts sequential fea-

1We only consider visual modules which are based on 2D-CNNs since
a recent survey [1] shows that 3D-CNNs cannot provide as precise gloss
boundaries as 2D-CNNs, and lead to lower accuracy.

tures s = {st}Tt=1 ∈ RT×d. Finally, the alignment module
utilizes CTC [14] to compute the probability of the gloss
label sequence p(y|x), where y = {yi}Ni=1 and N is the
length of the label sequence.

3.2. Spatial Attention Consistency (SAC)

Sign languages convey information mainly by signers’
faces and hands [23, 55]. Thus, we hope the visual module
can focus on these informative regions (IRs). Motivated by
this idea, we insert a spatial attention module guided by pre-
extracted pose keypoints heatmaps into the visual module.
Since SAC is applied to all frames in the same way, we will
omit the time steps in the formulation below.

Spatial Attention Module. To build our spatial atten-
tion module, we borrow the idea of CBAM [49] due to its
simplicity. As shown in Figure 3, we first apply a channel-
wise max pooling (CMP) operation to pick the most infor-
mative channel:

M1 = fCMP (F) ∈ RJ×K×1, (1)

where M1 is the squeezed feature map by CMP, and F ∈
RJ×K×C is the input feature maps.

Different from the spatial attention module in CBAM
which uses an average pooling operation along the chan-
nel dimension, we propose to dynamically assign a weight
to each channel to measure its importance. As shown in
Figure 3, we first conduct global average pooling (GAP)
over the input feature maps F to gather global spatial in-
formation. Then the channel weights E ∈ (0, 1)1×1×C are
simply generated by a channel-wise softmax layer. After
that, we can generate another squeezed feature map M2 by
a weighted sum operation along the channel dimension:

M2 = F⊕E =

C∑
i=1

Fi ·Ei ∈ RJ×K×1, (2)

Finally, the spatial attention mask M is generated as:

M = σ(fconv(cat(M1,M2))) ∈ (0, 1)J×K , (3)
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Figure 4. Two examples of the original and refined heatmaps.

where σ(·) is the sigmoid function, fconv(·) is a 2D-CNN
layer with a kernel size of 7×7, and cat(·, ·) is a channel-
wise concatenation operation. The mask will be multiplied
with the feature maps F to highlight important positions but
suppress trivial ones.

It should be noted that the operation of assigning a
weight to each channel shares a similar idea with the chan-
nel attention module in CBAM. But ours introduces no ex-
tra parameters and can even outperform the vanilla CBAM
according to our ablation studies.

Keypoints Heatmap Extractor. The spatial attention
module can be trained along with the backbone. However,
since we have the prior knowledge that signers’ faces and
hands are more informative than other regions, we leverage
an off-the-shelf pose extractor, HRNet [43] pretrained on
MPII [2], to extract keypoints heatmaps to guide the spatial
attention module. Specifically, we first normalize the raw
outputs of HRNet to get the original heatmaps as:

Hi
o =

f i
H(I)−min f i

H(I)

max f i
H(I)−min f i

H(I)
∈ [0, 1]H×W , (4)

where I is the raw RGB frame, fH(·) is the HRNet, and
i ∈ {1, 2, 3} denotes the face, left hand, and right hand,
respectively.

Post-processing. Although the original heatmaps can
roughly reflect the positions of IRs, there are still some de-
fects. First, the original heatmaps are not quite accurate.
As shown in Figure 4, some unwanted regions may even
get high activation values, e.g., the top boundary of the face
in the first row and the middle part of the left hand in the
second row. Second, some bright regions may not be large
enough to cover the whole IRs, e.g., both of the faces in
Figure 4. Third, the heatmap resolution of the pretrained
HRNet is fixed to 64 × 64, which usually mismatches the
resolution of the spatial attention mask. Thus, we propose a
post-processing module to refine the original heatmaps.

Given the original heatmaps, we first generate the cen-
ter for each IR via a simple argmax operation: (xi, yi) =
argmax Hi

o. After that, to adapt to various resolutions of
spatial attention masks, we further normalize the center as
(x̂i, ŷi) = ( xi

H−1 ,
yi

W−1 ).
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Figure 5. The workflow of sentence embedding extraction. We
omit LayerNorm [3] for simplicity.

Suppose the spatial attention module yields a spatial at-
tention mask with a resolution of J ×K. Then a Gaussian-
like refined keypoints heatmap is generated for each IR:

Hi
r(a, b) = exp

(
−1

2

(
(a− ĉxi )

2

(J/γx)2
+

(b− ĉyi )
2

(K/γy)2

))
, (5)

where 0 ≤ a < J , 0 ≤ b < K. (ĉxi , ĉ
y
i ) = (x̂i(J −

1), ŷi(K − 1)), which denotes the transformed center un-
der the resolution J ×K for each IR, respectively. γx and
γy are two scalars to control the scale of the highlighted re-
gions. Finally, we merge the three refined IR heatmaps into
a single one: Hr = max

i
Hi

r ∈ (0, 1)J×K .

SAC Loss. We leverage the refined keypoints heatmaps
to guide the spatial attention module via the SAC loss2:

LSAC =
1

J ×K
∥M−Hr∥22. (6)

3.3. Sentence Embedding Consistency (SEC)

Enforcing the consistency between the visual and se-
quential features can enhance their representation power
[17, 31]. Motivated by that both the features are represent-
ing the same sentence, we impose a sentence embedding
consistency between them.

Sentence Embedding Extractor (SEE). Within a sign
language video, each gloss only consists of a few frames,
which implies the importance of local contexts. Motivated
by this, we build our SEE based on QANet [53], which con-
sists of a depth-wise temporal convolution network (TCN)
layer and a transformer encoder layer as shown in Figure
5. The depth-wise TCN aims to first extract local contex-
tual information from the frame-level feature sequence, then
the transformer encoder models global contexts by the self-
attention mechanism.

Similar to the [CLS] token in [21], we first prepend a
learnable sentence embedding token, [SEN], to the sequen-
tial feature s ∈ RT×d:

s′ = cat([SEN], s) ∈ R(T+1)×d. (7)
2For implementation, we further compute the average of LSAC over

all time steps.
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The input of the SEE is the summation of the feature se-
quence and the positional embeddings [45]; i.e., s′′ =
s′ +P, where P ∈ R(T+1)×d.

Within the SEE, a simple depth-wise TCN (1D depth-
wise CNN) [50] layer first models local contexts with a
residual connection: s′′l = fTCN (s′′) + s′′. Then a trans-
former encoder layer gathers information of all time steps
via a set of attention weights to get the sentence embedding:

sse = fTF (s
′′
l ) =

T∑
i=0

wis
′′
li ∈ Rd, (8)

where the weights wi are learned by the self-attention mod-
ule in the transformer encoder. The sentence embedding of
visual features, vse, can also be obtained in the same way.

Negative Sampling. Directly minimizing the distance
between sse and vse may lead to trivial solutions. Suppose
the parameters of SEE are all-zero, then whatever the in-
put is, the output will be the same. To avoid this, nega-
tive samples are needed. In this work, we follow the com-
mon practice [18, 33, 41, 52] that sampling another video
from the mini-batch and taking its sequential features as
the negative sample. We also notice that most CSLR mod-
els [17, 31, 55, 56] are trained with a batch size of 2, thus
our negative sampling strategy degenerates to swapping un-
der this setting:

(Bn[0],Bn[1]) = (B[1],B[0]), (9)

where B ∈ R2×T×d is a mini-batch of the sequential fea-
tures, and Bn[·] denotes the corresponding negative sample.

SEC Loss. To minimize the distance between the sen-
tence embeddings of visual and sequential features of the
same sentence and maximize those from different sen-
tences, we implement SEC loss as a triplet loss [41]:

LSEC = max{d(vse, sse)− d(vse, s
n
se) + α, 0}, (10)

where d(·, ·) = 1 − cos(·, ·); {vse, sse} are sentence em-
beddings of visual and sequential features from the same
sentence; {vse, s

n
se} are sentence embeddings of visual and

sequential features from different sentences, and we call the
sentence embedding of the sequential features from a dif-
ferent sentence as the negative sample snse; α is the margin.

3.4. Alignment Module and Loss Function

CTC [14] is widely adopted as the alignment module
in recent works [17, 31, 37, 55]. It yields a label for each
time step which may be a repeating label or a special blank
symbol. With the assumption of conditional independence,
given an input sequence x, the conditional probability of a
label sequence ϕ = {ϕi}Ti=1, where ϕi ∈ V ∪ {blank} and
V is the gloss vocabulary, can be estimated by:

p(ϕ|x) =
T∏

i=1

p(ϕi|x), (11)

where p(ϕi|x) is the frame-level gloss probabilities gen-
erated by a classifier. Finally, the probability of yielding
the true label sequence is a summation of all feasible align-
ments:

p(y|x) =
∑

ϕ=G−1(y)

p(ϕ|x), (12)

where G is a mapping function to remove repeats and blank
symbols in ϕ. Then the CTC loss is defined as:

LCTC = − log p(y|x). (13)

Finally, the overall loss function of C2SLR is a combination
of the CTC, SAC, and SEC loss:

L = LCTC + LSAC + LSEC . (14)

4. Experiments
4.1. Datasets and Evaluation Metric

PHOENIX-2014 [25] is a German CSLR dataset with
a vocabulary size of 1081. There are 5672, 540, and 629
samples in the training, development (dev), and test set,
respectively. PHOENIX-2014-T [4] is an extension of
PHOENIX-2014 with a vocabulary size of 1085. There are
7096, 519, and 642 samples in the training, dev, and test set,
respectively. CSL [20, 39, 54] is a Chinese CSLR dataset
consisting of 4000 and 1000 samples in the training and test
set, respectively, with a vocabulary size of 178.

Evaluation Metric. We use word error rate (WER) to
measure the dissimilarity between two sequences.

WER =
#deletions +#substitutions +#insertions

#glosses in label
(15)

The evaluation scripts are provided by each dataset.

4.2. Implementation Details

Data Augmentation. RGB frames are resized to 256 ×
256 before cropping to 224 × 224. Stochastic frame drop-
ping [32] with a dropping ratio of 0.5 is used for both the
PHOENIX datasets. Since videos in CSL are much longer,
we adopt a seg-and-drop strategy that first split the videos
into segments consisting of only two frames, and then one
frame is randomly chosen from each segment. Finally, we
randomly drop 40% frames from these processed videos.

Backbones and Hyper-parameters. Since there is no
consensus on the architecture of CSLR backbones, we
choose the following three representative backbones to val-
idate the effectiveness of our method.

• VGG11+TCN+BiLSTM (VTB). It is the backbone
adopted in the SOTA work [55].

• CNN+TCN (CT). This lightweight backbone only
consists of a 9-layer 2D-CNN and a 3-layer TCN,
which is adopted in [10].
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• VGG11+Local Transformer (VLT). VGG11 [42] is
adopted as the visual module, which is the same as the
SOTA work [55]. The sequential module is a 2-layer
local transformer encoder, which is similar to our sen-
tence embedding extractor. The main difference is that
we further leverage Gaussian bias [30, 51] to empha-
size local contexts. More details are available in the
supplementary materials.

To match the channel dimensions of the visual and sequen-
tial features, we set the number of the output channels of
the TCN layers in CT and VTB to 512 and the number of
hidden units of BiLSTM in VTB to 2×256, which leads to
comparable WERs with those reported in the original pa-
pers [10,55]. We insert the spatial attention module after the
5th convolution layer, which is a trade-off between heatmap
resolution and GPU memory limitation. In terms of post-
processing, we set γx = γy = 14, which is a trade-off
between covering informative regions and avoiding trivial
regions. The kernel size of the depth-wise TCN layer in
our SEE and VLT backbone is set to 5, which is the same
as [53]. The margin α in Eq. 10 is set to 2, which is the
maximum difference between the negative and positive dis-
tance with a cosine distance function.

Training. All models are trained with a batch size of 2
following recent works [17, 31, 55]. Model parameters are
optimized by Adam optimizer [22] with an initial learning
rate of 1 × 10−4 and a weight decay factor of 1 × 10−4.
We empirically find that LSEC decreases much faster than
LCTC , thus we multiply the learning rate of the SEE with a
factor of 0.1/0.01/0.1 for the three backbones, respectively.
We decrease the learning rate by a factor of 0.7 according
to the performance on the dev set as [5]. But since CSL
doesn’t have an official dev split, we decrease the learning
rate after the 15th and 25th epoch and per 5 epochs after the
30th epoch. Training will terminate if either it reaches the
60th/50th epoch for the PHOENIX/CSL datasets, respec-
tively, or the learning rate is smaller than 1× 10−5.

Inference and Decoding. Following [32], to match the
training condition, we evenly select every 1

pd
-th frame to

drop, where pd is the dropping ratio. We adopt the beam
search algorithm with a beam size of 10 for decoding.

4.3. Ablation Studies

We conduct ablation studies on PHOENIX-2014 follow-
ing previous works [17, 31, 37, 55].

Effectiveness of SAC and SEC. As shown in Table 1,
it is clear to see that both SAC and SEC can improve the
performance of the three backbones which are only trained
by the CTC loss. However, if we only insert the spatial at-
tention module into the backbones, i.e., SAC−, the perfor-
mance can only be improved slightly, which demonstrates
the necessity of LSAC . Also, using SAC and SEC simul-
taneously can achieve better results than using either one

Backbone SAC− SAC SEC WER% Par.(M) Sp.(s)

VTB

25.0 15.6359 0.169
✓ 24.6 +0.0001 +0.002

✓ 23.7 +0.0001 +0.002
✓ 24.3 +0.0000 +0.000

✓ ✓ 22.6 +0.0001 +0.002

CT

26.1 8.7504 0.095
✓ 26.0 +0.0001 +0.001

✓ 25.1 +0.0001 +0.001
✓ 25.2 +0.0000 +0.000

✓ ✓ 24.5 +0.0001 +0.001

VLT

21.5 16.1850 0.163
✓ 21.4 +0.0001 +0.002

✓ 20.8 +0.0001 +0.002
✓ 20.9 +0.0000 +0.000

✓ ✓ 20.4 +0.0001 +0.002

Table 1. Ablation study for SAC and SEC. During inference, since
our SEC can be removed, only the spatial attention module in SAC
will introduce negligible parameters and affect inference speed.
(SAC− denotes only inserting the spatial attention module but not
guided by LSAC , Par.: number of parameters, Sp.: inference speed
measured on the same TITAN RTX GPU in seconds per video.)

of them. The superiority of SAC+SEC over SAC suggests
that explicitly enforcing the consistency between the visual
and sequential modules can strengthen the cooperation be-
tween the two modules, which can further improve the per-
formance of the model. Besides, since VLT performs the
best among the three backbones, we will use it as the de-
fault backbone for the following experiments.

Visualization Results for SAC. We visualize the learned
spatial attention masks of SAC (with LSAC) and SAC−

(without LSAC) of five test samples as shown in Figure 6.
It should be noted that during testing, we don’t use the key-
points heatmaps to guide the spatial attention module, thus
our comparison is fair. Generally, it is clear that the atten-
tion masks with the constraint of LSAC are much better.
Without LSAC , the attention masks are quite noisy: hori-
zontal lines on the top and many highlights at trivial regions,
e.g., the right arm of s2 and the waist of s3, s5. This can also
explain why SAC− cannot clearly improve the performance
of the backbones as shown in Table 1. Our SAC is so robust
that it can capture the IRs (face and hands) accurately even
when the frames are blurry (right columns of s1 to s5). It is
also capable to deal with different hand positions; e.g., one
hand is near the face (s1, s2, s4), two hands are lower than
the face (s1, s3), and hand overlapping (s5).

Channel Weights. Within our spatial attention module,
we dynamically assign a weight to each channel to measure
its importance before squeezing the feature maps. As shown
in Table 2, removing the channel weights, which degener-
ates to a simple channel-wise average pooling, can lead to
a performance drop by 0.5%. Our channel weights are sim-
ilar to the channel attention module of CBAM [49], but no
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Figure 6. Visualization results for learned spatial attention masks with or without the guidance of LSAC . We randomly select five samples
(s1, . . . , s5) from the test set, and for each sample, we select one clear frame and one blurry frame. It is clear that the guidance of LSAC

can help the spatial attention module capture the IRs (face and hands) more accurately.

Method WER% #Param(M)

VLT + SAC 20.8 16.1851
- channel weights 21.3 -0.0000

+ channel attention [49] 21.2 +0.0335
- post-processing 21.7 -0.0000

Table 2. Ablation study for SAC.

extra parameters are introduced. To further validate their ef-
fectiveness, after removing the channel weights, we add the
channel attention module as CBAM, however, it can only
slightly improve the performance and cannot beat ours even
with extra parameters.

Heatmap Refinement. As shown in Figure 4, origi-
nal heatmaps may highlight unwanted regions and may not
cover the IRs entirely. The results in Table 2 also imply the
importance of the quality of the keypoints heatmaps, i.e.,
only using original heatmaps without post-processing can
drop the performance of SAC by nearly 1%.

Sentence Embedding Extractor and Negative Sam-
pling. Within our sentence embedding extractor, a depth-
wise TCN layer first models local contexts followed by
a transformer encoder which gathers information of each
frame. As shown in Table 3, dropping the TCN layer leads
to worse performance, which suggests the importance of lo-
cal contexts for sentence embedding extraction. We also
compare our method with the common practice, i.e., tak-
ing the concatenation of the last two hidden states of BiL-
STM as the sentence embedding. However, it performs
worse than transformer-based extractors, which validates
the strength of the self-attention mechanism for sentence
embedding extraction. Negative sampling plays a key role
for our SEC. As shown in Table 3, removing negative sam-
pling, i.e., directly minimizing the distance between the
sentence embeddings of the visual and sequential features,
would render the SEC ineffective.

Constraint Level. We compare our SEC with some
frame-level constraints to further validate its effectiveness
as shown in Table 4. For fairness, we first replace the
sentence embeddings vse and sse in Eq. 10 by the cor-

Method Extractor Neg. Sam. WER%

VLT + SEC

TF+DTCN ✓ 20.9
TF+DTCN × 21.5

TF ✓ 21.1
BiLSTM ✓ 21.3

Table 3. Ablation study for the architecture of the sentence embed-
ding extractor and negative sampling. (TF: Transformer, DTCN:
depth-wise TCN, Neg. Sam.: negative sampling.)

Level Constraint WER%

Sentence consistency 20.9

Frame

consistency 21.6
visual enhancement (VE) [31] 22.3

visual alignment (VA) [31] 21.9
VE+VA [31] 22.8

Table 4. Ablation study for the constraint level. We fine-tuned the
loss factor of VA as [31] on the VLT for fair comparisons.

responding frame-level features, i.e., minimizing the pos-
itive distance and maximizing the negative distance at the
frame level. However, it leads to a WER of 21.6%, which is
much worse than our SEC. We also compare our SEC with
VAC [31], which consists of two frame-level constraints.
VAC first appends a classifier to the visual module to yield a
probability distribution for each frame (visual distribution).
Then another CTC loss, which is the same as the one used
for training the backbone, is computed between the visual
distribution and the gloss label, i.e., visual enhancement
(VE). Second, a KL-divergence loss is computed to min-
imize the distance between the visual distribution and the
original probability distribution (p(ϕi|x) in Eq. 11), i.e., vi-
sual alignment (VA). As shown in Table 4, both VE and VA
perform much worse than our SEC, which implies that the
SEC is a more appropriate way to measure the consistency
between the visual and sequential modules.

Examples of Sentence Embedding Distances. As
shown in Figure 7, we provide two examples of video-gloss
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Figure 7. Two examples of video-gloss pairs.

d(·, ·) sse(v1) sse(v2)

vse(v1) 0.01 1.99
vse(v2) 1.76 0.37

Table 5. Examples of sentence embedding distances of the visual
and sequential features. v1 and v2 are the videos in Figure 7.

Method End-to-end Dev Test

CNN-LSTM-HMMs [24] × 26.0 26.0
DNF (RGB) [11] + SBD-RL [48] × 23.4 23.5
DNF [11] × 23.1 22.9
CMA [37] × 21.3 21.9
SMKD [17] × 20.8 21.0
STMC [55] × 21.1 20.7

SFL [32] ✓ 24.9 25.3
FCN [10] ✓ 23.7 23.9
VAC [31] ✓ 21.2 22.3
C2SLR (ours) ✓ 20.5 20.4

Table 6. Comparison on PHOENIX-2014.

pairs denoted as (v1, l1) and (v2, l2). The sentence embed-
ding distances of the visual and sequential features of v1
and v2 are shown in Table 5. It is clear that the distance for
the same video (diagonal entries) can be very small. Oth-
erwise (off-diagonal entries), the distance can be very large
(the maximum value is 2.00).

4.4. Comparison with State-of-the-art Results

PHOENIX-2014. Table 6 shows a comprehensive com-
parison between other methods and ours on PHOENIX-
2014. Although our C2SLR is end-to-end trainable, it can
outperform the SOTA work, STMC [55], which adopts the
stage optimization strategy. To the best of our knowledge,
this is the first time that an end-to-end method can outper-
form those using the stage optimization strategy.

PHOENIX-2014-T. We evaluate our method on
PHOENIX-2014-T as shown in Table 7. Our method can
outperform the SOTA one on the test set as well. Moreover,
the performance of our proposed method is highly consis-
tent on both dev and test sets. That means the CSLR model
trained with the two proposed consistency constraints gen-

Method End-to-end Dev Test

CNN-LSTM-HMMs [24] × 22.1 24.1
SMKD [17] × 20.8 22.4
STMC [55] × 19.6 21.0

SFL [32] ✓ 25.1 26.1
FCN [10] ✓ 23.3 25.1
SLT [5] ✓ 24.6 24.5
C2SLR (ours) ✓ 20.2 20.4

Table 7. Comparison on PHOENIX-2014-T.

Method End-to-end Test

LS-HAN [20] × 17.3
Align-iOPT [39] × 6.1
STMC [55] × 2.1

CTF [47] ✓ 11.2
HLSTM-attn [16] ✓ 10.2
FCN [10] ✓ 3.0
VAC [31] ✓ 1.6
C2SLR (ours) ✓ 0.9
MSeqGraph* [44] ✓ 0.6

Table 8. Comparison on CSL. *uses extra depth modality.

eralizes well for unseen data, and that makes it an advantage
for real practice.

CSL. Finally, as shown in Table 8, we compare our
method with others on CSL. It can achieve comparable per-
formance to the SOTA work, MSeqGraph [44], which uses
extra depth modality.

5. Conclusion

In this work, we propose two consistency constraints to
enhance CSLR backbones. First, we insert a spatial atten-
tion module into the visual module and guide it by pre-
extracted pose keypoints heatmaps, which can enforce the
visual module to focus on informative regions. Second, we
impose a sentence-level consistency constraint between the
visual and sequential features, which can enhance the rep-
resentation power of both the features. Extensive ablation
studies validate the effectiveness of both the consistency
constraints. More remarkably, our model can achieve SOTA
or competitive performance on three benchmarks, while the
whole model is trained in an end-to-end manner.

Acknowledgements. The work described in this paper was
supported by a grant from the Research Grants Council
of the Hong Kong Special Administrative Region, China
(Project No. HKUST16200118).

5138



References
[1] Nikolaos M. Adaloglou, Theocharis Chatzis, Ilias Papas-

tratis, Andreas Stergioulas, Georgios Th Papadopoulos, Vas-
sia Zacharopoulou, George Xydopoulos, Klimis Antzakas,
Dimitris Papazachariou, and Petros Daras. A comprehen-
sive study on deep learning-based methods for sign language
recognition. IEEE TMM, pages 1–1, 2021. 3

[2] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and
Bernt Schiele. 2d human pose estimation: New benchmark
and state of the art analysis. In CVPR, pages 3686–3693,
2014. 4

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 4

[4] Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, Her-
mann Ney, and Richard Bowden. Neural sign language trans-
lation. In CVPR, 2018. 5
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