
7. Appendix
7.1. Proof of Theorem 11.

The proofs are a condensation and adaptation of the corre-
sponding proofs in [34, 35, 54]. Changes are necessary since
Algorithm 2 solves a different problem and uses different
message passing updates and schedules than the algorithms
from [34, 35, 54]. As a shorthand we will use cλt (y) instead
of writing ⟨cλt , y⟩ for a solution y of triangle subproblem
t ∈ T .

Definition 12 (ϵ-optimal local solutions). For e ∈ E define

Oϵ
e(λ) := {x ∈ {0, 1} : x · cλe ≤ min(0, cλe) + ϵ} (11)

and for t ∈ T

Oϵ
t(λ) := {x ∈ MT : cλt (x) ≤ min

x′∈MT

cλt (x
′) + ϵ} (12)

to be the ϵ- optimal local solutions.

Hence, O0
e(λ) = cλe for e ∈ E and likewise O0

t (λ) = cλt
for t ∈ T .

Definition 13 (ϵ-tolerance). The minimal value ϵ(λ) for
which Oϵ(λ) has edge-triangle agreement is called called
the ϵ-tolerance.

Definition 14 (Algorithm Mappings). Let

(i) HE→T (λ) be the Lagrange multipliers that result from
executing lines 2-5 in Algorithm 2,

(ii) HT→E(λ) be the Lagrange multipliers that result from
executing lines 8-13 in Algorithm 2,

(iii) H = HT→E ◦HE→T be one pass of Algorithm 2,

(iv) Hi(·) = H(H(. . . (H(·)) . . .))︸ ︷︷ ︸
i times

be the i-fold composi-

tion of H.

Note that HE→T and HT→E and consequently also H
are well-defined mappings since, even though Algorithm 2
is parallel, the update steps do not depend on the order in
which they are processed.

Lemma 15. Let α ∈ (0, 1] and let λ be Lagrange multipli-
ers. Let e ∈ E and t ∈ T with e ⊊ t. Define new Lagrange
multipliers as

λ′
t′,e′ =

{
λt′,e′ − αcλe , e = e′, t = t′

λt′,e′ , e ̸= e′ or t ̸= t′
(13)

(i) LB(cλ) ≤ LB(cλ
′
).

(ii) Oe(c
λ) ⊆ Oe(c

λ′
).

(iii) LB(cλ) < LB(cλ
′
) ⇔ Oe(c

λ) ∩Πt,e(Ot(c
λ′
)) = ∅.

(iv) LB(cλ) = LB(cλ
′
) ⇒ Ot(c

λ′
) ⊆ Ot(c

λ).

(v) LB(cλ) = LB(cλ
′
) and cλe ̸= 0 ⇒ Πt,e(Ot(c

λ′
)) =

Oe(c
λ).

Proof. (i) If cλe ≥ 0 then LB(cλ)e = LB(cλ
′
)e and

LB(cλ)t ≤ LB(cλ
′
)t since cλt,e ≤ cλ

′

t,e.

If cλe < 0 then LB(cλ)e = cλe < (1 − α)cλe =
LB(cλ

′
)e. ≤ LB(cλ

′
)t = miny∈MT

cλ
′
(e) ≥

miny∈MT
cλ(e)− αcλe = LB(cλ)t − αcλe .

(ii) It holds that cλ
′

e = (1 − α)cλe . Hence, if α = 1 then
Oe(c

λ) = {0, 1} and the claim trivially holds. Other-
wise Oe(c

λ) = Oe(c
λ).

(iii) Assume O(cλ)t ∩ Πe(O(cλ
′

t) = ∅. Assume
first that α = 1. Then it must hold that
|O(cλ)t| = 1. Let {y∗e} = O(cλ)e and y∗t ∈
argminy∈MT

cλt (y). Let y′e ∈ argminy∈{0,1} c
λ′

e y

and y′t ∈ argminy∈MT
cλ

′

t (y) such that y′e = Πe(y
′
t)

(this is possible due to O(cλ
′
)e = {0, 1} for α = 1.

Then

LB(cλ)e + LB(cλ)t = cλey
∗
e + cλt (y

∗
e)

< cλey
′
e + cλt (y

′
e)

= cλ
′

e y′e + cλ
′

t (y′e) = LB(cλ
′
)e + LB(cλ

′
) . (14)

For α < 1 the result follows from the above and the
concavity of LB.

Assume now O(cλ)t ∩Πe(O(cλ
′

t) ̸= ∅. Choose y∗e ∈
O(cλ)e and y∗t ∈ O(cλ)t such that y∗t (e) = y∗e . Then
it holds that

LB(cλ)e + LB(cλ)t = cλey
∗
e + cλt (y

∗
t)

= cλ
′

e y∗e + cλ
′

t (y∗t) > LB(cλ
′
)e + LB(cλ

′
)t (15)

Since LB is non-decreasing, it follows that LB(cλ) =
LB(cλ

′
).

(iv) If cλe = 0 there is nothing to show since λ′ = λ.

Assume that cλe > 0. Then it must hold that 0 ∈
Πt,e(Ot(c

λ)) due to (iii). Since cλ
′

t (e) > cλt (e) and
all other costs stay the same, it holds that

yt


∈ Ot(c

λ′
), yt ∈ Ot(c

λ), yt(e) = 0

/∈ Ot(c
λ′
), yt /∈ Ot(c

λ), yt(e) = 0

/∈ Ot(c
λ′
), yt ∈ Ot(c

λ), yt(e) = 1

/∈ Ot(c
λ′
), yt /∈ Ot(c

λ), yt(e) = 1

. (16)

Hence, the result follows.

The case cλe < 0 can be proved analoguously.

(v) Follows from the case by case analysis in (16)

Lemma 16. Let α ∈ (0, 1] and let λ be Lagrange multipli-
ers. Let e ∈ E and t ∈ T with e ⊊ t. Define

λ′
t′,e′ =

{
λt′,e′ + αmt→e(c

λ
t), e = e′, t = t′

λt′,e′ , e ̸= e′ or t ̸= t′
(17)

(i) LB(cλ) ≤ LB(cλ
′
).

(ii) Ot(c
λ) ⊆ Ot(c

λ′
).

(iii) LB(cλ) < LB(cλ
′
) ⇔ Oe(c

λ) ̸= Πt,e(Ot(c
λ′
).

(iv) LB(cλ) = LB(cλ
′
) ⇒ Oe(c

λ′
) ⊆ Oe(c

λ)

(v) LB(cλ) = LB(cλ
′
) and mt→e(c

λ) ̸= 0 ⇒
Πt,e(Ot(c

λ)) = Oe(c
λ′
).

Proof. Analoguous to the proof of Lemma 15.

Lemma 17. Each iteration of Algorithm 2 is non-decreasing
in the lower bound LB from (5).

Proof. Follows from Lemma 15 (i) and Lemma 16 (i).

Lemma 18. If LB(cλ) = LB(H(cλ)) then Oe(H(cλ)) ⊆
Oe(c

λ) for all e ∈ E.

Proof. If Oe(c
λ) = {0, 1}, there is nothing to show.

Assume {0} = Oe(c
λ). Then Πt,e(HE→T(c

λ)t) = {0}
due to Lemma 15 (iv) for all t ∈ T , e ⊊ t. Then Lemma 16
(v) implies that Oe(H(cλ)) = {0}.

The case {1} = Oe(c
λ) can be proved analoguously.

Lemma 19. If LB(cλ) = LB(HE→T ◦HT→E(c
λ)) then

Πt,e(Ot(HE→T ◦HT→E(c
λ))) ⊆ Πt,e(Ot(c

λ)) for all t ∈
T , e ∈ E and e ⊊ t.

Proof. Write cλ
′
= HT→E(c

λ) and cλ
′′

= HE→T(c
λ′
).

Let some t ∈ T , e ∈ E and e ⊊ t be given. If mt→e =
0 the result follows from Lemma 15 (iv). Hence we can
assume that mt→e ̸= 0. Lemma 16 (iii) and (v) imply
Πt,e(Ot(c

λ)) = Oe(c
λ′
). Due to Lemma 15 (iv) the result

follows.

Lemma 20. Define ξe = Oe(c
λ) for all e ∈ E, ξt =

Ot(HE→T(c
λ)), ξ′e = Oe(H(cλ)) for all e ∈ E and ξ′t =

Ot(HE→T ◦H(cλ)). If LB(cλ) = LB(HE→T ◦H(cλ))
and ξ is not arc-consistent then ∃e ∈ E such that ξ′e ⊊ ξe
or ∃ t ∈ T , e ∈ E and e ⊊ t such that Πt,e(ξ

′
t) ⊊ Πt,e(ξt).

Proof. If ξ is not arc-consistent there exists e ∈ E, t ∈ T
and e ⊊ t such that ξe ̸= Πt,e(ξt).

The case |ξe| = 1 = |Πt,e(ξt)| implies ξe ∩ Πt,e(ξt) =
∅ and due to Lemma 16 (iii) contradicts that LB is not
increasing.

Assume ξe ⊊ Πt,e(ξt). Due to Lemma 15 (iv) and (v)
this would imply an increase in the lower bound.

Hence we can assume that Πt,e(ξt) ⊊ ξe. Due to
Lemma 16 (v) it holds that |ξ′e| = 1.

Together with Lemmas 18 and 19 the result follows.

Lemma 21. H is a continuous mapping.

Proof. All the operations used in Algorithm 2 are continu-
ous, i.e. adding and subtracting, dividing by a constant and
taking the minimum w.r.t. elements for the min-marginals.
Hence, H, the composition all such continuous operations,
is continuous again.

Lemma 22. The lower bound LB from (5) is continuous in
λ.

Proof. Taking minima is continuous as well as addition.
Hence LB is continuous as well.

Lemma 23. ϵ-tolerance is continuous in λ.

Proof. We first prove that for any arc-consistent subset ξ the
minimal ϵ for which ξ ⊆ Oϵ(λ) is continuous. To this end,
note that the minimum ϵ such that ξe ⊆ Oϵ

e(λ) for any edge
e ∈ E can be computed as

ξe =


cλe , ξ = {0}
−cλe , ξ = {1}
|cλe |, ξ = {0, 0}

(18)

All the expressions are continuous, hence the minimum ϵ
for any edge is continuous. A similar observation holds for
triangles. Since the ξ-specific ϵ is the maximum over all
edges and triangles, it is continuous as well.

Since the ϵ-tolerance is the minimum over all minimal
ξ-specific ϵ and there is a finite number of arc-consistent
subsets ξ, the result follows.

Lemma 24. For any edge costs c ∈ RE there exists M > 0
such that ∥Hi(c)∥ ≤ M for any i ∈ N.

Proof. Assume Hi(c) is unbounded. If all Hi(c)t t ∈ T are
bounded, all Hi(c)e are bounded as well due to (6). Hence,
there must exist t ∈ T such that Hi(c)t is unbounded. Since
LB(Hi)(c)t is bounded below by Lemma 17 and trivially
above by 0, it must hold that either

(i) there exists one edge e ⊊ t such that Hi(c)t(e) con-
verges towards −∞ on a subsequence or

(ii) there exists at most one edge e ⊊ t such that Hi(c)t(e)
converges towards ∞ and there exist e′ ̸= e′′ ⊊ t with
e′ ̸= e and e′′ ̸= e such that Hi(c)t(e

′) and Hi(c)t(e
′′)

converge towards −∞ with Hi(c)t(e)−Hi(c)t(e
′) ≤

M ′ and Hi(c)t(e) − Hi(c)t(e
′′) ≤ M ′ where M ′ >

0 is a constant, since otherwise LB(Hi(c))t would
converge to −∞.

Hence there must be at least double the number of Lagrange
multipliers λt,e that converge towards −∞ than those that
converge towards ∞ with at least the same rate. Hence,
there must be ẽ ∈ E such that on a subsequence Hi(c)ẽ
converges towards −∞, contadicting that LB(Hi(c))e is
bounded below by Lemma 17.

Proof of Theorem 11. Due to the Bolzano Weierstrass theo-
rem and the boundedness of Hi(c) there exists a subsequence
i(k) such that Hi(k)(c) converges to a cλ

∗
. We first show

that ϵ(cλ
∗
) = 0. Since H and LB are continuous an LB is

non-decreasing, we have

LB(cλ
∗
) = lim

k→∞
LB(Hi(k)(c))

= lim
k→∞

LB(Hi(k)+n(c)) ∀n ≥ 0 . (19)

Due to Lemma 20 and ϵ being continuous, ϵ(cλ
∗
) = 0 fol-

lows.
Define si = maxj≤i ϵ(Hj(c)). Then si is by construc-

tion a non-negative non-decreasing sequence and therefore
has a limit s∗. Hence, there also must exist a subsequence
j(k) such that limk→∞ ϵ(Hj(k)(c)) = s∗. As proved above
the subsequence j(k) has a subsequence which converges
towards ϵ(·) = 0, hence s∗ = 0 as well. Finally,

0 ≤ ϵ(Hi(c)) ≤ si (20)

implies convergence towards node-triangle agreement.

7.2. GPU implementations

Edge contraction We use a specialized implementation
for edge contraction using Thrust [20] which is faster than
performing it via general sparse matrix-matrix multiplication
routines and most importantly has lesser memory footprint
allowing to run larger instances. We store the adjacency ma-
trix A = (I, J, C) in COO format, where I, J, C correspond
to row indices, column indices and edge costs resp. The
pseudocode is given in Algorithm 4.

Algorithm 4: GPU Edge-Contraction

Data: Adjacency matrix A = (I, J, C), Contraction
mapping f : V → V ′

Result: Contracted adjacency matrix
A′ = (I ′, J ′, C ′)

// Assign new node IDs

1 Î(v) = I(f(v)), ∀v ∈ V

2 Ĵ(v) = J(f(v)), ∀v ∈ V

3 COO-Sorting(Î , Ĵ , C)
// Remove duplicates and add costs

4 (I ′, J ′, C ′) = reduce by key(
keys= (Î , Ĵ),values= Ĉ, acc = +)

Conflicted cycles For detecting conflicted cycles we use
specialized CUDA kernels. The pseudocode for detecting
5-cycles is given in Algorithm 5. The algorithm searches for
conflicted cycles in parallel in the positive neighbourhood
N+ of each negative edge. To efficiently check for intersec-
tion in Line 4 we store the adjacency matrix in CSR format.

Algorithm 5: Parallel Conf. 5-Cycles

Data: Adjacency matrix A = (V,E, c)
Result: Conflicted cycles Y in A
// Partition edges based on costs

1 E+ = {ij ∈ E : cij > 0}
2 E− = {ij ∈ E : cij < 0}
3 Y = ∅
// Check for attractive paths

4 for v1v3 ∈ N+(v0)×N+(v4) : v0v4 ∈ E− in
parallel do

5 for v2 ∈ N+(v1) ∩N+(v3) do
6 Y = Y ∪ {v0, v1, v2, v3, v4}
7 end
8 end

7.3. Results comparison

(a) GAEC [30], Cost = -2455070, time: 12.8s (b) P, cost = -2347254, time: 0.4s

(c) PD, cost = -2499152, time: 1.1s (d) PD+, cost = −2523547, time: 2.2s

Figure 7. Results comparison on an instance of Cityscapes dataset highlighting the transitions. Yellow arrows indicate incorrect regions. Our
purely primal algorithm (P) suffers in localizing the sidewalks and trees. PD+ is able to detect an occluded car on the left side of the road
which all other methods did not detect. (Best viewed digitally)

