7. Appendix

7.1. Proof of Theorem 11.

The proofs are a condensation and adaptation of the corresponding proofs in [34, 35, 54]. Changes are necessary since Algorithm 2 solves a different problem and uses different message passing updates and schedules than the algorithms from [34, 35, 54]. As a shorthand we will use $c_t^{\lambda}(y)$ instead of writing $\langle c_t^{\lambda}, y \rangle$ for a solution y of triangle subproblem $t \in T$.

Definition 12 (ϵ -optimal local solutions). For $e \in E$ define

$$\mathcal{O}_e^{\epsilon}(\lambda) := \{ x \in \{0,1\} : x \cdot c_e^{\lambda} \le \min(0, c_e^{\lambda}) + \epsilon \}$$
(11)

and for $t \in T$

$$\mathcal{O}_t^{\epsilon}(\lambda) := \{ x \in \mathcal{M}_T : c_t^{\lambda}(x) \le \min_{x' \in \mathcal{M}_T} c_t^{\lambda}(x') + \epsilon \}$$
(12)

to be the ϵ - optimal local solutions.

Hence, $\mathcal{O}_e^0(\lambda) = \overline{c_e^\lambda}$ for $e \in E$ and likewise $\mathcal{O}_t^0(\lambda) = \overline{c_t^\lambda}$ for $t \in T$.

Definition 13 (ϵ -tolerance). The minimal value $\epsilon(\lambda)$ for which $\mathcal{O}^{\epsilon}(\lambda)$ has edge-triangle agreement is called called the ϵ -tolerance.

Definition 14 (Algorithm Mappings). Let

- (i) $\mathcal{H}_{E \to T}(\lambda)$ be the Lagrange multipliers that result from executing lines 2-5 in Algorithm 2,
- (ii) $\mathcal{H}_{T \to E}(\lambda)$ be the Lagrange multipliers that result from executing lines 8-13 in Algorithm 2,
- (iii) $\mathcal{H} = \mathcal{H}_{T \to E} \circ \mathcal{H}_{E \to T}$ be one pass of Algorithm 2,

(iv)
$$\mathcal{H}^{i}(\cdot) = \underbrace{\mathcal{H}(\mathcal{H}(\ldots(\mathcal{H}(\cdot))\ldots))}_{i \text{ times}}$$
 be the *i*-fold composition of \mathcal{H} .

Note that $\mathcal{H}_{E\to T}$ and $\mathcal{H}_{T\to E}$ and consequently also \mathcal{H} are well-defined mappings since, even though Algorithm 2 is parallel, the update steps do not depend on the order in which they are processed.

Lemma 15. Let $\alpha \in (0, 1]$ and let λ be Lagrange multipliers. Let $e \in E$ and $t \in T$ with $e \subsetneq t$. Define new Lagrange multipliers as

$$\lambda'_{t',e'} = \begin{cases} \lambda_{t',e'} - \alpha c_e^{\lambda}, & e = e', t = t' \\ \lambda_{t',e'}, & e \neq e' \text{ or } t \neq t' \end{cases}$$
(13)

(i)
$$LB(c^{\lambda}) \leq LB(c^{\lambda'}).$$

(ii) $\mathcal{O}_e(c^{\lambda}) \subseteq \mathcal{O}_e(c^{\lambda'}).$

(iii) $LB(c^{\lambda}) < LB(c^{\lambda'}) \Leftrightarrow \mathcal{O}_e(c^{\lambda}) \cap \Pi_{t,e}(\mathcal{O}_t(c^{\lambda'})) = \varnothing.$

(iv)
$$LB(c^{\lambda}) = LB(c^{\lambda'}) \Rightarrow \mathcal{O}_t(c^{\lambda'}) \subseteq \mathcal{O}_t(c^{\lambda}).$$

(v) $LB(c^{\lambda}) = LB(c^{\lambda'})$ and $c_e^{\lambda} \neq 0 \Rightarrow \Pi_{t,e}(\mathcal{O}_t(c^{\lambda'})) = \mathcal{O}_e(c^{\lambda}).$

- (ii) It holds that $c_e^{\lambda'} = (1 \alpha)c_e^{\lambda}$. Hence, if $\alpha = 1$ then $\mathcal{O}_e(c^{\lambda}) = \{0, 1\}$ and the claim trivially holds. Otherwise $\mathcal{O}_e(c^{\lambda}) = \mathcal{O}_e(c^{\lambda})$.
- (iii) Assume $\mathcal{O}(c^{\lambda})_t \cap \Pi_e(\mathcal{O}(c_t^{\lambda'}) = \varnothing$. Assume first that $\alpha = 1$. Then it must hold that $|\mathcal{O}(c^{\lambda})_t| = 1$. Let $\{y_e^*\} = \mathcal{O}(c^{\lambda})_e$ and $y_t^* \in \arg\min_{y \in \mathcal{M}_T} c_t^{\lambda'}(y)$. Let $y'_e \in \arg\min_{y \in \{0,1\}} c_e^{\lambda'} y$ and $y'_t \in \arg\min_{y \in \mathcal{M}_T} c_t^{\lambda'}(y)$ such that $y'_e = \Pi_e(y'_t)$ (this is possible due to $\mathcal{O}(c^{\lambda'})_e = \{0,1\}$ for $\alpha = 1$. Then

$$LB(c^{\lambda})_{e} + LB(c^{\lambda})_{t} = c_{e}^{\lambda}y_{e}^{*} + c_{t}^{\lambda}(y_{e}^{*})$$
$$< c_{e}^{\lambda}y_{e}' + c_{t}^{\lambda}(y_{e}')$$
$$= c_{e}^{\lambda'}y_{e}' + c_{t}^{\lambda'}(y_{e}') = LB(c^{\lambda'})_{e} + LB(c^{\lambda'}). \quad (14)$$

For $\alpha < 1$ the result follows from the above and the concavity of *LB*.

Assume now $\mathcal{O}(c^{\lambda})_t \cap \Pi_e(\mathcal{O}(c_t^{\lambda'}) \neq \emptyset$. Choose $y_e^* \in \mathcal{O}(c^{\lambda})_e$ and $y_t^* \in \mathcal{O}(c^{\lambda})_t$ such that $y_t^*(e) = y_e^*$. Then it holds that

$$LB(c^{\lambda})_{e} + LB(c^{\lambda})_{t} = c_{e}^{\lambda}y_{e}^{*} + c_{t}^{\lambda}(y_{t}^{*}) = c_{e}^{\lambda'}y_{e}^{*} + c_{t}^{\lambda'}(y_{t}^{*}) > LB(c^{\lambda'})_{e} + LB(c^{\lambda'})_{t}$$
(15)

Since *LB* is non-decreasing, it follows that $LB(c^{\lambda}) = LB(c^{\lambda'})$.

- (iv) If $c_e^{\lambda} = 0$ there is nothing to show since $\lambda' = \lambda$.
 - Assume that $c_e^{\lambda} > 0$. Then it must hold that $0 \in \Pi_{t,e}(\mathcal{O}_t(c^{\lambda}))$ due to (iii). Since $c_t^{\lambda'}(e) > c_t^{\lambda}(e)$ and all other costs stay the same, it holds that

$$y_t \begin{cases} \in \mathcal{O}_t(c^{\lambda'}), & y_t \in \mathcal{O}_t(c^{\lambda}), y_t(e) = 0 \\ \notin \mathcal{O}_t(c^{\lambda'}), & y_t \notin \mathcal{O}_t(c^{\lambda}), y_t(e) = 0 \\ \notin \mathcal{O}_t(c^{\lambda'}), & y_t \in \mathcal{O}_t(c^{\lambda}), y_t(e) = 1 \\ \notin \mathcal{O}_t(c^{\lambda'}), & y_t \notin \mathcal{O}_t(c^{\lambda}), y_t(e) = 1 \end{cases}$$
(16)

Hence, the result follows.

The case $c_e^{\lambda} < 0$ can be proved analoguously.

(v) Follows from the case by case analysis in (16)

Lemma 16. Let $\alpha \in (0, 1]$ and let λ be Lagrange multipliers. Let $e \in E$ and $t \in T$ with $e \subsetneq t$. Define

$$\lambda'_{t',e'} = \begin{cases} \lambda_{t',e'} + \alpha m_{t \to e}(c_t^\lambda), & e = e', t = t'\\ \lambda_{t',e'}, & e \neq e' \text{ or } t \neq t' \end{cases}$$
(17)

- (i) $LB(c^{\lambda}) \leq LB(c^{\lambda'}).$
- (*ii*) $\mathcal{O}_t(c^{\lambda}) \subseteq \mathcal{O}_t(c^{\lambda'}).$
- (iii) $LB(c^{\lambda}) < LB(c^{\lambda'}) \Leftrightarrow \mathcal{O}_e(c^{\lambda}) \neq \prod_{t,e}(\mathcal{O}_t(c^{\lambda'}).$
- (iv) $LB(c^{\lambda}) = LB(c^{\lambda'}) \Rightarrow \mathcal{O}_e(c^{\lambda'}) \subseteq \mathcal{O}_e(c^{\lambda})$
- (v) $LB(c^{\lambda}) = LB(c^{\lambda'})$ and $m_{t \to e}(c^{\lambda}) \neq 0 \Rightarrow$ $\Pi_{t,e}(\mathcal{O}_t(c^{\lambda})) = \mathcal{O}_e(c^{\lambda'}).$

Proof. Analoguous to the proof of Lemma 15. \Box

Lemma 17. Each iteration of Algorithm 2 is non-decreasing in the lower bound LB from (5).

Proof. Follows from Lemma 15 (i) and Lemma 16 (i). \Box

Lemma 18. If $LB(c^{\lambda}) = LB(\mathcal{H}(c^{\lambda}))$ then $\mathcal{O}_e(\mathcal{H}(c^{\lambda})) \subseteq \mathcal{O}_e(c^{\lambda})$ for all $e \in E$.

Proof. If $\mathcal{O}_e(c^{\lambda}) = \{0, 1\}$, there is nothing to show.

Assume $\{0\} = \mathcal{O}_e(c^{\lambda})$. Then $\Pi_{t,e}(\mathcal{H}_{E\to T}(c^{\lambda})_t) = \{0\}$ due to Lemma 15 (iv) for all $t \in T$, $e \subsetneq t$. Then Lemma 16 (v) implies that $\mathcal{O}_e(\mathcal{H}(c^{\lambda})) = \{0\}$.

The case $\{1\} = \mathcal{O}_e(c^{\lambda})$ can be proved analoguously. \Box

Lemma 19. If $LB(c^{\lambda}) = LB(\mathcal{H}_{E\to T} \circ \mathcal{H}_{T\to E}(c^{\lambda}))$ then $\Pi_{t,e}(\mathcal{O}_t(\mathcal{H}_{E\to T} \circ \mathcal{H}_{T\to E}(c^{\lambda}))) \subseteq \Pi_{t,e}(\mathcal{O}_t(c^{\lambda}))$ for all $t \in T$, $e \in E$ and $e \subsetneq t$.

Proof. Write $c^{\lambda'} = \mathcal{H}_{T \to E}(c^{\lambda})$ and $c^{\lambda''} = \mathcal{H}_{E \to T}(c^{\lambda'})$. Let some $t \in T$, $e \in E$ and $e \subsetneq t$ be given. If $m_{t \to e} = 0$ the result follows from Lemma 15 (iv). Hence we can assume that $m_{t \to e} \neq 0$. Lemma 16 (iii) and (v) imply $\Pi_{t,e}(\mathcal{O}_t(c^{\lambda})) = \mathcal{O}_e(c^{\lambda'})$. Due to Lemma 15 (iv) the result follows.

Lemma 20. Define $\xi_e = \mathcal{O}_e(c^{\lambda})$ for all $e \in E$, $\xi_t = \mathcal{O}_t(\mathcal{H}_{E \to T}(c^{\lambda}))$, $\xi'_e = \mathcal{O}_e(\mathcal{H}(c^{\lambda}))$ for all $e \in E$ and $\xi'_t = \mathcal{O}_t(\mathcal{H}_{E \to T} \circ \mathcal{H}(c^{\lambda}))$. If $LB(c^{\lambda}) = LB(\mathcal{H}_{E \to T} \circ \mathcal{H}(c^{\lambda}))$ and ξ is not arc-consistent then $\exists e \in E$ such that $\xi'_e \subsetneq \xi_e$ or $\exists t \in T$, $e \in E$ and $e \subsetneq t$ such that $\Pi_{t,e}(\xi'_t) \subsetneq \Pi_{t,e}(\xi_t)$.

Proof. If ξ is not arc-consistent there exists $e \in E$, $t \in T$ and $e \subsetneq t$ such that $\xi_e \neq \prod_{t,e}(\xi_t)$.

The case $|\xi_e| = 1 = |\Pi_{t,e}(\xi_t)|$ implies $\xi_e \cap \Pi_{t,e}(\xi_t) = \emptyset$ and due to Lemma 16 (iii) contradicts that *LB* is not increasing.

Assume $\xi_e \subsetneq \prod_{t,e}(\xi_t)$. Due to Lemma 15 (iv) and (v) this would imply an increase in the lower bound.

Hence we can assume that $\prod_{t,e}(\xi_t) \subsetneq \xi_e$. Due to Lemma 16 (v) it holds that $|\xi'_e| = 1$.

Together with Lemmas 18 and 19 the result follows. \Box

Lemma 21. \mathcal{H} is a continuous mapping.

Proof. All the operations used in Algorithm 2 are continuous, i.e. adding and subtracting, dividing by a constant and taking the minimum w.r.t. elements for the min-marginals. Hence, \mathcal{H} , the composition all such continuous operations, is continuous again.

Lemma 22. The lower bound LB from (5) is continuous in λ .

Proof. Taking minima is continuous as well as addition. Hence LB is continuous as well.

Lemma 23. ϵ -tolerance is continuous in λ .

Proof. We first prove that for any arc-consistent subset ξ the minimal ϵ for which $\xi \subseteq \mathcal{O}^{\epsilon}(\lambda)$ is continuous. To this end, note that the minimum ϵ such that $\xi_e \subseteq \mathcal{O}_e^{\epsilon}(\lambda)$ for any edge $e \in E$ can be computed as

$$\xi_e = \begin{cases} c_e^{\lambda}, & \xi = \{0\} \\ -c_e^{\lambda}, & \xi = \{1\} \\ |c_e^{\lambda}|, & \xi = \{0, 0\} \end{cases}$$
(18)

All the expressions are continuous, hence the minimum ϵ for any edge is continuous. A similar observation holds for triangles. Since the ξ -specific ϵ is the maximum over all edges and triangles, it is continuous as well.

Since the ϵ -tolerance is the minimum over all minimal ξ -specific ϵ and there is a finite number of arc-consistent subsets ξ , the result follows.

Lemma 24. For any edge costs $c \in \mathbb{R}^E$ there exists M > 0 such that $\|\mathcal{H}^i(c)\| \leq M$ for any $i \in \mathbb{N}$.

Proof. Assume $\mathcal{H}^i(c)$ is unbounded. If all $\mathcal{H}^i(c)_t t \in T$ are bounded, all $\mathcal{H}^i(c)_e$ are bounded as well due to (6). Hence, there must exist $t \in T$ such that $\mathcal{H}^i(c)_t$ is unbounded. Since $LB(H^i)(c)_t$ is bounded below by Lemma 17 and trivially above by 0, it must hold that either

- (i) there exists one edge $e \subsetneq t$ such that $\mathcal{H}^i(c)_t(e)$ converges towards $-\infty$ on a subsequence or
- (ii) there exists at most one edge $e \subsetneq t$ such that $\mathcal{H}^i(c)_t(e)$ converges towards ∞ and there exist $e' \neq e'' \subsetneq t$ with $e' \neq e$ and $e'' \neq e$ such that $\mathcal{H}^i(c)_t(e')$ and $\mathcal{H}^i(c)_t(e'')$ converge towards $-\infty$ with $\mathcal{H}^i(c)_t(e) - \mathcal{H}^i(c)_t(e') \le$ M' and $\mathcal{H}^i(c)_t(e) - \mathcal{H}^i(c)_t(e'') \le M'$ where M' >0 is a constant, since otherwise $LB(\mathcal{H}^i(c))_t$ would converge to $-\infty$.

Hence there must be at least double the number of Lagrange multipliers $\lambda_{t,e}$ that converge towards $-\infty$ than those that converge towards ∞ with at least the same rate. Hence, there must be $\tilde{e} \in E$ such that on a subsequence $\mathcal{H}^i(c)_{\tilde{e}}$ converges towards $-\infty$, contadicting that $LB(\mathcal{H}^i(c))_e$ is bounded below by Lemma 17.

Proof of Theorem 11. Due to the Bolzano Weierstrass theorem and the boundedness of $\mathcal{H}^i(c)$ there exists a subsequence i(k) such that $\mathcal{H}^{i(k)}(c)$ converges to a c^{λ^*} . We first show that $\epsilon(c^{\lambda^*}) = 0$. Since \mathcal{H} and LB are continuous an LB is non-decreasing, we have

$$LB(c^{\lambda^*}) = \lim_{k \to \infty} LB(\mathcal{H}^{i(k)}(c))$$
$$= \lim_{k \to \infty} LB(\mathcal{H}^{i(k)+n}(c)) \quad \forall n \ge 0.$$
(19)

Due to Lemma 20 and ϵ being continuous, $\epsilon(c^{\lambda^*})=0$ follows.

Define $s^i = \max_{j \leq i} \epsilon(\mathcal{H}^j(c))$. Then s^i is by construction a non-negative non-decreasing sequence and therefore has a limit s^* . Hence, there also must exist a subsequence j(k) such that $\lim_{k\to\infty} \epsilon(\mathcal{H}^{j(k)}(c)) = s^*$. As proved above the subsequence j(k) has a subsequence which converges towards $\epsilon(\cdot) = 0$, hence $s^* = 0$ as well. Finally,

$$0 \le \epsilon(\mathcal{H}^i(c)) \le s^i \tag{20}$$

implies convergence towards node-triangle agreement. \Box

7.2. GPU implementations

Edge contraction We use a specialized implementation for edge contraction using Thrust [20] which is faster than performing it via general sparse matrix-matrix multiplication routines and most importantly has lesser memory footprint allowing to run larger instances. We store the adjacency matrix A = (I, J, C) in COO format, where I, J, C correspond to row indices, column indices and edge costs resp. The pseudocode is given in Algorithm 4.

A	Algorithm 4: GPU Edge-Contraction
	Data: Adjacency matrix $A = (I, J, C)$, Contraction
	mapping $f: V \to V'$
	Result: Contracted adjacency matrix
	A' = (I', J', C')
	// Assign new node IDs
1	$\hat{I}(v) = I(f(v)), \ \forall v \in V$
2	$\hat{J}(v) = J(f(v)), \ \forall v \in V$
3	COO-Sorting (\hat{I},\hat{J},C)
	// Remove duplicates and add costs
4	$(I',J',C') = \texttt{reduce_by_key}($
	$\texttt{keys}{=}(\hat{I},\hat{J}), \texttt{values}{=}\hat{C}, \texttt{acc}{=}+)$

Conflicted cycles For detecting conflicted cycles we use specialized CUDA kernels. The pseudocode for detecting 5-cycles is given in Algorithm 5. The algorithm searches for conflicted cycles in parallel in the positive neighbourhood \mathcal{N}^+ of each negative edge. To efficiently check for intersection in Line 4 we store the adjacency matrix in CSR format.

A	Algorithm 5: Parallel Conf. 5-Cycles
	Data: Adjacency matrix $A = (V, E, c)$
	Result: Conflicted cycles Y in A
	// Partition edges based on costs
1	$E^{+} = \{ ij \in E : c_{ij} > 0 \}$
2	$E^{-} = \{ij \in E : c_{ij} < 0\}$
3	$Y = \emptyset$
	// Check for attractive paths
4	for $v_1v_3 \in \mathcal{N}^+(v_0) \times \mathcal{N}^+(v_4) : v_0v_4 \in E^-$ in
	parallel do
5	for $v_2 \in \mathcal{N}^+(v_1) \cap \mathcal{N}^+(v_3)$ do
6	$Y = Y \cup \{v_0, v_1, v_2, v_3, v_4\}$
7	end
8	end

7.3. Results comparison

(a) GAEC [30], Cost = -2455070, time: 12.8s

(b) P, cost = -2347254, time: **0.4s**

(c) PD, cost = -2499152, time: 1.1s

(d) PD+, cost = -2523547, time: 2.2s

Figure 7. Results comparison on an instance of *Cityscapes* dataset highlighting the transitions. Yellow arrows indicate incorrect regions. Our purely primal algorithm (P) suffers in localizing the sidewalks and trees. PD+ is able to detect an occluded car on the left side of the road which all other methods did not detect. (Best viewed digitally)