7. Appendix

7.1. Proof of Theorem 11.

The proofs are a condensation and adaptation of the corresponding proofs in $[34,35,54]$. Changes are necessary since Algorithm 2 solves a different problem and uses different message passing updates and schedules than the algorithms from [34, 35,54]. As a shorthand we will use $c_{t}^{\lambda}(y)$ instead of writing $\left\langle c_{t}^{\lambda}, y\right\rangle$ for a solution y of triangle subproblem $t \in T$.

Definition 12 (ϵ-optimal local solutions). For $e \in E$ define

$$
\begin{equation*}
\mathcal{O}_{e}^{\epsilon}(\lambda):=\left\{x \in\{0,1\}: x \cdot c_{e}^{\lambda} \leq \min \left(0, c_{e}^{\lambda}\right)+\epsilon\right\} \tag{11}
\end{equation*}
$$

and for $t \in T$

$$
\begin{equation*}
\mathcal{O}_{t}^{\epsilon}(\lambda):=\left\{x \in \mathcal{M}_{T}: c_{t}^{\lambda}(x) \leq \min _{x^{\prime} \in \mathcal{M}_{T}} c_{t}^{\lambda}\left(x^{\prime}\right)+\epsilon\right\} \tag{12}
\end{equation*}
$$

to be the ϵ-optimal local solutions.
Hence, $\mathcal{O}_{e}^{0}(\lambda)=\overline{c_{e}^{\lambda}}$ for $e \in E$ and likewise $\mathcal{O}_{t}^{0}(\lambda)=\overline{c_{t}^{\lambda}}$ for $t \in T$.

Definition 13 (ϵ-tolerance). The minimal value $\epsilon(\lambda)$ for which $\mathcal{O}^{\epsilon}(\lambda)$ has edge-triangle agreement is called called the ϵ-tolerance.

Definition 14 (Algorithm Mappings). Let

(i) $\mathcal{H}_{E \rightarrow T}(\lambda)$ be the Lagrange multipliers that result from executing lines 2-5 in Algorithm 2,
(ii) $\mathcal{H}_{T \rightarrow E}(\lambda)$ be the Lagrange multipliers that result from executing lines 8-13 in Algorithm 2,
(iii) $\mathcal{H}=\mathcal{H}_{T \rightarrow E} \circ \mathcal{H}_{E \rightarrow T}$ be one pass of Algorithm 2 ,
(iv) $\mathcal{H}^{i}(\cdot)=\underbrace{\mathcal{H}(\mathcal{H}(\ldots(\mathcal{H}(\cdot)) \ldots))}_{\text {itimes }}$ be the i-fold composition of \mathcal{H}.

Note that $\mathcal{H}_{E \rightarrow T}$ and $\mathcal{H}_{T \rightarrow E}$ and consequently also \mathcal{H} are well-defined mappings since, even though Algorithm 2 is parallel, the update steps do not depend on the order in which they are processed.

Lemma 15. Let $\alpha \in(0,1]$ and let λ be Lagrange multipliers. Let $e \in E$ and $t \in T$ with $e \subsetneq t$. Define new Lagrange multipliers as

$$
\lambda_{t^{\prime}, e^{\prime}}^{\prime}= \begin{cases}\lambda_{t^{\prime}, e^{\prime}}-\alpha c_{e}^{\lambda}, & e=e^{\prime}, t=t^{\prime} \tag{13}\\ \lambda_{t^{\prime}, e^{\prime}}, & e \neq e^{\prime} \text { or } t \neq t^{\prime}\end{cases}
$$

(i) $L B\left(c^{\lambda}\right) \leq L B\left(c^{\lambda^{\prime}}\right)$.
(ii) $\mathcal{O}_{e}\left(c^{\lambda}\right) \subseteq \mathcal{O}_{e}\left(c^{\lambda^{\prime}}\right)$.
(iii) $L B\left(c^{\lambda}\right)<L B\left(c^{\lambda^{\prime}}\right) \Leftrightarrow \mathcal{O}_{e}\left(c^{\lambda}\right) \cap \Pi_{t, e}\left(\mathcal{O}_{t}\left(c^{\lambda^{\prime}}\right)\right)=\varnothing$.
(iv) $L B\left(c^{\lambda}\right)=L B\left(c^{\lambda^{\prime}}\right) \Rightarrow \mathcal{O}_{t}\left(c^{\lambda^{\prime}}\right) \subseteq \mathcal{O}_{t}\left(c^{\lambda}\right)$.
(v) $L B\left(c^{\lambda}\right)=L B\left(c^{\lambda^{\prime}}\right)$ and $c_{e}^{\lambda} \neq 0 \Rightarrow \Pi_{t, e}\left(\mathcal{O}_{t}\left(c^{\lambda^{\prime}}\right)\right)=$ $\mathcal{O}_{e}\left(c^{\lambda}\right)$.

Proof. (i) If $c_{e}^{\lambda} \geq 0$ then $L B\left(c^{\lambda}\right)_{e}=L B\left(c^{\lambda^{\prime}}\right)_{e}$ and $L B\left(c^{\lambda}\right)_{t} \leq L B\left(c^{\lambda^{\prime}}\right)_{t}$ since $c_{t, e}^{\lambda} \leq c_{t, e}^{\lambda^{\prime}}$.
If $c_{e}^{\lambda}<0$ then $L B\left(c^{\lambda}\right)_{e}=c_{e}^{\lambda}<(1-\alpha) c_{e}^{\lambda}=$ $L B\left(c^{\lambda^{\prime}}\right)_{e} . \leq L B\left(c^{\lambda^{\prime}}\right)_{t}=\min _{y \in \mathcal{M}_{T}} c^{\lambda^{\prime}}(e) \geq$ $\min _{y \in \mathcal{M}_{T}} c^{\lambda}(e)-\alpha c_{e}^{\lambda}=L B\left(c^{\lambda}\right)_{t}-\alpha c_{e}^{\lambda}$.
(ii) It holds that $c_{e}^{\lambda^{\prime}}=(1-\alpha) c_{e}^{\lambda}$. Hence, if $\alpha=1$ then $\mathcal{O}_{e}\left(c^{\lambda}\right)=\{0,1\}$ and the claim trivially holds. Otherwise $\mathcal{O}_{e}\left(c^{\lambda}\right)=\mathcal{O}_{e}\left(c^{\lambda}\right)$.
(iii) Assume $\mathcal{O}\left(c^{\lambda}\right)_{t} \cap \Pi_{e}\left(\mathcal{O}\left(c_{t}^{\lambda^{\prime}}\right)=\varnothing\right.$. Assume first that $\alpha=1$. Then it must hold that $\left|\mathcal{O}\left(c^{\lambda}\right)_{t}\right|=1$. Let $\left\{y_{e}^{*}\right\}=\mathcal{O}\left(c^{\lambda}\right)_{e}$ and $y_{t}^{*} \in$ $\arg \min _{y \in \mathcal{M}_{T}} c_{t}^{\lambda}(y)$. Let $y_{e}^{\prime} \in \arg \min _{y \in\{0,1\}} c_{e}^{\lambda^{\prime}} y$ and $y_{t}^{\prime} \in \arg \min _{y \in \mathcal{M}_{T}} c_{t}^{\lambda^{\prime}}(y)$ such that $y_{e}^{\prime}=\Pi_{e}\left(y_{t}^{\prime}\right)$ (this is possible due to $\mathcal{O}\left(c^{\lambda^{\prime}}\right)_{e}=\{0,1\}$ for $\alpha=1$. Then

$$
\begin{gather*}
L B\left(c^{\lambda}\right)_{e}+L B\left(c^{\lambda}\right)_{t}=c_{e}^{\lambda} y_{e}^{*}+c_{t}^{\lambda}\left(y_{e}^{*}\right) \\
\quad<c_{e}^{\lambda} y_{e}^{\prime}+c_{t}^{\lambda}\left(y_{e}^{\prime}\right) \\
=c_{e}^{\lambda^{\prime}} y_{e}^{\prime}+c_{t}^{\lambda^{\prime}}\left(y_{e}^{\prime}\right)=L B\left(c^{\lambda^{\prime}}\right)_{e}+L B\left(c^{\lambda^{\prime}}\right) . \tag{14}
\end{gather*}
$$

For $\alpha<1$ the result follows from the above and the concavity of $L B$.
Assume now $\mathcal{O}\left(c^{\lambda}\right)_{t} \cap \Pi_{e}\left(\mathcal{O}\left(c_{t}^{\lambda^{\prime}}\right) \neq \varnothing\right.$. Choose $y_{e}^{*} \in$ $\mathcal{O}\left(c^{\lambda}\right)_{e}$ and $y_{t}^{*} \in \mathcal{O}\left(c^{\lambda}\right)_{t}$ such that $y_{t}^{*}(e)=y_{e}^{*}$. Then it holds that

$$
\begin{align*}
& L B\left(c^{\lambda}\right)_{e}+L B\left(c^{\lambda}\right)_{t}=c_{e}^{\lambda} y_{e}^{*}+c_{t}^{\lambda}\left(y_{t}^{*}\right) \\
& =c_{e}^{\lambda^{\prime}} y_{e}^{*}+c_{t}^{\lambda^{\lambda^{\prime}}}\left(y_{t}^{*}\right)>L B\left(c^{\lambda^{\prime}}\right)_{e}+L B\left(c^{\lambda^{\prime}}\right)_{t} \tag{15}
\end{align*}
$$

Since $L B$ is non-decreasing, it follows that $L B\left(c^{\lambda}\right)=$ $L B\left(c^{\lambda^{\prime}}\right)$.
(iv) If $c_{e}^{\lambda}=0$ there is nothing to show since $\lambda^{\prime}=\lambda$.

Assume that $c_{e}^{\lambda}>0$. Then it must hold that $0 \in$ $\Pi_{t, e}\left(\mathcal{O}_{t}\left(c^{\lambda}\right)\right)$ due to (iii). Since $c_{t}^{\lambda^{\prime}}(e)>c_{t}^{\lambda}(e)$ and all other costs stay the same, it holds that

$$
y_{t} \begin{cases}\in \mathcal{O}_{t}\left(c^{\lambda^{\prime}}\right), & y_{t} \in \mathcal{O}_{t}\left(c^{\lambda}\right), y_{t}(e)=0 \tag{16}\\ \notin \mathcal{O}_{t}\left(c^{\lambda^{\prime}}\right), & y_{t} \notin \mathcal{O}_{t}\left(c^{\lambda}\right), y_{t}(e)=0 \\ \notin \mathcal{O}_{t}\left(c^{\lambda^{\prime}}\right), & y_{t} \in \mathcal{O}_{t}\left(c^{\lambda}\right), y_{t}(e)=1 \\ \notin \mathcal{O}_{t}\left(c^{\lambda^{\prime}}\right), & y_{t} \notin \mathcal{O}_{t}\left(c^{\lambda}\right), y_{t}(e)=1\end{cases}
$$

Hence, the result follows.
The case $c_{e}^{\lambda}<0$ can be proved analoguously.
(v) Follows from the case by case analysis in (16)

Lemma 16. Let $\alpha \in(0,1]$ and let λ be Lagrange multipliers. Let $e \in E$ and $t \in T$ with $e \subsetneq t$. Define

$$
\lambda_{t^{\prime}, e^{\prime}}^{\prime}= \begin{cases}\lambda_{t^{\prime}, e^{\prime}}+\alpha m_{t \rightarrow e}\left(c_{t}^{\lambda}\right), & e=e^{\prime}, t=t^{\prime} \tag{17}\\ \lambda_{t^{\prime}, e^{\prime}}, & e \neq e^{\prime} \text { or } t \neq t^{\prime}\end{cases}
$$

(i) $L B\left(c^{\lambda}\right) \leq L B\left(c^{\lambda^{\prime}}\right)$.
(ii) $\mathcal{O}_{t}\left(c^{\lambda}\right) \subseteq \mathcal{O}_{t}\left(c^{\lambda^{\prime}}\right)$.
(iii) $L B\left(c^{\lambda}\right)<L B\left(c^{\lambda^{\prime}}\right) \Leftrightarrow \mathcal{O}_{e}\left(c^{\lambda}\right) \neq \Pi_{t, e}\left(\mathcal{O}_{t}\left(c^{\lambda^{\prime}}\right)\right.$.
(iv) $L B\left(c^{\lambda}\right)=L B\left(c^{\lambda^{\prime}}\right) \Rightarrow \mathcal{O}_{e}\left(c^{\lambda^{\prime}}\right) \subseteq \mathcal{O}_{e}\left(c^{\lambda}\right)$
(v) $L B\left(c^{\lambda}\right)=L B\left(c^{\lambda^{\prime}}\right)$ and $m_{t \rightarrow e}\left(c^{\lambda}\right) \neq 0 \Rightarrow$ $\Pi_{t, e}\left(\mathcal{O}_{t}\left(c^{\lambda}\right)\right)=\mathcal{O}_{e}\left(c^{\lambda^{\prime}}\right)$.

Proof. Analoguous to the proof of Lemma 15.
Lemma 17. Each iteration of Algorithm 2 is non-decreasing in the lower bound LB from (5).

Proof. Follows from Lemma 15 (i) and Lemma 16 (i).
Lemma 18. If $L B\left(c^{\lambda}\right)=L B\left(\mathcal{H}\left(c^{\lambda}\right)\right)$ then $\mathcal{O}_{e}\left(\mathcal{H}\left(c^{\lambda}\right)\right) \subseteq$ $\mathcal{O}_{e}\left(c^{\lambda}\right)$ for all $e \in E$.

Proof. If $\mathcal{O}_{e}\left(c^{\lambda}\right)=\{0,1\}$, there is nothing to show.
Assume $\{0\}=\mathcal{O}_{e}\left(c^{\lambda}\right)$. Then $\Pi_{t, e}\left(\mathcal{H}_{\mathrm{E} \rightarrow \mathrm{T}}\left(c^{\lambda}\right)_{t}\right)=\{0\}$ due to Lemma 15 (iv) for all $t \in T, e \subsetneq t$. Then Lemma 16 (v) implies that $\mathcal{O}_{e}\left(\mathcal{H}\left(c^{\lambda}\right)\right)=\{0\}$.

The case $\{1\}=\mathcal{O}_{e}\left(c^{\lambda}\right)$ can be proved analoguously.
Lemma 19. If $L B\left(c^{\lambda}\right)=L B\left(\mathcal{H}_{\mathrm{E} \rightarrow \mathrm{T}} \circ \mathcal{H}_{\mathrm{T} \rightarrow \mathrm{E}}\left(c^{\lambda}\right)\right)$ then $\Pi_{t, e}\left(\mathcal{O}_{t}\left(\mathcal{H}_{\mathrm{E} \rightarrow \mathrm{T}} \circ \mathcal{H}_{\mathrm{T} \rightarrow \mathrm{E}}\left(c^{\lambda}\right)\right)\right) \subseteq \Pi_{t, e}\left(\mathcal{O}_{t}\left(c^{\lambda}\right)\right)$ for all $t \in$ $T, e \in E$ and $e \subsetneq t$.

Proof. Write $c^{\lambda^{\prime}}=\mathcal{H}_{\mathrm{T} \rightarrow \mathrm{E}}\left(c^{\lambda}\right)$ and $c^{\lambda^{\prime \prime}}=\mathcal{H}_{\mathrm{E} \rightarrow \mathrm{T}}\left(c^{\lambda^{\prime}}\right)$. Let some $t \in T, e \in E$ and $e \subsetneq t$ be given. If $m_{t \rightarrow e}=$ 0 the result follows from Lemma 15 (iv). Hence we can assume that $m_{t \rightarrow e} \neq 0$. Lemma 16 (iii) and (v) imply $\Pi_{t, e}\left(\mathcal{O}_{t}\left(c^{\lambda}\right)\right)=\mathcal{O}_{e}\left(c^{\lambda^{\prime}}\right)$. Due to Lemma 15 (iv) the result follows.

Lemma 20. Define $\xi_{e}=\mathcal{O}_{e}\left(c^{\lambda}\right)$ for all $e \in E$, $\xi_{t}=$ $\mathcal{O}_{t}\left(\mathcal{H}_{\mathrm{E} \rightarrow \mathrm{T}}\left(c^{\lambda}\right)\right), \xi_{e}^{\prime}=\mathcal{O}_{e}\left(\mathcal{H}\left(c^{\lambda}\right)\right)$ for all $e \in E$ and $\xi_{t}^{\prime}=$ $\mathcal{O}_{t}\left(\mathcal{H}_{\mathrm{E} \rightarrow \mathrm{T}} \circ \mathcal{H}\left(c^{\lambda}\right)\right)$. If $L B\left(c^{\lambda}\right)=L B\left(\mathcal{H}_{\mathrm{E} \rightarrow \mathrm{T}} \circ \mathcal{H}\left(c^{\lambda}\right)\right)$ and ξ is not arc-consistent then $\exists e \in E$ such that $\xi_{e}^{\prime} \subsetneq \xi_{e}$ or $\exists t \in T, e \in E$ and $e \subsetneq t$ such that $\Pi_{t, e}\left(\xi_{t}^{\prime}\right) \subsetneq \Pi_{t, e}\left(\xi_{t}\right)$.

Proof. If ξ is not arc-consistent there exists $e \in E, t \in T$ and $e \subsetneq t$ such that $\xi_{e} \neq \Pi_{t, e}\left(\xi_{t}\right)$.

The case $\left|\xi_{e}\right|=1=\left|\Pi_{t, e}\left(\xi_{t}\right)\right|$ implies $\xi_{e} \cap \Pi_{t, e}\left(\xi_{t}\right)=$ \varnothing and due to Lemma 16 (iii) contradicts that $L B$ is not increasing.

Assume $\xi_{e} \subsetneq \Pi_{t, e}\left(\xi_{t}\right)$. Due to Lemma 15 (iv) and (v) this would imply an increase in the lower bound.

Hence we can assume that $\Pi_{t, e}\left(\xi_{t}\right) \subsetneq \xi_{e}$. Due to Lemma 16 (v) it holds that $\left|\xi_{e}^{\prime}\right|=1$.

Together with Lemmas 18 and 19 the result follows.
Lemma 21. \mathcal{H} is a continuous mapping.
Proof. All the operations used in Algorithm 2 are continuous, i.e. adding and subtracting, dividing by a constant and taking the minimum w.r.t. elements for the min-marginals. Hence, \mathcal{H}, the composition all such continuous operations, is continuous again.

Lemma 22. The lower bound LB from (5) is continuous in λ.

Proof. Taking minima is continuous as well as addition. Hence $L B$ is continuous as well.

Lemma 23. ϵ-tolerance is continuous in λ.
Proof. We first prove that for any arc-consistent subset ξ the minimal ϵ for which $\xi \subseteq \mathcal{O}^{\epsilon}(\lambda)$ is continuous. To this end, note that the minimum ϵ such that $\xi_{e} \subseteq \mathcal{O}_{e}^{\epsilon}(\lambda)$ for any edge $e \in E$ can be computed as

$$
\xi_{e}= \begin{cases}c_{e}^{\lambda}, & \xi=\{0\} \tag{18}\\ -c_{e}^{\lambda}, & \xi=\{1\} \\ \left|c_{e}^{\lambda}\right|, & \xi=\{0,0\}\end{cases}
$$

All the expressions are continuous, hence the minimum ϵ for any edge is continuous. A similar observation holds for triangles. Since the ξ-specific ϵ is the maximum over all edges and triangles, it is continuous as well.

Since the ϵ-tolerance is the minimum over all minimal ξ-specific ϵ and there is a finite number of arc-consistent subsets ξ, the result follows.

Lemma 24. For any edge costs $c \in \mathbb{R}^{E}$ there exists $M>0$ such that $\left\|\mathcal{H}^{i}(c)\right\| \leq M$ for any $i \in \mathbb{N}$.

Proof. Assume $\mathcal{H}^{i}(c)$ is unbounded. If all $\mathcal{H}^{i}(c)_{t} t \in T$ are bounded, all $\mathcal{H}^{i}(c)_{e}$ are bounded as well due to (6). Hence, there must exist $t \in T$ such that $\mathcal{H}^{i}(c)_{t}$ is unbounded. Since $L B\left(H^{i}\right)(c)_{t}$ is bounded below by Lemma 17 and trivially above by 0 , it must hold that either
(i) there exists one edge $e \subsetneq t$ such that $\mathcal{H}^{i}(c)_{t}(e)$ converges towards $-\infty$ on a subsequence or
(ii) there exists at most one edge $e \subsetneq t$ such that $\mathcal{H}^{i}(c)_{t}(e)$ converges towards ∞ and there exist $e^{\prime} \neq e^{\prime \prime} \subsetneq t$ with $e^{\prime} \neq e$ and $e^{\prime \prime} \neq e$ such that $\mathcal{H}^{i}(c)_{t}\left(e^{\prime}\right)$ and $\mathcal{H}^{i}(c)_{t}\left(e^{\prime \prime}\right)$ converge towards $-\infty$ with $\mathcal{H}^{i}(c)_{t}(e)-\mathcal{H}^{i}(c)_{t}\left(e^{\prime}\right) \leq$ M^{\prime} and $\mathcal{H}^{i}(c)_{t}(e)-\mathcal{H}^{i}(c)_{t}\left(e^{\prime \prime}\right) \leq M^{\prime}$ where $M^{\prime}>$ 0 is a constant, since otherwise $L B\left(\mathcal{H}^{i}(c)\right)_{t}$ would converge to $-\infty$.

Hence there must be at least double the number of Lagrange multipliers $\lambda_{t, e}$ that converge towards $-\infty$ than those that converge towards ∞ with at least the same rate. Hence, there must be $\tilde{e} \in E$ such that on a subsequence $\mathcal{H}^{i}(c) \tilde{e}$ converges towards $-\infty$, contadicting that $L B\left(\mathcal{H}^{i}(c)\right)_{e}$ is bounded below by Lemma 17 .

Proof of Theorem 11. Due to the Bolzano Weierstrass theorem and the boundedness of $\mathcal{H}^{i}(c)$ there exists a subsequence $i(k)$ such that $\mathcal{H}^{i(k)}(c)$ converges to a $c^{\lambda^{*}}$. We first show that $\epsilon\left(c^{\lambda^{*}}\right)=0$. Since \mathcal{H} and $L B$ are continuous an $L B$ is non-decreasing, we have

$$
\begin{align*}
L B\left(c^{\lambda^{*}}\right)= & \lim _{k \rightarrow \infty} L B\left(\mathcal{H}^{i(k)}(c)\right) \\
& =\lim _{k \rightarrow \infty} L B\left(\mathcal{H}^{i(k)+n}(c)\right) \quad \forall n \geq 0 . \tag{19}
\end{align*}
$$

Due to Lemma 20 and ϵ being continuous, $\epsilon\left(c^{\lambda^{*}}\right)=0$ follows.

Define $s^{i}=\max _{j \leq i} \epsilon\left(\mathcal{H}^{j}(c)\right)$. Then s^{i} is by construction a non-negative non-decreasing sequence and therefore has a limit s^{*}. Hence, there also must exist a subsequence $j(k)$ such that $\lim _{k \rightarrow \infty} \epsilon\left(\mathcal{H}^{j(k)}(c)\right)=s^{*}$. As proved above the subsequence $j(k)$ has a subsequence which converges towards $\epsilon(\cdot)=0$, hence $s^{*}=0$ as well. Finally,

$$
\begin{equation*}
0 \leq \epsilon\left(\mathcal{H}^{i}(c)\right) \leq s^{i} \tag{20}
\end{equation*}
$$

implies convergence towards node-triangle agreement.

7.2. GPU implementations

Edge contraction We use a specialized implementation for edge contraction using Thrust [20] which is faster than performing it via general sparse matrix-matrix multiplication routines and most importantly has lesser memory footprint allowing to run larger instances. We store the adjacency matrix $A=(I, J, C)$ in COO format, where I, J, C correspond to row indices, column indices and edge costs resp. The pseudocode is given in Algorithm 4.

```
Algorithm 4: GPU Edge-Contraction
    Data: Adjacency matrix \(A=(I, J, C)\), Contraction
            mapping \(f: V \rightarrow V^{\prime}\)
    Result: Contracted adjacency matrix
            \(A^{\prime}=\left(I^{\prime}, J^{\prime}, C^{\prime}\right)\)
    // Assign new node IDs
    \(1 \hat{I}(v)=I(f(v)), \forall v \in V\)
    \(2 \hat{J}(v)=J(f(v)), \forall v \in V\)
    3 Coo-Sorting( \(\hat{I}, \hat{J}, C\) )
    // Remove duplicates and add costs
    \(4\left(I^{\prime}, J^{\prime}, C^{\prime}\right)=\) reduce_by_key \((\)
        keys \(=(\hat{I}, \hat{J})\),values \(=\hat{C}\), acc \(=+\) )
```

Conflicted cycles For detecting conflicted cycles we use specialized CUDA kernels. The pseudocode for detecting 5 -cycles is given in Algorithm 5. The algorithm searches for conflicted cycles in parallel in the positive neighbourhood \mathcal{N}^{+}of each negative edge. To efficiently check for intersection in Line 4 we store the adjacency matrix in CSR format.

```
Algorithm 5: Parallel Conf. 5-Cycles
    Data: Adjacency matrix \(A=(V, E, c)\)
    Result: Conflicted cycles \(Y\) in \(A\)
    // Partition edges based on costs
    \(E^{+}=\left\{i j \in E: c_{i j}>0\right\}\)
    \(E^{-}=\left\{i j \in E: c_{i j}<0\right\}\)
    \(Y=\varnothing\)
    // Check for attractive paths
    for \(v_{1} v_{3} \in \mathcal{N}^{+}\left(v_{0}\right) \times \mathcal{N}^{+}\left(v_{4}\right): v_{0} v_{4} \in E^{-}\)in
    parallel do
        for \(v_{2} \in \mathcal{N}^{+}\left(v_{1}\right) \cap \mathcal{N}^{+}\left(v_{3}\right)\) do
            \(Y=Y \cup\left\{v_{0}, v_{1}, v_{2}, v_{3}, v_{4}\right\}\)
        end
    end
```


7.3. Results comparison

Figure 7. Results comparison on an instance of Cityscapes dataset highlighting the transitions. Yellow arrows indicate incorrect regions. Our purely primal algorithm (P) suffers in localizing the sidewalks and trees. $\mathrm{PD}+$ is able to detect an occluded car on the left side of the road which all other methods did not detect. (Best viewed digitally)

