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A. Additional results
A.1. Impact of additional unsupervised input data on the quality of outputs

We also run some experiments with additional unsupervised data in form of three semi-supervised training paradigms:
(1) Low-resource + Unsupervised Source Data, (2) Low-resource + Unsupervised Target Data and (3) Low-resource +
Unsupervised Source and Target Data.

Additional unsupervised target or source data exposes the model to a larger variety of data in the input space. This makes
the model more robust to changes in the input space and consequently induces a positive effect on quality of the gestures.
Table | has experiments with additional unsupervised data where we observe relatively better values of FID when additional
unsupervised source and target data is also used. Furthermore, the gestures are deemed more natural by human annotators in
Table 1 when additional unsupervised target data is used. Unsurprisingly, we do not observe any practical change in PCK
values as no additional information about grounding is being provided by unsupervised input data.

A.2. Qualitative visualizations

A more exhaustive set of qualitative results is shown in form of visual histograms in Figures 2, 3, 4. Furthermore, we also
plot of the velocity distributions across our model and different baselines in Figure 5. Additionally, we overlay the generated

gestures by different models on the original video to qualitatively verfiy the correctness of the generated gestures in Figures 7,
6, 8 and 9.

A.3. Quantitative results

A more exhaustive set of quantitative results on FID scores [, 5, 1 1] (i.e., measure of distribution of generated gestures)
and PCK scores [3, 8] (i.e., measure of relevance of generated gestures to input language) is shown in Table 2.

| FID | | PCK 1 Human Perceptual Study 1
Trainin maher maher maher maher
Data 2 1 1 1 1 Naturalness Style
oliver chemistry oliver chemistry

Low-resource 15052 31.7 +38 0.46 +0.01 0.32 002 219 +25 46.3 £92
Unsp. Source + Low-resource 18.8+74 277 +15 0.44 0.02 0.33 z0.01 18.5 x99 444 +16.2
Unsp. Target + Low-resource 14.1 £47 27.2 31 0.46 0.01 0.34 z0.01 26.7 +95 60.0 = 17.7
Unsp. Source + Unsp. Target + Low-resource 12.6 £ 41 28.2:18 0.46 +0.0 0.33 z0.01 20.8 +10.5 48.3+21.8

High-resource | 16.1 8.7 0.49 0.39 - -

Table 1. Evaluating impact of additional unsupervised data: DiffGAN is trained on 10 minuites of low-resource data, followed by
additional unsupervised data of the source and/or target domain. The metrics measure its impact on output domain shift (i.e. FID and Style),
crossmodal grounding (i.e. PCK) and quality of gestures (i.e. naturalness).
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Figure 1. Illustration of the source model [1] for our experiments in the main paper. The layer IDs from 1 through 6 are the possible choices
for layer [ for the low resource adaptation

B. Experimental setup details

B.1. Model hyperparameters

We use, as our source model, an architecture described in Ahuja et al. [1] and illustrated in Figure 1. We optimize our
model using Adam [6] with a learning rate of 0.0001, decay rates 8; = 0.9 and 85 = 0.999. We update the source model
for 4000 iterations with a batch size of 32, which is more that enough to reach convergence. Our experiments were all run
on either NVIDIA Titan 1080 or NVIDIA GeForce RTX 2080 and took around 1-2 hours. Unless explicitly specified, the
adaptation experiment was performed on 10 minutes of low-resource target supervised data with our full Diff GAN model.

Choice of Layer [ The choice of layer [ as the ideal set of parameters for optimal low-resource adaptation is tricky. We
show through an ablation study (in the main paper) that the second-to-last layer (i.e. layer 5 in Figure 1) of the source model
generator [ 1] is the best choice.

Construction of ¢;, The intuition here is that directions large magnitudes are considered more important. Hence, for each
sample in the batch and each time step in Y?, the k highest (i.e. top-k) values in the channel dimension are selected. Other
values are zeroed out, giving ¢, which is used as a mask in Equation 2 of the main paper.

Wall times of Low-Resource Adaptation The time for low-resource adaptation is typically much lesser than training a
model from scratch. In this instance, our DiffGAN takes around 0.5 hours (equivalent of 4000 iterations), which is significantly
lesser than 5 hours taken by AISLe [1].

B.2. Dataset

Pose Audio Transcripts (PATS) dataset [I, 2, 4] contains aligned transcribed language, audio, gesture data for 25 speakers
from different domains in academia, social media, television. In consists of 251 hours of data, with a mean of 10.7 seconds
and a standard deviation of 13.5 seconds per interval. This dataset provides a train, test and validation split which we use for
our experiments. PATS dataset is licensed under a Creative Commons Attribution-NonCommercial 2.0 Generic License.

We choose five speakers oliver, maher, chemistry, ytch_prof and lec_evol, that have different domains of
output gestures as well as a diverse linguistic input domain. For the source domain, we use the speakers oliver and
maher individually. The full list of combinations is the following (source — target denotes the source to target domain):

* oliver — maher
* oliver — chemistry
* oliver — ytch_prof

e oliver — lec_evol



* maher —+ oliver

* maher — chemistry
* maher — ytch_prof
* maher — lec_evol

B.3. Human perceptual study setup

Sample study for Style (aka Domain Shift) We show 3 reference ground videos of a target speaker. Then, two videos are
shown to the user, one video is a ground truth and the other is generated by a model (in a low-resource setting). The generated
video does not have audio. We ask a single question to measure the correctness of the domain shift by looking at the style:
Gesture style is defined by the gesture’s extent, frequency, timing, and position of the body in relation to speech. Which video
has the same style of gestures as the style shown in the Reference Videos?

Sample study for Subjective Metrics We show a pair of videos with skeletal animations to the annotators. One of the
animations is from the ground-truth set, while the other is a generation from our proposed model or a baseline. With unlimited
time and for each criterion, users have to choose one video which they felt was better in terms of subjective metrics (Timing,
Relevance, Expressiveness and Naturalness) [1].

We attach a screenshot of a sample study and the questions asked to the users. The estimated hourly wage for the annotators
is around 9 USD an hour. The definitions of the subjective metrics are listed below, and a screenshot of this experiment is
shown in Figure 10 and 11.

Definitions:

 Style: Gesture style is defined by the gesture’s extent, frequency, timing, and position of the body in relation to speech.
» Extent: Gesture extent is the space around the speaker that the speakers’ gestures (hand/arms) cover.
* Frequency: Gesture frequency is the rate at which the speakers use gestures.

* Timing: People tend to emphasize on their hand gestures when they emphasize what they are saying. Timing is
best when the gestures align (i.e., occur simultaneously) with the relevant spoken words. These two events occur
simultaneously for the timing to be correct.

* Relevance: The form of the gesture should not only be well timed (as judge with the Timing metric) but also seem to be
the right gesture, relevant to the spoken words. For example, if a person says "me", and simultaneously points towards
themselves, then the gesture is relevant.

* Expressiveness: Expressiveness is a general measure of the amount of gestures. It is not only about the number of
gestures but also about the size of these gestures. More and larger gestures will represent more expressiveness.

* Naturalness: This is a general metric which asks you to judge if the animation looks natural, as if it was the depiction
of a real person. Naturalness involves both the body and gestures, as well as how they appear in relation with the spoken
words. The gestures need to look natural.
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Figure 2. Visual Histograms of generated gestures visually describe the distribution of hand gestures in space. Red and blue colors denote
the left and right arms respectively. First row is the source speaker, below which we have all the target speakers. Each column denotes a
model which adapts output distribution of the source domain to the target domain.
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Figure 3. Visual Histograms of generated gestures visually describe the distribution of hand gestures in space. Red and blue colors denote
the left and right arms respectively. First row is the source speaker, below which we have all the target speakers. Each column denotes a
model which adapts output distribution of the source domain to the target domain.
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Figure 4. Visual Histograms of generated gestures visually describe the distribution of hand gestures in space. Red and blue colors denote
the left and right arms respectively. First row is the source speaker, below which we have all the target speakers. Each column denotes a
model which adapts output distribution of the source domain to the target domain.



o
o

o
o

Probability

o
=

0.0

Probability
(e} (e} (e}
o w S

e
=

o
o

oliver — maher

| |
| |
[ |
| m Ground Truth
| W MineGAN
I ConsistentGAN
I DiffGAN (Ours)
0 20 40 60 80
Average Absolute Velocity
oliver — lec_evol
| |
| |
[ |
|——————— I Ground Truth
| B MineGAN
I ConsistentGAN
B DiffGAN (Ours)
0 20 40

Average Absolute Velocity

maher — ytch_prof

oliver — chemistry

oliver — ytch_prof

| | 1.5 | |
041 | I | I [ I |
[ | |
03| [ M Ground Truth z10 |—— W Ground Truth
= —] B MineGAN z | . MineGAN
502 I ConsistentGAN 3 I ConsistentGAN
a BN DIffGAN (Ours) | & B DiffGAN (Ours)
0.1
0.0 0.0
0 20 40 60 0 20 40 60
Average Absolute Velocity Average Absolute Velocity
maher — oliver maher — chemistry
0.61 | | | |
! | 041 ] |
504 —{  mm Ground Truth 503 _
= e B MineGAN = o
-é I ConsistentGAN 'g 0.2 B Ground Truth
&0 B DiffGAN (Ours) e I MineGAN
0.1 I ConsistentGAN
BN DiffGAN (Ours)
0.0 0.0
0 20 40 20 40 60

Average Absolute Velocity

maher — lec_evol

Average Absolute Velocity

0.8
| | - |
| | 051 |
0.6
> 4' I Ground Truth 5‘0'4 }—{ I Ground Truth
= — B MineGAN Zo3| | W MineGAN
504 B ConsistentGAN | 5 BN ConsistentGAN
o B DiffGAN (Ours) | 0.2 B DiffGAN (Ours)
0.2
0.1
0.0 0.0
0 20 40 60 0 20 40

Average Absolute Velocity

Average Absolute Velocity

Figure 5. Distribution of the generated gestures with average absolute velocity as the statistic for source to target domain adaptation. The
support (or coverage) of the distribution is denoted with the colour coded lines at the top of each plot. Larger overlap of a model’s distribution
with the ground truth distribution is desirable. All the experiments for these plots were conducted with 10 minutes of target domain data.
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Figure 6. Qualitative comparison of our DiffGAN with prior work over shape of generated gestures. With maher as the source domain,
target model outputs over the target domain ytch_prof are superimposed over ground truth video frames for easy comparison.
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Figure 7. Qualitative comparison of our DiffGAN with prior work over shape of generated gestures. With maher as the source domain,
target model outputs over the target domain oliver are superimposed over ground truth video frames for easy comparison.
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Figure 8. Qualitative comparison of our Diff GAN with prior work over shape of generated gestures. With maher as the source domain,

target model outputs over the target domain 1ec_evol are superimposed over ground truth video frames for easy comparison.
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Figure 9. Qualitative comparison of our Diff GAN with prior work over shape of generated gestures. With maher as the source domain,
target model outputs over the target domain chemi st ry are superimposed over ground truth video frames for easy comparison.
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the same instructions. Hence as a one-time investment, | would urge you to understand the
task before proceeding with the annotation. Please feel free to contact me if you have any
questions.

Both videos have the same audio segment. The video is an animation of the speaker
corresponding to the audio segment.

(1) Turn on the speakers or use headphones as the videos have audio.

(2) See both videos one by one.

(3) Choose the appropriate answers to the questions about the animations you have just seen
Definitions

(1) Timing: People tend to emphasize with their hand gestures when they emphasize what
they are saying. Timing Is best when the gestures align (l.e., occur simultaneuously) with the
relevant spoken words. These twa events occur simultaneously for the timing to be correct.

(2) Expressiveness: Expressiveness is a general measure of the amount of gestures. It is not video A video B
only about the number of gestures but also about the size of these gestures. More and larger —
gestures will represent more expressiveness

Which animation has the best Timing of gestures with respect to the spoken
(3) Relevant: The form of the gesture should not only be well timed (as judge with the Timing

?
metric) but also seem to be the right gesture, relevant with the spoken words. For example, if words?
a person says “‘me", and simultaneously point towards themselves, then the gesture is A Neutral B

reevant Which animation has most Relevant gestures with respect to the spoken words?

(4) Naturalness: This is a general metric which asks you to judge If the animation looks

natural, as if it was the depiction of a real person. The naturalness Involves both the body and A Neutral B
gestures, as well as how they appear in relation with the spoken words. The gestures need to Which animation has the most Expressive gestures’
look natural. H

A Neutral B
Which animation looks the most Natural, with natural-looking gestures?
A Neutral B

Figure 10. Screenshot of MTurk Experiment used to measure subjective metrics
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top of the page. these videos
correspond to a single Reference
Speaker's Style.

Below, you'll see two videos A and B,
we want you to specifically look at the
Style of each videos

Please note that video A and B do not have audio.

Gesture style is defined by the gesture's extent, frequency, timing and position of the body in relation to speech. Which video has the same style of gestures as the style shown in the Reference Videos?
AOB
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(1) Watch the reference videos shown
at the top of the page. .

(2) View the videos A and B one by
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reference videos
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Figure 11. Screenshot of MTurk Experiment used to measure style metrics
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