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Additional information presented in this supplementary:

1. Details on the shared implementation (Sec. 1).
2. Details of the image-goal navigation dataset (Sec. 2).

3. Detailed results on image-goal navigation across 3 levels
of episode difficulties (Table 1).

4. Examples of the visual goal modalities used in target
tasks (Fig. 1).

5. Dataset details for the target tasks and goal embedding
space (Sec. 3).

6. Detailed results with standard deviations on target tasks
(Table 2).

7. Qualitative results for our model in all tasks and goal
modalities (Fig. 5).

8. Examples of failure cases for our model (Fig. 6).

9. Performance curves for all tasks and goal modalities in
transfer learning setup (Fig. 2) and long-term training of
Task Expert (Fig. 3).

10. Ablation on the sensor configuration used by the agent
(Fig. 4)

11. Discussion of potential societal impact (Sec. 4) and lim-
itations (Sec. 5).

1. Shared Setup

All RL methods are trained with the following setup. We
use input augmentation of random cropping and color jitter
for both observations and goals. The models are trained
with DD-PPO [15]. We set the number of PPO epochs 2,
the forward steps 128, the entropy coefficient 0.01, clipping
of 0.2, and train the model end-to-end using the Adam opti-
mizer [10]. We allocate the same number of processes and
resources to all methods.

We use the Habitat simulator [13] along with the Gib-
son [ 1 6], Matterport3D [3], and HM3D [12] datasets. These

datasets are photorealistic and scans of real-world envi-
ronments with varying complexities, sizes, room layouts,
types. In all our experiments, the test scenes are disjoint
from those used for training to assess the agent ability to
generalize to previously unseen environments.

2. Image-Goal Navigation

Dataset The training split contains 9K episodes sampled
from each of the 72 Gibson training scenes. The episodes
are uniformly split across 3 levels of difficulty based on the
goal’s geodesic distance from the start location: easy (1.5 -
3m), medium (3 - 5m), and hard (5 - 10 m). Test split A has
4.2K episodes and split B has 3K episodes. Both splits are
sampled uniformly from 14 disjoint (unseen) scenes and the
3 levels of difficulty. Further, to avoid trivial straight line
paths, the episodes has a minimum geodesic to euclidean
distance ratio of 1.1 in A and 1.2 in B (our split B corre-
sponds to the curved split in [9]).

Detailed Results We show in Table | the detailed results
of all models across the three levels of episode difficulties
(easy, medium and hard). Our model shows better perfor-
mance across the different levels and in both split A and B.
For a qualitative result, see Fig. 5 A.

3. Transfer Learning to Downstream Tasks

Datasets We use 29 scenes from Gibson and split them
into 24 scenes for training and 5 for testing. In the follow-
ing, we present the details of the datasets used for each of
the downstream tasks.

* ObjectNav: We sample 24K episodes for training and 1K
episodes for testing. For the sketch-goals (Fig. | mid-
dle), we sample 80 sketches from [7] for each object cat-
egory and split them to 70 used during training and 10
for testing. For the audio-goals, we sample 12 audio clips
from [4] of lengths ranging from 13 to 53 seconds and
split them 50/50 for training and testing. At the start



Easy Medium Hard Overall
Model Split  Succ. SPL  Succ. SPL  Succ. SPL  Succ. SPL
Imitation Learning A 18.5 17.7 8.4 8.1 2.6 2.6 9.9 9.5
Zhu et al. [18] A 31.7 251 157 108 115 7.5 19.6 145
Mezghani et al. [1 1] w/ 90° FoV A 175 11.0 8.8 6.6 0.6 0.5 9.0 6.0
DTG-RL A 329 262 212 170 136 108 22,6 18.0
Ours A 397 285 296 225 182 138 292 21.6
Ours (View Aug. Only) A 370 31.7 185 159 107 9.0 220 1838
Ours (View Reward Only) A 323 227 248 18.1 16.1 11.0 244 173
Hahn et al. [9] B 355 184 239 121 125 6.8 240 124
Ours B 48.0 342 360 259 151 108 33.0 23.6
Hahn et al. [9] w/ noisy actuation B 27.3 10.6  23.1 104  10.5 5.6 20.3 8.8
Ours w/ noisy actuation B 410 282 273 18.6 9.3 6.0 259 17.6

Table 1. Detailed results across 3 levels of difficulties on image-goal navigation in Gibson [16].
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Figure 1. Examples of visual goals used for the target navigation tasks: left) ImageNav (Image), middle) ObjectNav (Sketch), right)

ViewNav (Edgemap).

of each episode of the ObjectNav (Audio) task a random
4 seconds duration is sampled from the respective audio
clip and split, and presented to the agent as the goal de-
scriptor.

* RoomNav: We sample 25K episodes for training and 290
for testing.

* ViewNav: We sample 24K episodes for training and 1.5K
for testing. We generate edgemaps for 300 random views
per scene, and we randomly assign one of those per
episode as the goal (Fig. 1 right).

Goal Embedding Space In the joint goal embedding
space, we aim to learn goal encoders that are compatible to
the image-goal encoder. For example, an image view from
a living room with a TV detected in it will be used as the
positive anchor for a sketch of a TV, a sound clip from a
TV, the TV label, the living room label, and the edgemap
of the view. The annotations for the sampled image view
are based on model predictions from [2]. During training,
the parameters of fZ are kept frozen, and we train the vari-
ous goal encoders defined in Main/Sec.4 using the loss from
Main/Sec.3.2.

Detailed Results for All Tasks In Table 2 we show the
average success rate and standard deviation for all meth-
ods over 3 random seeds. Fig. 2 shows the performance of
the best transfer learning methods and our approach across
all tasks and goal modalities. Fig. 3 shows the Task Expert
performance when trained for up to 500M steps on each of
the respective tasks and in comparison to our model perfor-
mance under the ZSEL setting or when it is finetuned. Fur-
thermore, we show example navigation episodes from all
tasks and goal modalities for our approach in Fig. 5. Our
plug and play modular transfer learning approach enable
our model to perform a diverse set of tasks effectively.

Scalability (Sensors) We evaluate our model’s ability to
scale across the sensor suite. Fig. 4 shows our model per-
formance when varying the sensors’ configuration in the
source task (ImageNav) and evaluating on ObjectNav (La-
bel) under the ZSEL setup. As expected, when enriching
the agent sensors to include depth and pose sensors in addi-
tion to vision, we see an additional improvement in perfor-
mance. More importantly, when increasing the vision sen-
sor resolution from 128 to 256 we see a significant bump in
ZSEL success rate that exceeds the one from diversifying
the sensory suite. Our model seems to benefit from an en-
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Figure 2. Transfer learning and ZSEL performance on downstream navigation tasks.
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Figure 3. Long-term Task Expert training. Our model maintains it superior performance even when the Task Expert is presented with

extensive experience in the target task.
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Figure 4. Scalability ablation for our model when changing the
sensors configuration.

hanced vision channel as it carries the important semantic
cues needed for our semantic search policy and goal em-
bedding space.

Failure Cases We show in Fig. 6 few examples of failure
cases encountered by our model. We notice that some of
these failure cases are related to the type of the goal modal-
ity. For example, in ImageNav the agent sometimes finds
the object described in the image however misestimate the
view point the image is taken from, hence stops a bit far
from the goal location (Fig. 6 A). In ViewNav (Edgemap),
the goal modality lacks distinctive texture and color infor-
mation which leads the agent to sometime stops at a loca-
tion with similar edge structure, but it is actually not the

goal (Fig. 6 B). A type of failure cases spotted in multiple
tasks are the early stopping cases. In these cases, the agent
fails to estimate the distance to the goal correctly and stops
early resulting in an unsuccessful episode (Fig. 6 C).

4. Potential Societal Impact

Our approach’s application domain is semantic visual
navigation. Here, autonomous agents are trained to find se-
mantic objects in a 3D environment. Such a technology can
have positive societal impact by improving people’s life, es-
pecially in domains like elder care, with robots that can aid
in daily life tasks (e.g. find my keys, go to the bedroom
and bring me my medicine). On the other side, the datasets
used in this study are 3D scans of building and houses from
certain geographic and cultural areas (western style houses
from well-off areas). This creates certain biases in the type
of building architectures, room, and object types the agent
is familiar with. Consequently, this may limit the avail-
ability of this technology to a small section of the popula-
tion. More diverse datasets and methods with robust adap-
tation to strong shifts in building layouts and object types
are needed to mitigate these effects.

5. Discussion and Limitations

We propose a novel approach for modular transfer learn-
ing that enables the agent to handle multiple tasks with di-
verse goal modalities effectively. Our model can solve the
downstream tasks out-of-the-box in zero-shot experience
learning setup alleviating the need for expensive interac-



ObjectNav RoomNav | ViewNav
Model Source Task Label Sketch Audio Label Edgemap
Task Expert - | 80s06 67114  6.6:07r | 89:05 | 0810
MoCo v2 [5] (Glb) SSL 10.510.7 9-9:k0.6 8.8:&1.2 9.3:&0.9 1.010,2
MoCo v2 [5] (IMN) SSL 7.8:&0_3 12-710.8 11-5;&0_8 9.7:&2_2 1-3:t0.3
Visual Priors [14] SL 9'310.1 9.9j:0A7 9'1j:0.8 13'1i0.9 0.63:0‘1
Zhou et al. [17] SL 156410 7.6403 9.610 103409 0.7401
CRL[6] RL 19105 05403 1.0104 12405 0.0+0.0
SphtNet [8] RL 9~0i1.0 6-5i0.8 8-8i1_1 77111 0.6i0_0
DD-PPO (PN) [15] RL 139406 13.6005 129405 139116 1.7501
Ours (ZSEL) RL 1 1.3:&0.2 1 1-4:t0.6 4-410.6 1 1.2:&1.3 5-4:t0.6
Ours RL 21.9:&0.1 22'0:t0.9 18.011.2 27.9:&1.9 7'4:t0.1

Table 2. Transfer learning average success rate and standard deviation on downstream semantic navigation tasks.
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Figure 5. Qualitative results of our approach performing 6 tasks with 5 goal modalities: A) ImageNav (Image), B) RoomNav (Label), C)
ViewNav (Edgemap), D) ObjectNav (Label), E) ObjectNav (Sketch), F) ObjectNav (Audio).

Figure 6. Qualitative results of failure cases in A) ImageNav (Image), B) ViewNav (Edgemap), and C) ObjectNav (Label).

tive training of the policy. Alternatively, our model can be
finetuned on the downstream task to learn task-specific cues
where it showed to learn faster, generalize better and reach
higher performance than the baselines. While we focused
in this work on semantic navigation tasks, this can be seen
as a first step in this exciting direction. Additional research

is needed to generalize this method to tasks that require a
series of goals and a compatible policy that can plan effec-
tively in a multi-goal setup (e.g. VLN [1]). Further, our
results and evaluation demonstrate strong transfer learning
performance for our method. However, as usual in transfer
learning, there is not a theoretical guarantee that a transfer



effect will always be beneficial. Target tasks with signif-
icant differences to the source task may not benefit from
transferring the accumulated experience in the source.
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