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1. Semantic Audio-Video Label Dictionary
(SAVLD)

For building the SAVLD, we use BERT-base uncased
in which the label text is lowercased before tokenizing it.
Therefore, as a preprocessing step, we first normalized all
textual labels into lowercase form. Notably, the resulting la-
bel dictionary SAVLD is not very accurate since the seman-
tic gap between video and audio datasets is still large. It is
also because the number of classes on video/audio datasets
is still considered small (i.e. Kinetics400 has 400 labels and
AudioSet has 527 label). However, using SAVLD dictio-
naries, our framework narrows the input noise by using the
audio predictions. Then, it matches the audio scene to its
closest similar visual class regardless of the fact that many
audio classes do not have large relevance. In the training
phase, the labeling process is guided by applying the IOU
function between the AST predictions and the correspond-
ing audio labels to the video label in the SAVLD dictionary.
Table 3 shows a small part of the Kinetics400-AudioSet la-
bel dictionary when k = 5. Additionally, we visualize the
AudioSet labels’ relevance to Kinetics400 and UCF-101 la-
bels in Fig. 2 and Fig. 4, respectively. The most frequent
mapped audio labels to the vision-specific dataset labels are
shown in Fig. 1 and Fig. 3 for Kinetics400 and UCF-101
datasets, respectively.1

2. Further Results and Analysis
2.1. Experiments on HMDB51 and Kinetics-Sounds

We further evaluate our method against relevant meth-
ods for video-based action recognition in two more datasets

1We implemented our framework in Pytorch in which we borrowed
several parts from the following codebases:
https://github.com/huggingface/transformers
https://github.com/YuanGongND/ast
https://github.com/facebookresearch/SlowFast
https://github.com/facebookresearch/TimeSformer
https://github.com/rwightman/pytorch-image-models
https://github.com/unixpickle/audioset
https://github.com/ekazakos/temporal-binding-network
https://github.com/marl/l3embedding
https://github.com/johnarevalo/gmu-mmimdb

HMDB51 [6] and Kinetics-Sounds [8]. HMDB51 [6] is
split into three overlapped splits. It contains 6, 766 videos
of 51 classes with an average length of 3 seconds. Kinetics-
Sounds [1] is a subset from the original Kinetics400 [2]
dataset. It contains 34 classes in which each class videos
have a remarkable sound signature. Since Kinetics dataset
editions are downloadable from YouTube, its size may vary
by time as some videos may get removed. Herein, we use
19, 627 videos for training and 1, 344 videos for evaluation.
length of 3 seconds. The average video length in this dataset
is 10 seconds.

Table 1. Performance comparison to relevant visual-based meth-
ods (RGB + Optical Flow) on HMDB51 dataset.

Model Top-1 (%)

CoViAR [10] 59.1
Two-stream fusion [5] 65.4
TSN [9] 69.4
I3D [2] 66.4
CoViAR + OF [10] 70.2
IMD-B (ours) 71.3

Table 2. Performance comparison to relevant methods on Kinetics-
Sounds dataset.

Model P-train Top-1 (%)

L3-Net [1] IN-1K 74.0
SlowFast R101 [4] IN-1K 77.9
AVSlowFast, R101 [11] IN-1K 85.0
MBT (AV) [7] IN-21K 85.0
IMD-B (ours) IN-21K 90.48
IMD-B? (ours) IN-21K 91.44

Table 1 reports the performance of several visual action
recognition methods including CoViAR [10], Two-stream
fusion [5], TSN [9], I3D [2], and CoViAR + OF [10].
Notably, our method provides a slight performance boost
on HMDB51 because our method is a Transformer-based
framework that shows better improvement on large datasets
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Table 3. Samples of the most relevant AudioSet labels to video labels retrieved by semantic sentence-based embeddings mapping by BERT
when K = 5.

Dataset Label Relevant AudioSet Labels

K
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playing guitar bass guitar;acoustic guitar;guitar;chopping food;electric guitar
applauding speech;applause;whistling;chime;clapping
belly dancing rapping;yodeling;synthetic singing;child singing;frying food
canoeing or kayaking rowboat, canoe, kayak;motorboat, speedboat;skateboard;folk music;sailboat, sailing ship
clean and jerk fill with liquid;pump liquid;filing rasp;rumble;rustle
country line dancing female singing;dance music;male singing;salsa music;drum roll
driving car emergency vehicle;motor vehicle road;filing rasp;car;engine starting
feeding birds wild animals;insect;mosquito;bird;patter
gargling gargling;gurgling;snoring;reversing beeps;yodeling
kissing whispering;typing;cheering;laughter;breathing
pumping gas frying food;pump liquid;sawing;sanding;filing rasp
recording music vocal music;music;soundtrack music;wedding music;jingle music
scrambling eggs singing bowl;spray;thunder;wheeze;tools
sniffing whimper;growling;cheering;whispering;rattle
sneezing gurgling;snoring;babbling;gargling;rapping
tickling whispering;rustle;cheering;growling;screaming
yawning babbling;rapping;frying food;gurgling;snoring
writing writing;speech;typing;chatter;mechanisms
whistling whistling;humming;whistle;whip;siren
welding gears;scissors;drill;boiling;bicycle

in terms of number of videos per class. However, our
framework provides top-1 of 71.3% which is better com-
pared with CoViAR + OF [10] with a performance boost of
∼1.1%. We compare our method with several methods on
the visual-audio annotated dataset Kinetics-Sounds. This
dataset was first used in [1] as a subset of the main Kinet-
ics400 dataset [2]. Our framework provides a significant
boost in this dataset, where it provides top-1 of 90.48% and
91.44% with and without intra-class cross-modality aug-
mentation, respectively. Since this dataset is an audio-video
annotated in which audio and video are mostly relevant
in each video, the cross-modality augmentation does not
improve the performance. This interprets our finding re-
garding this augmentation method, where it provides most
performance boosts on datasets with low audio-video rele-
vance. Therefore, in our method, cross-modality augmen-
tation is particularly applied for improving the video-based
human activity recognition on vision-specific videos.

2.2. Visual Two-Stream Transformer Variants

In this part, we report the performance of three Trans-
former variants of the proposed two-stream visual Trans-
former. In order to leverage the pretrained ImageNet knowl-
edge, we have adopted several parts from ViT [3] in terms
of number of Transformer encoder blocks, embedding size,
number of self-attention heads, input dimensions. Our
Transformer scales properties are almost similar to the [3],

Table 4. Performance of the proposed visual two-stream Trans-
former with different size. Three Transformer instances are
trained, where each of which is initialized with its ViT correspond-
ing ImageNet-21K weights. The performance is reported on Ki-
netics400. Number of parameters is reported in million.

T. Size Top-1 (%) Top-5 (%) Params GFLOPs

Small 78.8 92.8 47.9×2 2, 871

Base 81.1 94.3 88.6×2 4, 464

Large 82.6 95.2 173.7×2 8, 232

i.e. small, base, and large, except the spatiotemporal en-
coder blocks. We used one spatiotemporal block on the
small encoder instance as it involves 8 blocks, whereas we
add 2 and 4 spatiotemporal blocks for base and large in-
stances as they involve 12 and 24 blocks, respectively. Ta-
ble 4 reports the recognition performance on Kinetics400
dataset as well as the Transformer instances’ costs in terms
of number of parameters and GFLOPs.

References
[1] Relja Arandjelovic and Andrew Zisserman. Look, Listen and
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Figure 1. The most 50 frequent audio labels in AudioSet mapped to Kinetics400 labels when k = 50.
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Figure 2. The heatmap of the semantic relevance estimated by BERT between Kinetics400 labels and AudioSet labels. The darker the
more relevant.
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Figure 3. The most 50 frequent audio labels in AudioSet mapped to UCF-101 labels when k = 50.
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Figure 4. The heatmap of the semantic relevance estimated by BERT between UCF-101 labels and AudioSet labels. The darker the more
relevant.
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