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Here, we provide implementation details of our model,
statistics on the datasets we used in the main paper, addi-
tional qualitative and quantitative results, as well as further
discussion on one of the baselines, VAE-HMD [6], as men-
tioned in the main paper. We also provide supplementary
video of our approach which we highly recommend readers
to watch1.

1. Implementation Details
In this section, we provide implementation details of dif-

ferent components of our approach.

Flow-based model fθ. Our flow-based model, fθ is a Re-
alNVP [5] with 16 transformation blocks. Each block is
an affine coupling constructed with two MLPs representing
the scale and translation networks. Each MLP is composed
of three fully-connected layers with hidden size 512. Note
that for scale network, we consider the Tanh non-linearity
whereas for the translation network we use ReLU. For both
networks we use no non-linearity for the last layer. In or-
der to make the RealNVP conditional, we incorporate the
conditioning signal [xH, β] into both scale and translation
networks, therefore, the output of each affine coupling layer
becomes

ym =xm

ym̄ =xm̄ ⊙ exp
(
s(xm, [xH, β])

)
+ t(xm, [xH, β]) (1)

where s is the scale network, t is the translation network, m
are the indices of the input representation that are masked,
and m̄ are the remaining indices. After each block, we swap
mask and unmask indices to avoid information loss through
identity mapping (as shown in the first line of Eq. 1). Dur-
ing training, intermediate supervision is applied to blocks
IS = {2, 4, 6, 8, 10, 12, 14} with negative log-likelihood
weights w = { 2
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During training we use λNLL = 1. After the flow is trained,

1Visit https://github.com/microsoft/flag.

for generation and likelihood estimation tasks, we drop all
connections used for intermediate supervision. Since in-
termediate supervision is only applied during training, the
model requires only one flow at test time. At the cost of in-
creasing the training time ∼ 70%, intermediate supervision
improves the performance considerably.

Transformer model. Following standard practice, our in-
put to the transformer model is first mapped to learned em-
bedding space with an MLP, consisting of a fully-connected
layer that maps the data dimension to 256, followed by a
LeakyReLU. The transformer encoder consists of 3 en-
coder layers, each with an embedding size of 256, 8 atten-
tion heads, and a feed-forward network with the hidden size
of 512. Before passing the embedded representation to the
transformer encoder, we add positional encoding to retain
the joints order. The output of the transformer encoder is
then pooled down to the representation of head and hands.
The auxiliary task of masked joint prediction is done by a
single fully-connected layer. Mapping to the categorical
latent space is done via another MLP which gets as input
the pooled representation of the transformer encoder and
the conditioning signal C = [xH, β]. This MLP is con-
structed with a fully-connected layer that gets this input and
maps it to a 256 dimensional embedding space, followed by
a LeakyReLU, followed by another fully-connected layer
that outputs a G × M matrix, representing the categorical
latent representation. In our experiments, we found G = 64
and M = 128 to be sufficiently expressive for our task.
From this latent representation, we sample a discrete latent
variable (one-hot vector) via Gumbel-Softmax and use it as
the input to the other auxiliary task of reconstructing the
full pose, which is done with another MLP with two fully-
connected layers and a LeakyReLU non-linearity in be-
tween. Finally, to compute µH and ΣH, we use two iden-
tical MLPs, each with two fully-connected layers and a
LeakyReLU non-linearity in between, getting as input the
softmax-normalized latent representation and the condition-
ing signal C. Note that the two auxiliary tasks of masked
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joint prediction and full pose reconstruction are only used
during training. For the loss terms weights during training,
we use λmjp = 1, λrec = 1 and λlra = 1. For weights within
Llra, we use αnll = 1, αrec = 0.5, and αreg = 0.25.

For joint masking, we avoid masking the full body joints
except head hands from the beginning, as the model finds
it hard to predict masked joints. To ease the training, we
proposed curriculum masking of joints, following the body
kinematic tree. In this scheme, we start by masking the
lower body, then torso joints, then neck and arms. By
gradual masking, the model learns to reason about the full
body given observed (unmasked) joints, and as the training
progresses, we make the such task harder by progressively
masking more joints, until we reach the real-world scenario
where only head and hands are unmasked.

Training hyper-parameters. To train our models, we use
the Adam optimizer [7], with the learning rate of 0.0001,
batch size of 1024, for 100 epochs. For all other baselines,
we follow their official implementation or the details in the
original papers.

Optimization. To perform optimization in either pose
space or latent space, we use limited-memory BFGS op-
timizer [8], with the history size of 10, learning rate of 1,
and Strong-Wolfe line search function [12]. We perform
optimization for the maximum 50 iterations, however, we
evaluate the MPJPE after 2, 5, 10, 25, and 50 iterations.
Note that when optimizing in the latent space, the opti-
mizer has a freedom to move around the base distribution
and find a latent code that matches the HMD signal. How-
ever, since HMD signal only contains information about the
upper body, there is no constraint on the optimizer to stop
it from going astray ( into regions of low-likelihood lower
body poses). To prevent the optimizer from straying into re-
gions of the latent space that may correspond to undesirable
lower body poses, we add a regularizer to implicitly guide
the optimizer to search in regions of the latent space that
modifies the upper body to minimize Cdata. This is done by
adding r = ||zopt − µH||, encouraging the solver to stick to
the initial lower body guess.

2. Dataset Details: AMASS
In this paper, we use AMASS [10] for training and

evaluation. AMASS is one of the largest publicly avail-
able datasets of human motion (299,234 minutes of cap-
ture). It unifies different optical marker-based motion cap-
ture datasets by representing them within a common frame-
work with consistent parameterization. AMASS comprises
20 datasets, from which We use the suggested training and
test subsets. While we keep the original test set, we remove
the dataset containing dance sequences from our dataset

Table 1. Detailed statistics of AMASS datasets we used in this
paper.

Dataset Subjects Motions Minutes

CMU 106 2083 551.56
MPI Limits 3 35 20.82
Total Capture 5 37 41.10
Eyes Japan 12 750 363.64
KIT 55 4232 661.84
BioMotionLab 111 3060 522.69
HumanEva 3 28 8.48
EKUT 4 349 30.71
ACCD 20 256 26.76
BMLMovi 86 1801 168.99
MPI Mosh 19 77 16.53
SFU 7 44 15.23
Transition 1 110 15.10
MPI HDM05 4 215 144.54

Figure 1. Full body MPJPE as a function of optimization iterations
(in the latent space).

(similar to [13]). The train/test datasets splits we used are
listed below:

Training datasets. CMU [2], MPI Limits [4], Total Cap-
ture [16], Eyes Japan [3], KIT [11], BioMotionLab [15],
BMLMovi [10], EKUT [11], ACCAD [1], MPI Mosh [9],
SFU [17], and MPI HDM05 [4]

Test datasets. HumanEva [14], Transition [10]

In Table 1, we provide details of each dataset in AMASS.



Table 2. Best of K=10 samples (5 runs) MPJPE on AMASS. Sam-
pling is based on baselines’ prior.

Method Sampling Upper Body MPJPE (↓) Full Body MPJPE (↓)

VPoser-HMD z ∼ N(0, I) 1.58±0.02 cm 5.25±0.07 cm
HuMoR-HMD z ∼ N(µprior,Σprior) 1.47±0.01 cm 4.83±0.03 cm
VAE-HMD z ∼ N(µprior,Σprior) 3.16±0.02 cm 5.67±0.06 cm
ProHMR-HMD z ∼ N(0, I) 1.62±0.02 cm 4.75±0.03 cm

FLAG z ∼ N(0, I) 1.61±0.01 cm 4.65±0.03 cm
FLAG z ∼ N(µH,ΣH) 1.29±0.0 cm 4.65±0.01 cm

3. Further Evaluation of the Effect of Latent
Variable Sampling

In addition to the experiments we conducted and pro-
vided the results in the main paper, here we also evaluate
the effect of our latent variable sampling, i.e, z = µH, and
compare it with the commonly used z = 0 when fed to
the FLAG as the pose prior in optimization in the latent
space. As illustrated in Fig. 1, our approach with z = µH
achieves considerably lower full body error compared to our
approach with z = 0, showing the importance of latent
variable sampling. Additionally, the importance of model
design, the intermediate supervision in particular, is evident
when looking at the performance of ProHMR (with z = 0)
and FLAG (with z = 0).

4. Further Discussion on VAE-HMD
In our comparison to the existing approaches, we note

relatively high MPJPE for VAE-HMD [6] on the AMASS
test set, we argue this is due to imperfect utilization of the
latent space resulting from the particular two-stage training
used in VAE-HMD. To further investigate the behaviour, we
followed the setup in the original paper and define a random
train/test splits on a small dataset (MPI-HDM05 [4]). In this
case, we observed that VAE-HMD is capable of achieving
a very low full body MPJPE of 2.39, which is in line with
the original paper, and this is due the fact that test poses
are quite similar to the poses in the training set (as a result
of random splitting of frames within sequences of a single
dataset).

5. Additional Quantitative Results
Best of K metric. In addition to quantitative results pre-
sented in the main paper, we also report the MPJPE of the
best of K samples in Table 2.

Contribution of auxiliary tasks. We empirically ob-
served contributions of the two aux tasks. The masked joint
prediction is required due to joint masking. The pose pre-
diction auxiliary task helps the transformer’s latent space to
learn better representation of the full pose faster, as men-
tioned in in the main paper. We also observed that the per-
formance of pose prediction auxiliary task is not competi-

tive with fθ (upper-body MPJPE of 3.89 vs 1.29 and full-
body MPJPE of 6.49 vs 4.96).

6. Additional Qualitative Results

In this section, we provide additional qualitative results
of our approach, as well as for all other baselines, in Fig. 2
to Fig. 4 shown in the next three pages. Note that the exam-
ples are not hand picked.
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Figure 2. Additional qualitative results. Best seen zoomed in. Note, in each segment of results, the last row represents our approach.
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Figure 3. Additional qualitative results. Best seen zoomed in. Note, in each segment of results, the last row represents our approach.

[17] KangKang Yin Goh Jing Ying, K Yin, KD Kumar, H Geng,
SC Mahadevan, E Tanirgan, and K Hurley. SFU motion cap-
ture database. URL http://mocap. cs. sfu. ca, 2011. 2



Figure 4. Additional qualitative results. Best seen zoomed in. Note, in each segment of results, the last row represents our approach.


