
Supplementary: Pre-train, Self-train, Distill: A simple recipe for Supersizing 3D
Reconstruction

Kalyan Vasudev Alwala1 Abhinav Gupta12 Shubham Tulsiani2

1Meta AI Research 2Carnegie Mellon University
https://shubhtuls.github.io/ss3d/ 

1. Additional Training Details 

Input. In all phases of training, we consider zero-padded 

single-instance only color images as input to our network. 

Particularly, the input to our network is a square image of 

size 224 where the larger dimension of the instance bound- 

ing box is resized to 224. The images correspond to seg- 

mented objects, and the background pixel values are also 

set to zero. 

1.1. Pre-Training from Synthetic 3D Data 

We consider multi-view supervision for training train- 

ing the model. For each input image in each iteration, we 

consider rays from 5 other views (among a total of 20 avail- 

able views) and their associated cameras for supervision. 

Unlike input images which have a size of 224, the images 

used for supervision are resized to 128x128. This is to en- 

sure that we can cover more region with a single ray for 

faster training of the network. All the camera poses we use 

for supervision are with respect to a standardised canoni- 

cal object frame with X axis being left to right, and Z axis 

being upright. From each label instance, we sample 340 

rays for supervision. Thus, the effective number of rays we 

use for supervising each input image is 5*340. Addition- 

ally, on each camera ray we query 100 points uniformly up 

to 2 meters during volume rendering. Thus for each input 

instance we query 5*340*100 number of points from the 

input-conditioned decoder. 

We initialize our ResNet-34 based encoder with pre- 

trained weights from ImageNet-1k classification task. 

These pre-trained weights are borrowed from TorchVision. 

And our decoder’s weights are initialized uniformly using 

PyTorch’s default initialization scheme. We train our net- 

work for about 450 epochs in multi-gpu setting using Dis- 

tributed Data Parallel (DDP). We train on 32 Nvidia-V100 

32GB GPU’s with a batch size of 8 on each GPU. Thus, our 

effective batch size is 8*32. This approximately took about 

2.5 days to train using 32 GPU’s. We train our network with 

Adam optimizer [1] with a starting learning rate of 5− 5 that 

is updated conditionally using a reduce on plateau learning 

rate scheduler with a reduction factor and threshold of 0 . 5 

and 5− 3 respectively. 

1.2. Self-Training from Image Collections 

As mentioned in the main manuscript, we don’t have ac- 

cess to cameras during this phase and we train our mod- 

els to infer shape in canonical object frame using multi- 

hypothesis cameras. At the beginning of training, for each 

instance, we initialize a multi-hypothesis camera consist- 

ing of 10 cameras randomly. For the first 10 epochs, we 

freeze the model weights and update each multi-hypothesis 

camera using the multi-hypothesis camera loss suggested in 

the original manuscript. This ensures that even before we 

begin training our network, our multi-hypothesis cameras 

are at an acceptable pose. We then learn both our model 

and multi-hypothesis cameras for additional 40 epochs. An- 

other important point to note is that we have a different up- 

date rate for multi-hypothesis cameras and model parame- 

ters. In each mini-batch step, we update multi-hypothesis 

camera parameters 10 times for every model update. This 

is achieved through an additional multi-hypothesis camera 

optimization loop in the training step. 

We consider Adam optimizer with a constant learning 

rate of 10−6 and 0 . 1 for training for model and multi- 

hypothesis cameras respectively. We again train each 

category-specific model on 16 Nvidia-V100 32 GPU’s us- 

ing DDP training strategy with a batch size of 4 on each 

GPU. This phase took about 1-3 days for each category- 

level expert based on the dataset size. 

Additionally, similar to pre-training, for each camera in 

multi-hypothesis camera we consider 340 rays with 100 

samples on each ray. 

1.3. Multi-Category Distillation 

Unlike prior phases, that relies on ray-wise supervision, 

as mentioned in the main manuscript, we perform a point- 

wise supervision to train our final unified model. We ran- 

domly sample 25000 3D points in the standardized canoni- 

cal object frame for every image in each step step. 

1

https://kalyanvasudev.github.io/ss3d/


 

We train this network using Adam optimizer with a 

learning rage of 10− 6 for 75 epochs on 32 Nvidia-V100 

GPU’s using DDP. This training phase is relatively faster in 

comparison to prior phases and took about 2 days to dis- 

till all category-level experts and synthetic data-only model 

into a single model. 

References 

[1] Diederik P Kingma and Jimmy Ba. Adam: A method for 

stochastic optimization. International Conference on Learn- 

ing Representations , 2015. 1 

2


	. Additional Training Details
	. Pre-Training from Synthetic 3D Data
	. Self-Training from Image Collections
	. Multi-Category Distillation


