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1. Summary of Datasets
1.1. Pretraining Datasets

Table 1 lists the exact number of examples used for pretrain-
ing from each dataset. During COCO pretraining, we ran-
domly select one of five unique captions assigned to each
image, effectively multiplying the total number of image-
text pairs by a factor of 5. Unlike COCO, the Conceptual
Captions datasets are not stored in one central location and
not all of the provided URLs are still valid. Therefore, the
actual number of pretraining examples is less than the ad-
vertised amount by as much as 1M+ in the case of CC12M.

Dataset COCO CC3M CC12M
# 118,287 2,884,940 10,707,814

Table 1. Pretraining Dataset Sizes – Exact sizes of pretraining
datasets employed in this work (no. of image-text pairs).

1.2. Evaluation Datasets

In Table 2, we list additional details for the evaluation
datasets in this study including the number of classes and
the sizes of the training-testing splits. For the last 5 rows
(ObjectNet and ImageNet-{A,O,R,V2}), we list only the
number of classes and the testing set size as these have been
designated as “testing-only” datasets.

2. Detailed Experimental Settings

2.1. Implementation Details

Our pretraining implementation largely follows CLIP [8]
with significant deviations motivated by computational con-
straints or empirical observations. Table 3 summarizes
common hyperparameters settings shared across experi-
ments. Notable differences from [8] include a reduced batch
size, learning rate and weight decay, but increased number
of training epochs and warm-up iterations. Unlike CLIP,
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Dataset Classes Train Size Test Size
Cifar10 10 50,000 10,000
Cifar100 100 50,000 10,000
Caltech101 102 2,863 8,677
Food101 101 75,750 25,250
OxfordPets 37 3,680 3,669
Birdsnap 500 38,344 1,900
ImageNet 1000 1,281,167 50,000
Places365 365 1,803,460 36,489
ObjectNet 313 - 50,000
ImageNet-A 200 - 7,500
ImageNet-O 200 - 2,000
ImageNet-R 200 - 30,000
ImageNetV2 1000 - 30,000

Table 2. Evaluation Dataset Details – The number of classes,
training and testing examples present in the evaluation datasets.
The size of the training set size for the last 5 rows is omitted be-
cause these datasets are designated as “testing-only” benchmarks.

which computes sharded, intra-GPU embedding similarities
only, we perform a global all-gather operation to compute
all pair-wise similarities within a batch.

Hyperparameter Value

Batch size 4096
Vocabulary size 49408
Training epochs 100
Initial temperature τ 0.07
Teacher temperature τ̃ 0.1
Weight decay 0.001
Warm-up iterations (%) 0.2
Learning rate 1× 10−5

Adam β1 0.9
Adam β2 0.99
Adam ϵ 10−5

Table 3. Common hyperparameters – used for both baseline
CLIP pretraining and our method.
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2.2. Complexity Analysis

In order to underscore how our method improves data-
efficiency without incurring additional computation cost,
we note that the number of trainable parameters in the ViT-
B/32 (151.3M) and RN50 (102.0M) CLIP models are pre-
cisely the same under our method as the architectures re-
main unmodified with no additional parameters required.
Also, the average time per training iteration (e.g., 0.253s
for our COCO experiments using 8 Nvidia V100 GPUs)
and memory requirements are effectively identical as well.
Finally, we contrast our self-distillation approach to tradi-
tional knowledge-distillation methods and other choices of
teacher network (e.g., a momentum teacher design), which
may provide similar data-efficiency improvements, but in-
cur significant computational costs of at least 2x compute
and memory requirements or more.

2.3. Prompt Engineering

Table 4 lists the prompt templates used for zero-shot classi-
fication on the evaluation datasets. For each template, string
interpolation replaces the placeholder symbol {} with a text
representation of the category name, and a grammatical cor-
rection is applied to the preceding article, i.e., a → an for
categories that start with a vowel.

2.4. Linear Probe Details

The linear probe evaluation involves training a logistic re-
gression classifier on the frozen visual features extracted us-
ing the model’s image encoder. Following CLIP [8], we
train the logistic regression for a maximum of 1000 iter-
ations using the L-BFGS optimization algorithm provided
by scikit-learn [7]. We use the train/test split sizes listed in
Table 2.

3. Comparison to Concurrent Works
In this section, we provide a comparison of our work to un-
published concurrent works.
While the concurrent works discussed in this section are
aimed at improving on CLIP, they altogether vary along sev-
eral dimensions including pretraining dataset, backbone ar-
chitecture, hyperparameters and training details. Due to the
large number of unique experimental configurations, it is
not feasible to precisely replicate the setting of each concur-
rent work; therefore, we provide our most closely matched
experiments while acknowledging that the comparisons are
not exactly one-to-one analogs.

Table 5 lists the commonly reported ImageNet zero-shot
Top 1 accuracy achieved by concurrent methods aimed at
reproducing CLIP and/or addressing its limitations. Each
work additionally provides a re-implementation of CLIP
(listed as CLIP impl. followed by a citation). Even for ar-
chitecture and dataset matched experiments, the difference

in accuracy can differ by as much as 4.8% (compare [6]
and [8]), further highlighting the challenges of providing
meaningful comparison. From the perspective of raw per-
formance, our method achieves the highest absolute top 1
accuracy on zero-shot ImageNet classification out of all ap-
proaches and architectures that use at most 15M pretraining
examples.

Dataset Method Architecture ImageNet

YFCC (15M)

CLIP impl. [9] ViT-B/32 30.4
FILIP [9] ViT-B/32 37.8
CLOOB [3] RN50 35.7
CLOOB [3] RN101 37.1
CLOOB [3] RN50x4 39.0
CLIP impl. [6] RN50 35.9
DeCLIP [6] RN50 41.9
OpenAI CLIP [8] RN50 31.3
OpenCLIP [4] RN50 32.7
OpenCLIP [4] RN101 34.8

CC3M

OpenCLIP [4] RN50x4 22.2
CLIP impl. [3] RN50 23.9
CLOOB [3] RN50 25.6
DeCLIP [6] RN50 27.8
CLIP impl. (ours) ViT-B/32 23.5
Our method ViT-B/32 28.0

CC12M
CLIP impl. (ours) ViT-B/32 37.8
DeCLIP [6] RN50 41.0
Our method ViT-B/32 42.2

Table 5. Zero-Shot ImageNet Classification Comparison –
Zero-shot Top1 accuracy (%) of our method compared to concur-
rent works.

4. Additional Quantitative Results
4.1. ResNet50 Visual Backbone Results

In order to demonstrate the effectiveness of our method to
a broader experimental setting, we present results from ex-
periments that utilize the widely adopted ResNet50 (RN50)
visual backbone in Table 6. These results are highly consis-
tent with performance trends observed with the ViT back-
bone (even with minimal hyperparameter tuning), suggest-
ing that our method is amenable to CNN-based backbones
as well.

4.2. Ablation Studies for α-scheduling

Our method is fairly robust to the choice of α scheduling.
For example, replacing cosine annealing with a simple lin-
ear schedule produces a network with near identical perfor-
mance on downstream evaluations. Specifically, for COCO
the two scheduling methods result in an absolute mean dif-
ference in top1 classification of 0.13% and relative differ-
ence of 0.67% for our method using a ViT backbone. Simi-
larly, for CC3M we observe an absolute mean difference of
−0.22% and relative difference of −0.63%.



Cifar{10,100} Caltech101 ImageNet+
”a photo of a {}.”,
”a blurry photo of a {}.”,
”a black and white photo of a {}.”,
”a low contrast photo of a {}.”,
”a high contrast photo of a {}.”, ”a bad photo of a {}.”,
”a good photo of a {}.”, ”a photo of a small {}.”,
”a photo of a big {}.”, ”a photo of the {}.”,
”a blurry photo of the {}.”, ”a black and white photo of the {}.”,
”a low contrast photo of the {}.”, ”a high contrast photo of the {}.”,
”a bad photo of the {}.”, ”a good photo of the {}.”,
”a photo of the small {}.”, ”a photo of the big {}.”

“a photo of a {}.”, “a painting of a {}.”, “a plastic {}.”,
“a sculpture of a {}.”, “a sketch of a {}.”, “a tattoo of a {}.”,
“a toy {}.”, “a rendition of a {}.”, “a embroidered {}.”, “a cartoon {}.”,
“a {} in a video game.”, “a plushie {}.”, “a origami {}.”, “art of a {}.”,
“graffiti of a {}.”, “a drawing of a {}.”, “a doodle of a {}.”,
“a photo of the {}.”, “a painting of the {}.”, “the plastic {}.”,
“a sculpture of the {}.”, “a sketch of the {}.”, “a tattoo of the {}.”,
“the toy {}.”, “a rendition of the {}.”, “the embroidered {}.”,
“the cartoon {}.”, “the {} in a video game.”, “the plushie {}.”,
“the origami {}.”, “art of the {}.”, “graffiti of the {}.”,
“a drawing of the {}.”, “a doodle of the {}.”

“{}”
“A photo of {}”
“A photo the {}”
“itap of a {}.”
“a bad photo of the {}.”
“a origami {}.”
“a photo of the large {}.”
“a {} in a video game.”
“art of the {}.”
“a photo of the small {}.”

Table 4. Prompt templates for zero-shot evaluation – The placeholder symbol {} is replaced with a string representation of the category
name. The last column “ImageNet+” corresponds to the templates used for all other datasets that appear in this work, including all of the
ImageNet variants.
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COCO
CLIP 31.12 7.66 27.01 10.56 2.64 5.77 8.9 2.31 5.92 6.59 10.84
Ours 37.85 9.97 33.87 11.17 3.38 6.48 11.7 2.56 6.87 7.48 13.12+2.27

CC3M
CLIP 36.46 14.20 44.81 19.29 3.24 19.28 24.50 3.53 16.95 18.12 20.04
Ours 56.69 24.44 61.93 24.67 5.27 25.96 31.65 4.57 21.65 22.918 27.98+7.94

Table 6. Zero-Shot Image Classification Comparison with RN50 backbone – Zero-shot Top1 accuracy (%) of our method compared to
baseline CLIP on numerous downstream benchmark datasets. Note: Results are derived from published hyperparameters for the baseline
and minimal hyperparameter tuning of our method to account for differences in backbone architecture.

5. Additional Qualitative Results

5.1. Additional Text-Image Retrievals

In Figures 1 and 2, we provide additional text-image re-
trieval results computed on the COCO test set. Consistent
with the retrievals shown in Figure 6 from our main paper,
our method more consistently captures the full semantic ex-
tent of the query caption, whereas the baseline CLIP model
tends to narrowly focus on one particular aspect. For exam-
ple, in the first row of Figure 1, CLIP does retrieve a “black
and white cat,” but also retrieves a black and white dog, a
black and white zebra and a black and white photograph of
boxes, whereas our method retrieves images containing a
cat in 9 out of the 10 top retrievals.

5.2. Additional Robust Classification Examples

In Figure 3, we show qualitative examples of the instances
where our method shows improved robustness over its
CLIP counterpart for out-of-distribution images drawn from
the ImageNet-R dataset. While CLIP struggles to han-
dle certain artistic styles (angular shark depicted in row 1,
goldfinch in row 4, tattooed tree frog in row 6), strong color
patterns (black and white colors in row 3), or subjects in un-
usual contexts (rows 5,7,8), our method is able to more con-
sistently provide a reasonable set of top predictions, which
is consistent with the quantitative improvement of nearly
8.5% on average when considering Conceptual Captions
pretraining as reported in Table 1 of our main paper.

5.3. Similarity Matrix Visualization

In Figure 4, we show a matrix of pairwise cosine similar-
ity scores assigned to a batch of images and corresponding
text snippets by our method compared to its CLIP counter-
part. These similarity matrices present concrete examples
of the trends captured by the distributions shown in Fig-
ure 5 of the main paper. Namely, it shows that CLIP has
been optimized to assign high similarity scores along the
diagonal (positive pairs) and low similarity to off diagonal
elements (negatives), even when there is non-negligible se-
mantic similarity between unpaired instances (e.g., the text
“a black-and-white silhouette...” and the black-and-white
image of a photographer dressed in black clothing) . In con-
trast, our method yields elevated scores for negative pair-
ings that show this amount of secondary similarity. As a
consequence, we empirically observe that our learned rep-
resentations produce larger scores for ground truth positive
pairs and lead to more robust zero-shot classification per-
formance.

6. Ethical Considerations

6.1. Impact on ML and Related Scientific Fields

A primary motivation driving this work is to increase the
robustness and efficiency of a vision-language pretraining
(VLP) method that has recently given rise to a set of so-
called foundation models [1]. Due to the anticipated role
that foundation models are to play in the immediate de-



Figure 1. Example Text-Image Retrievals – Given a text query, we display the top ten most semantically related images (ranked left to
right) retrieved by CLIP and our method. Compared to CLIP, our method continues to retrieve images that more holistically match the text
description, even after the ground truth image has appeared in the ranking.

velopment of AI systems, contributions to advancing the
core training method will have far-reaching impacts on
the field and downstream application areas by definition.
Since improving the efficiency and lowering the computa-
tional/environmental cost associated with this VLP method

is a primary objective of our work, we would like our work
to assist in providing greater accessibility to the study, de-
velopment and deployment of these VLP methods.



Figure 2. Additional Text-Image Retrievals – Given a text query, we display the top ten most semantically related images (ranked left to
right) retrieved by CLIP and our method. Compared to CLIP, our method continues to retrieve images that more holistically match the text
description, even after the ground truth image has appeared in the ranking.

6.2. Impact on Society

Robustness to challenging, novel, and even adversarial ex-
amples is rapidly becoming an extremely important part of
modern computer vision systems, which are now starting to

be deployed in sensitive contexts such as autonomous ve-
hicles [5] and medical applications [2] with life and death
consequences. Additionally, the increasing diversity of data
sources, ranging from massive and cumbersome datasets to
extremely limited and highly sensitive information, poses



several practical and environmental challenges to consis-
tently training robust and reliable machine learning sys-
tems. Our proposed framework aims to address these as-
pects jointly.
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ImageNet-R CLIP Ours

Figure 3. Robustness Examples – Given an image from the ImageNet-R dataset (left column), we compare the predictions of CLIP
(middle column) to the predictions of our method (right column) by showing the probabilities assigned to the top 5 classes.



Figure 4. Visualization of our method’s similarity scores between a batch of eight image-text pairs. The baseline CLIP is optimized
to maximize the diagonal scores and minimize off-diagonal scores, even when there exists non-negligible semantic similarity between
unpaired instances. In contrast, our method yields elevated similarity scores on off-diagonal elements when there is increased semantic
similarity between unpaired instances (e.g., photographer-to-astronaut pairing and the black-and-white-to-photographer-to-page of text
pairing). As a result, we empirically observe larger similarity scores for ground truth positive pairs with our method, which coincides with
improved downstream zero-shot classification performance.


