
Supplemental material: Learned Queries for Efficient Local Attention

Moab Arar
Tel-Aviv University

Ariel Shamir
Reichman University

Amit H. Bermano
Tel-Aviv University

Stage

Figure 1. QnA attention visualization of different heads. To vi-
sualize a specific location’s attention score, we sum the attention
scores obtained for that location in all windows. Attention maps
are upsampled and overlaid on top of the image for better visual-
ization.

1. Attention visualization
In QnA, the aggregation kernel of each window is de-

rived from the attention scores between the learned queries
and the window keys. To visualize the attention of the
whole image, we choose to sum the scores of each location
as obtained in all relevant windows. You can find the visu-
alization in Figure 1. As shown in Figure 1, the attentions
are content-aware, suggesting the window aggregation ker-
nels are spatially adaptive. For the learned kernels in each
window, please refer to Figure 2.

2. Full training details
2.1. Image Classification

We evaluate our method using the ImageNet-1K [24]
benchmark, which contains 1.28M training images and
50,000 validation images from 1,000 classes. We follow the
training recipe of DEiT [26], except we omit EMA [22] and
repeated augmentations [11]. Particularly, we train all mod-
els for 300-epochs, using the AdmaW [15, 20] optimizer.
We employ a linearly scaled learning rate lr = 5e-4 ·
Batch size

256 [9], with warmup epochs [19] varying according

Stage 1 Stage 3

Figure 2. QnA aggregation kernels visualization. The attention
kernels are tiled in the visualization, instead of overlapped, caus-
ing the uniform grid effect. Brighter areas indicate higher attention
scores. (best viewed when zoomed-in).

to model size and weight decay wd = 5e-2. For aug-
mentations, we apply RandAugment [6], mixup [33] and
CutMix [32] with label-smoothing [31], and color-jitter [5].
Finally, an increasing stochastic depth is applied [14]. Note
this training recipe (with minor discrepancy between previ-
ous papers), is becoming the standard when training a Vi-
sion Transformer on the ImageNet benchmark. Finally, we
normalize the queries in all QnA layers to be unit-vectors
for better training stability.

2.2. Object Detection

We train the DETR model on COCO 2017 detection
dataset [17], containing 118K training images and a 5k val-
idation set size. We utilize the training setting of DETR,
in which the input is resized such that the shorter side
is between 480 and 800 while the longer side is at most
1333 [29]. An initial learning rate of 1e− 4 is set for the
detection transformer, and 1e− 5 learning rate for the back-
bone network. Due to computational limitations, we use a
short training scheduler of 75 epochs with a batch size of
32. The learning rates are scaled by 0.1 after 50 epochs. We
trained DETR using the implementation in [7].

3. QnA-ViT architecture
The QnA-ViT architecture is composed of transformer

blocks [8] and QnA blocks. First we split the image into

1



4×4 patches, and project them to form the input tokens. The
vision transformer block is composed of a multihead atten-
tion layer (MSA) and an inverted-bottleneck feed forward
network (FFN), with expansion 4. The output of block-l is:

z′l = MSA (LayerNorm(zl−1)) + zl−1

zl = FFN (LayerNorm(z′l)) + z′l.

The QnA block shares a similar structure, except we re-
place the MSA layer with QnA layer. Downampling is
performed using QnA blocks with stride set to 2 (to en-
able skip-connections we use 1×1-convolution with similar
stride). We employ pre-normalization [30] to stabilize train-
ing. Finally, we use global average pooling [16] right before
the classification head, with LayerNorm [1] employed prior
to the pooling operation. Full architecture details can be
found in Table 1.

4. Implementation & complexity - extended
In this section we provide full details on the efficient im-

plementation of QnA. To simplify the discussion, we only
consider a single-query without positional embedding.

Let us first examine the output of a QnA layer, by ex-
panding the softmax operation inside the attention layer:

zi,j = Attention
(
q̃, KNi,j

)
· VNi,j

=

∑
Ni,j

eq̃Kn,mvn,m∑
Ni,j

eq̃Kn,m
.

Recall,Ni,j is the k×k-window at location (i, j). While
it may seem that we need to calculate the query-key dot
product for each window, notice that since we use the same
query over each window, then we can calculate q̃KT once
for the entire input. Also, we can leverage the matrix mul-
tiplication associativity and improve the computation com-
plexity by calculating q̃WT

k first (this fused implementation
reduces the memory by avoiding the allocation of the key
entities). Once we calculate the query-key dot product, we
can efficiently aggregate the dot products using the sum-
reduce operation supported in many deep learning frame-
works (e.g., Jax [3]). More specifically, let Sumk(. . . ) be
a function that sums-up values in each k× k-window, then:

zi,j =

∑
Ni,j

eq̃Kn,mvn,m∑
Ni,j

eq̃Kn,m
=

Sumk

(
eq̃K

T ∗ V
)

Sumk

(
eq̃KT

) ,

where * is the element wise multiplication. A pseudo-code
of our method can be found in Algorithm 1. We further
provide a code-snippet of the QnA module, implemented in
Jax/Flax [4, 10] (see Figure 3).

Complexity Analysis: in the single query variant, ex-
tracting the values and computing the key-query dot prod-
uct require 2HWD2 computation and HW +HWD extra

space. Additionally, computing the softmax using the above
method requires additional O(k2HWD) computation (for
summation and division), and O(HWD) space (which is
independent of k, i.e., the window size). For multiple-
queries variant (L = 2), see empirical comparison in the
main paper.

Algorithm 1 Efficient implementation of QnA. All oper-
ations can be implemented efficiently with little memory-
overhead. Further, Sumk applies sum-reduction to all ele-
ments in each k × k-window.

Input: X ∈ RH×W×D

Parameters: WK ,WV ∈ RD×D, q̃ ∈ RD

// Compute values:
1: V ← XWV

// Compute the query-key dot product ( S← q̃KT):
2: Let A← q̃WT

K

3: for l ∈ [L] , i, j ∈ [H]× [W ] do
4: Sl,i,j ← Al,i,j ·XT

i,j

5: end for
// Compute the final output:

6: Let B ← eS be the element-wise exponent of S
7: Let C ← B ∗ V ▷ ∗ is the element-wise product
8: return Sumk(C)/Sumk(B)

5. Design choices - full report
5.1. Number of queries

To verify the effectiveness of using multiple queries, we
trained a lightweight QnA-ViT network composed of local
self-attention blocks and QnA blocks. We set the window
size of all local self-attention layers to be 7x7, and we use
a 3x3 receptive field for QnA layers. All the downsam-
pling performed are QnA-Based. A similar architecture was
used for the SASA [21] baseline, where we replaced the
QnA layers with SASA layers. The number of QnA/SASA
blocks used for each stage are [2, 2, 2, 0] and the number of
local self-attention blocks are [1, 1, 5, 2].

5.2. Number of heads

As stated in the main text, using more attention heads
is beneficial for QnA. More specifically, we conducted two
experiments, one where we use only QnA blocks and the
second where we use both QnA blocks and self-attention
blocks. In the first experiment, we use the standard Ima-
geNet training preprocessing [25], meaning we employ ran-
dom crop with resize and random horizontal flip. In the sec-
ond experiment, we used DeiT training preprocessing. We
show the full report in Table 2 and Table 3.

First, from Table 2, we notice that training shallow QnA-
networks for fewer epochs requires many attention heads.



Stage Output QnA-T QnA-S QnA-B
QnA Blocks SA Blocks QnA Blocks SA Blocks QnA Blocks SA Blocks

1 56x56 4x4 Conv, stride 4, dim 64 4x4 Conv, stride 4, dim 64 4x4 Conv, stride 4, dim 963x3 QnA-Block,
stride 1,
head 8

× 2 None

3x3 QnA-Block,
stride 1,
head 8

× 2 None

3x3 QnA-Block,
stride 1,
head 6

× 2 None

2 28x28 3x3 QnA, stride 2, head 16, dim 128 3x3 QnA, stride 2, head 16, dim 128 3x3 QnA, stride 2, head 16, dim 1923x3 QnA-Block,
stride 1,
head 16

× 3 None

3x3 QnA-Block,
stride 1,
head 16

× 3 None

3x3 QnA-Block,
stride 1,
head 12

× 3 None

3 14x14 3x3 QnA, stride 2, head 32, dim 256 3x3 QnA, stride 2, head 32, dim 256 3x3 QnA, stride 2, head 32, dim 3843x3 QnA-Block,
stride 1,
head 32

× 2

 SA-Block,
win sz. 14 x 14,

head 8

× 4

3x3 QnA-Block,
stride 1,
head 32

× 6

 SA-Block,
win sz. 14 x 14,

head 8

× 12

3x3 QnA-Block,
stride 1,
head 24

× 6

 SA-Block,
win sz. 14 x 14,

head 12

× 12

4 7x7 3x3 QnA, stride 2, head 64, dim 512 3x3 QnA, stride 2, head 64, dim 512 3x3 QnA, stride 2, head 48, dim 768

None

 SA-Block,
win sz. 7 x 7,

head 16

× 2 None

 SA-Block,
win sz. 7 x 7,

head 16

× 2 None

 SA-Block,
win sz. 7 x 7,

head 24

× 2

Table 1. QnA-ViT architecture details. QnA is used to down-sample the feature maps between two consecutive stages. In stage 3 we first
employ global self-attention blocks.

1 class QnA(nn.Module):
2 @nn.compact
3 def __call__(self, X):
4 # Initialize Parameters:
5 Q = # Query vectors [L, h, D//h]
6 Wk = # Linear Projection for keys [D, D]
7 Ws = # Attention weight scale [k, k, L * h]
8 B_rpe = #Relative PE [k, k, L * h]
9 # Fused implementation of Q*(X*W_K).Transpose

10 Wk = Wk.reshape([-1, heads, D // heads])
11 QWk = jnp.einsum(’lhd,Dhd->Dlh’, Q, Wk)
12 QK_similariy = jnp.einsum(’BHWD,BDqh->BHWqh’, X, QWk)
13 # Compute V
14 V = nn.Dense(D)(X).reshape([B, H, W, heads, D // heads])
15 # Compute Attention:
16 exp_similarity = jnp.exp(QK_similariy) # [B, H, W, L, h]
17 exp_similarity_v = exp_similarity[..., jnp.newaxis] * V[:,:,: jnp.newaxis,:] # [B, H, W, L, D]
18 aux_kernel = (jnp.exp(B_rpe) * Ws).repeat(repeats=D // heads, axis=-1) # [k, k, d, L*h]
19 A = jax.lax.conv_general_dilated(exp_similarity_v.reshape([B, H, W, LD]),
20 aux_kernel, window_strides=[s, s], padding=’SAME’,
21 feature_group_count=L * D,).reshape([B, H_out, W_out, L, heads, D // heads

])
22 A = jnp.reshape(A, [B, H_out, W_out, L, heads, D // heads])
23 aux_kernel = jnp.exp(B_rpe) # [k, k, 1, L*h]
24 B = jax.lax.conv_general_dilated(exp_similarity.reshape([B, H, W, -1]),
25 aux_kernel,
26 window_strides=[s, s],
27 padding=’SAME’,
28 dimension_numbers=_conv_dimension_numbers(I.shape)
29 ).reshape([B, H_out, W_out, L, heads, 1])
30 out_heads = jnp.sum(A / B, axis=-2).reshape([B, H_out, W_out, D])
31 final_out = nn.Dense(self.D)(out_heads)
32 return final_out

Figure 3. Code snippet of the QnA module implemented in Jax [4] and Flax [10].

Furthermore, it is better to maintain a fixed dimension head
across stages - this is done by doubling the number of heads
between two consecutive stages. For deeper networks, the
advantage of using more heads becomes less significant.
This is because the network can capture more feature sub-
spaces by leveraging its additional layers. Finally, when
using both QnA and ViT blocks, it is still best to use more

heads for QnA layers, while for ViT blocks, it is best to
use a high dimension representation by having fewer heads
(see Table 3).

5.3. How much QnA do you really need?

To understand the benefit of using QnA layers, we con-
sider a dozen network architectures that combine vanilla



QnA Blocks Heads AugReg Epochs Top-1 Acc.

[2,2,2,2]

[2,2,2,2]

None 90

68.33
[4,4,4,4] 69.05
[8,8,8,8] 69.98
[2,4,8,16] 70.08
[4,8,16,32] 70.54
[8,16,32,64] 71.12

[3,4,6,3]
[2,4,8,16]

None 90
72.66

[4,8,16,32] 72.82
[8,16,32,64] 73.02

Table 2. The affect of number of heads on QnA. We train two
networks using the Inception preprocessing [25], i.e., random crop
and horizontal flip. We set the number of QnA blocks according
to the ResNet-18 and ResNet-50 networks (the number of blocks
for each stage is stated in the first column). As can be seen, using
fixed head-dimension is better than increasing the head-dimension
as we propagate through the network. Shallow networks benefit
from having many heads, while deeper networks gain less from
more heads. Therefore we suggest increasing the head-dimension
for deeper networks for better memory utilization.

Blocks Heads AugReg Epochs Top-1 Acc.QnA SA QnA SA

[1,2,3,0] [1,1,3,2]

[2,4,8,16] [2,4,8,16]

DeiT [26] 90

78.17
[4,8,16,32] [4,8,16,32] 79.24
[8,16,32,64] [8,16,32,64] 79.34
[8,16,32,64] [2,4,8,16] 79.31
[8,16,32,64] [4,8,16,32] 79.53

[1,2,3,0] [1,1,3,2] [8,16,32,64] [2,4,8,16] DeiT [26] 300 81.5
[8,16,32,64] [4,8,16,32] 81.49

Table 3. The number of heads affect on QnA and ViT Blocks.
QnA still benefits from more heads, while ViT blocks need higher-
dimension representation, specially for longer training.

ViT and QnA blocks. For ViT blocks, we tried to use global
attention in the early stages but found it better to use lo-
cal self-attention and restrict the window size to be at most
14x14. We group the architecture choices into three groups:

1. We consider varying the number of QnA blocks in the
early stages.

2. We change the number of QnA blocks in the third
stage.

3. We use lower window size for the local-self attention
blocks. Namely, 7x7 window in all ViT blocks at all
stages.

Finally, all networks were trained for 300 epochs following
DeiT preprocessing. The full report can be found in Table 4.

From Table 4, local-self attention is not very beneficial
in the early stages and can be omitted by using QnA blocks
only. Furthermore, it is better to use more ViT blocks in

Blocks Params GFLOPS Top- AccQnA SA

Changes in stages 1, 2

[1,1,4,0] [3,3,3,2] 16.62M 3.200 81.70
[2,2,4,0] [2,2,3,2] 16.51M 2.909 81.74
[3,3,4,0] [1,1,3,2] 16.40M 2.875 81.86
[4,4,4,0] [0,0,3,2] 16.30M 2.584 81.83

Changes in stage 3

[4,4,7,0] [0,0,0,2] 16.00M 2.631 80.8
[4,4,5,0] [0,0,2,2] 16.25M 2.698 81.30
[4,4,3,0] [0,0,4,2] 16.40M 2.628 81.9
[4,4,1,0] [0,0,6,2] 16.55M 2.714 81.9

Local SA with window size 7× 7

[1,1,1,0] [2,2,6,2] 16.38M 2.568 80.0
[2,2,2,0] [1,1,5,2] 16.3M 2.491 80.6
[2,2,3,0] [1,1,4 ,2] 16.23M 2.471 80.7
[2,2,4,0] [1,1,3, 2] 16.16M 2.450 80.8

Table 4. How much QnA do you really need? - full report. The
number of QnA and local self-attention (SA) blocks in each stage
are indicated in the first row. In the first two sub-tables, a window
size of 14 × 14 except in the last stage, where a 7 × 7 window
size was set. In the last sub-table, we reduce the window size to
become 7× 7 for all stages.

deeper stages, but we can still reduce the network’s latency
by having some QnA blocks. Finally, when using a lower
window size, the local self-attention becomes less effective.
Moreover, since QnA is shift-invariant, it can mitigate the
lack of cross-window interactions, reflected in the improve-
ment gain we achieve when using more QnA blocks.

6. QnA variants - extended
As discussed in the paper, we incorporate multi-head at-

tention and positional embedding in our layer.

Positional Embedding self-attention is a permutation in-
variant operation, meaning, it doesn’t assume any spatial
relations between the input tokens. This property is not de-
sirable in image processing, where relative-context is im-
portant. To alleviate this, position encoding can be injected
into the self-attention mechanism. Following recent litera-
ture, we use relative-positional embedding [2,12,13,23,28].
This introduces a spatial bias into the attention scheme, ren-
dering Equation 3 (from the main text) now to be:

Attention (Q,K) = Softmax
(
QKT /

√
D +B

)
, (1)

where B ∈ Rk×k is a learned relative positional encoding.
Note, different biases are learned for each query in the QnA
layer, which adds O(L× k2) additional space.



Multi-head attention: as in the original self-attention
layer [27], we use multiple heads in order to allow the QnA
layer to attend different features simultaneously. In fact, as
we will show in Section 5.2, using more attention heads is
beneficial to QnA.

In mutli-head attention, all queries Q, keys K, and val-
ues V entities are split into h sub-tensors, which will cor-
respond to vectors in the lower dimensional space RD/h.
More specifically, let Q(i),K(i), V (i) be the i-th sub vector
of each query, key and value, respectively, the self-attention
of head-i becomes:

headi = Attention
(
Q(i),K(i)

)
V (i)

= Softmax
(
Q(i)K(i)T /

√
dh +B

)
V (i),

(2)

, where dh = D/h, and the output of the Multi-Head At-
tention (MHA) is:

MHA (Q,K, V ) =

Concat (head1, . . . , headh)WO

(3)

, where WO ∈ RD×D is the final projection matrix.

Upsampling via QnA as stated in the paper, upsampling
by factor s can be defined using s2-learned queries, i.e., Q̃ ∈
Rs2×D. To be precise, the output of each window Ni,j is
expressed via:

zi,j = Attention
(
Q̃,KNi,j

)
· VNi,j . (4)

Note, the window output given by Eq. (4) is now a matrix
of size s2 × D, and the total output Z is a tensor of size
H ×W × s2 × D. To form the upsampled output Zs, we
need to reshape and permute the tensor’s axes:

Zs
(1) = Reshape(Z, [H,W, s, s,D])

Zs
(2) = Permute(Zs

(1), [0, 2, 1, 3, 4])

Zs = Reshape(Zs
(2), [H × s,W × s,D]).

(5)

7. QnA as an upsampling layer
In the paper we showed how QnA can be used as an

upsampling layer. In particular, we trained a simple auto-
encoder network, composed of five downsampling layers
and 5 upsampling layers. We use the L1 reconstruction loss
as an objective function to train the auto-encoder. We con-
sidered three different encoder layers:

• ConvS2-IN: 3x3 convolution with stride 2 followed by
Instance Normalization layers

• Conv-IN-Max: 3x3 convolution with stride 1 fol-
lowed by Instance Normalization layer and max-
pooling with stride 2

• LN-QnA: Layer norm followed by a 3x3 single-query
QnA layer

and three different decoder layers:

• Bilinear-Conv-IN: x2 bilinear up-sampling followed
by 3x3 convolution and instance normalization

• ConvTranspose-IN: a 2d transposed convolution fol-
lowed by Instance Norm

• LN-UQnA: Layer Norm followed by a 3x3 upsam-
pling QnA layer

For our baseline networks, we found it best to use Conv-
In-Max in the encoder path, and chose either Bilinear-
Conv-In or ConvTranspose-IN for the decoder path. For
QnA based auto-encoders, we use QnA layers for both
downsampling and upsampling.

We use the CelebA dataset [18], where all images are
center-aligned and resized to resolution 2562. All net-
works were trained for 10-epochs, using the Adam [15] op-
timizer (learning rates were chosen according to the best
test-loss).

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton.

Layer normalization, 2016. 2
[2] Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan Yang,

Xiaodong Liu, Yu Wang, Jianfeng Gao, Songhao Piao, Ming
Zhou, and Hsiao-Wuen Hon. Unilmv2: Pseudo-masked lan-
guage models for unified language model pre-training. In
Proceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research,
pages 642–652. PMLR, 2020. 4

[3] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. 2

[4] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. 2, 3

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey E. Hinton. A simple framework for contrastive learn-
ing of visual representations. In Proceedings of the 37th In-
ternational Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pages 1597–1607. PMLR,
2020. 1



[6] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le.
Randaugment: Practical automated data augmentation with
a reduced search space. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin, editors, Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. 1

[7] Mostafa Dehghani, Alexey Gritsenko, Anurag Arnab,
Matthias Minderer, and Yi Tay. Scenic: A JAX library
for computer vision research and beyond. arXiv preprint
arXiv:2110.11403, 2021. 1

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition
at scale. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021. 1

[9] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
SGD: training imagenet in 1 hour. CoRR, abs/1706.02677,
2017. 1

[10] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Rit-
ter, Bertrand Rondepierre, Andreas Steiner, and Marc van
Zee. Flax: A neural network library and ecosystem for JAX,
2020. 2, 3

[11] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten
Hoefler, and Daniel Soudry. Augment your batch: Improving
generalization through instance repetition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8129–8138, 2020. 1

[12] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen
Wei. Relation networks for object detection. In 2018
IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2018, Salt Lake City, UT, USA, June 18-
22, 2018, pages 3588–3597. Computer Vision Foundation /
IEEE Computer Society, 2018. 4

[13] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local
relation networks for image recognition. In 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019, pages
3463–3472. IEEE, 2019. 4

[14] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-
ian Q. Weinberger. Deep networks with stochastic depth. In
Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, ed-
itors, Computer Vision - ECCV 2016 - 14th European Con-
ference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part IV, volume 9908 of Lecture Notes in Com-
puter Science, pages 646–661. Springer, 2016. 1

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 1, 5

[16] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-
work. In Yoshua Bengio and Yann LeCun, editors, 2nd In-
ternational Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings, 2014. 2

[17] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.
Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva
Ramanan, Piotr Doll’a r, and C. Lawrence Zitnick. Microsoft
COCO: common objects in context. CoRR, abs/1405.0312,
2014. 1

[18] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In ICCV, pages
3730–3738. IEEE Computer Society, 2015. 5

[19] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient
descent with warm restarts. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net, 2017. 1

[20] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019. 1

[21] Niki Parmar, Prajit Ramachandran, Ashish Vaswani, Irwan
Bello, Anselm Levskaya, and Jon Shlens. Stand-alone
self-attention in vision models. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 68–80, 2019. 2

[22] Boris T Polyak and Anatoli B Juditsky. Acceleration of
stochastic approximation by averaging. SIAM journal on
control and optimization, 30(4):838–855, 1992. 1

[23] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. Exploring the limits of transfer learning with
a unified text-to-text transformer. J. Mach. Learn. Res.,
21:140:1–140:67, 2020. 4

[24] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. 1

[25] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2015, Boston, MA, USA, June
7-12, 2015, pages 1–9. IEEE Computer Society, 2015. 2, 4

[26] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In Marina Meila and Tong Zhang, editors, Proceed-
ings of the 38th International Conference on Machine Learn-
ing, ICML 2021, 18-24 July 2021, Virtual Event, volume



139 of Proceedings of Machine Learning Research, pages
10347–10357. PMLR, 2021. 1, 4

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pages
5998–6008, 2017. 5

[28] Kan Wu, Houwen Peng, Minghao Chen, Jianlong Fu, and
Hongyang Chao. Rethinking and improving relative posi-
tion encoding for vision transformer. CoRR, abs/2107.14222,
2021. 4

[29] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 1

[30] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin
Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan, Liwei
Wang, and Tie-Yan Liu. On layer normalization in the trans-
former architecture. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 10524–10533. PMLR, 2020. 2

[31] Li Yuan, Francis E. H. Tay, Guilin Li, Tao Wang, and Jiashi
Feng. Revisiting knowledge distillation via label smoothing
regularization. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020, pages 3902–3910. Computer Vision
Foundation / IEEE, 2020. 1

[32] Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon
Oh, Youngjoon Yoo, and Junsuk Choe. Cutmix: Regulariza-
tion strategy to train strong classifiers with localizable fea-
tures. In 2019 IEEE/CVF International Conference on Com-
puter Vision, ICCV 2019, Seoul, Korea (South), October 27
- November 2, 2019, pages 6022–6031. IEEE, 2019. 1

[33] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In 6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net,
2018. 1


