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Overview
This supplementary file provides details and results in addition to the main manuscript. Furthermore, codes and dataset
are available at https://github.com/ozgurkara99/ISNAS-DIP.

1 Deep Image Prior
In deep image prior, the network fθ is enforced to map the noise z to the uncorrupted version of the corrupted image
x0 by minimizing the following objective functions with respect to θ depending on the task of interest, and stopping the
optimization at a pre-determined iteration point to prevent overfitting. We follow DIP [1] and optimize the following
objectives:

Ldenoising(θ) = ||fθ(z)− x0||2 (1)

Linpainting(θ) = ||(fθ(z)− x0)⊗M ||2 (2)

Lsuperresolution(θ) = ||D(fθ(z))− x0||2 (3)

where D(·) denotes the downsampling operator, ⊗ denotes pixel-wise multiplication, and M denotes the mask for in-
painting.

2 Exponential Averaging
Inspired by DIP [1], we take the average of the reconstructed predictions xt as our final image. Unlike DIP [1] and
NAS-DIP [2], we did the averaging not only for image denoising but also for other tasks as well since we saw that it
substantially improves the quality in all tasks. Note that we used exponential averaging for all approaches, i.e. DIP [1],
NAS-DIP [2] and ISNAS-DIP. It is formulated as follows:

x∗ = γ(T−1) · x1 +
T∑
t=2

xt · γT−t · (1− γ) (4)

where x∗ denotes the final result, T denotes the total iteration number, xt denotes the restored output at tth iteration, and
γ is selected to be 0.99.
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3 Architecture Selection
We plot the normalized1 PSNR increase scores for each model in NAS Dataset for DIP as shown in Fig. 1. Each subplot
represents normalized PSNR increase scores for different image pairs. Models are sorted according to their normalized
PSNR increase scores measured for the reference image (depicted with blue line) and evaluated on the target image
(depicted with orange line). We select “chest” as our reference image since it belongs to a different domain as opposed to
other images.

Figure 1: Normalized PSNR increase scores for each model in NAS Dataset. Each subplot corresponds to the scores of
models that are sorted in descending order according to their scores on the “reference image” (blue line) and evaluated
on the “target image” (orange line). Red dashed line depicts the normalized PSNR increase score of the best model of
reference image evaluated on target image. Green dashed line shows the normalized PSNR increase score of the best
model of the target image

As can be seen in Fig. 1, although the trend of the orange line is similar to that of reference image apparently; same
models tend to perform differently. Furthermore, the worst models for the reference image may perform better on the
target image.

The gap between green and red dashed line show how much the performance differs between best model for reference
image and best model of the target image both evaluated on target image. For instance, we observe a large gap between
the dashed lines for chest and barbara images due to the difference in domains that each belongs to.

4 Correlation between optimal stopping point
We observed that different models within the same search space have different optimal stopping points as shown in Fig. 2.
We questioned if the optimal stopping point is an architectural property or not. In light of these questions, we report the
correlations between our metrics and optimal stopping points as represented in Table 1. Surprisingly, there is a strong
correlation between our metrics and the optimal stopping point. Our work will be extended by further investigation of the
detection of optimal stopping point utilizing the proven strong correlation.

1We normalized the data by subtracting mean and dividing the deviation as follows: xnormalized = x−mean
std
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Figure 2: PSNR curve of different models optimized for the
“barbara” image
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N GT N GT N GT N/GT

misc 0.24 -0.06 -0.45 -0.45 -0.44 -0.44 -0.39
lena 0.30 -0.40 -0.41 -0.41 -0.43 -0.43 -0.38
barbara 0.33 -0.43 -0.46 -0.46 -0.47 -0.47 -0.41
couple 0.28 -0.39 -0.40 -0.40 -0.43 -0.44 -0.36
chest 0.32 -0.36 -0.19 0.15 -0.40 -0.40 -0.34
man 0.28 -0.40 -0.41 -0.42 -0.44 -0.44 -0.37
palace 0.27 -0.35 -0.36 -0.37 -0.40 -0.40 -0.34
blood 0.20 -0.22 0.20 0.17 -0.06 0.04 -0.18
f16 0.28 -0.41 -0.42 -0.42 -0.43 -0.43 -0.38
boat 0.30 -0.41 -0.40 -0.40 -0.43 -0.43 -0.37

Table 1: Kendall correlation values between the optimal
stopping points and corresponding metrics for image de-
noising task. MSE metrics are calculated either with the
noisy image (denoted as N) or with the ground truth image
(denoted as GT).

5 Histograms
Fig. 3 shows the distribution of the final PSNR scores of the 522 models for both image denoising (a) and image inpainting
(b). Note that the best-performing model found with PSD DB Strip MSE metric is shown with red for N=15 and black for
N=5 case.

(a) Denoising

(b) Inpainting

Figure 3: Histograms of the final PSNR scores of models for all images in the NAS Dataset for DIP for image denoising
and image inpainting . Non-blue colored bars represent the final PSNR scores of the best models included in top-N models
found by PSD DB Strip MSE metric. The bin depicted with red denotes the best model among N=15 models, the black
bin denotes the best one among N=5 models.
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6 Qualitative Analysis
We show 2 more qualitative examples for denoising and inpainting tasks in Fig. 4.

(a) Inpainting

(b) Denoising

Figure 4: Qualitative examples of image inpainting (a), and image denoising (b) tasks. Each column shows the images of
ground truth, corrupted image, reconstructed images of DIP [1], NAS-DIP [2], and ISNAS-DIP, respectively.

7 Super-resolution Results
Fig. 5 shows the performance of NAS-DIP [2] and our method on a super-resolution image with ×2 scale. It is evident in
the example that our method is not good at producing finer details since it tends to select models having more low-pass
characteristics. Hence, it is not able to outperform previous approaches, indicating the need for a different metric for
super-resolution.

(a) Ground Truth (b) NAS-DIP [2] (c) ISNAS-DIP

Figure 5: A qualitative example for super-resolution ×2
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8 Histogram Analysis with Random Selection
In Fig. 6, we additionally provide the resulting PSNR of the best performing models among a random selected 15 models
10 times, which is shown with yellow bin. In other words, at each time, we select 15 different models randomly, and
record the best performing model’s PSNR among these, and repeat this procedure 10 times to take the average. Whereas
this is similar to the PSNR of the best model selected by the PSD DB Strip MSE metric it should be noted that it is not a
deterministic selection process in contrast to our proposed method and can thus fail unexpectedly. Thus, in order to make
a fair comparison, the variances should be noted.

Figure 6: Histograms of the final PSNR scores of models for all images in the NAS Dataset for DIP for image denoising
and image inpainting . Red and black colored bars represent the final PSNR scores of the best models included in top-N
models found by PSD DB Strip MSE metric. The bin depicted with red denotes the best model among N=15 models,
the black bin denotes the best one among N=5 models. The bin depicted with yellow denotes the average PSNR scores
(which was repeated 10 times) of the models each of which was the best performing model among randomly sampled 15
models.
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