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This supplementary file contains the following support-
ing information about Hyperbolic Image Segmentation: (i)
additional quantitative evaluation on hyperbolic uncertainty,
(ii) additional results for zero-label generalization, and (iii)
qualitative results for zero-label generalization, (iv) the full
hierarchies of all datasets.

1. Boundary information for free
The main paper provides a quantitative correlation anal-

ysis between hyperbolic uncertainty and boundary distance
for 2 embedding dimensions. Figure 1 shows the histogram
of correlations over all images in Pascal VOC for 256 em-
bedding dimensions. The histogram shows that the correla-
tion also holds for high embedding dimensions.

2. Further explanation on colors
While demonstrating the qualitative examples, there can

be a discrepancy in segmentation colors compared to the
pixel embeddings. The discrepancy is due to ambiguity
in the visualization when dealing with pixels of high un-
certainty. The final class logits per pixel are computed as
hyperbolic distances to the gyroplanes. A pixel that looks
closer to a certain gyroplane in the disk visualization can
actually be closer to another gyroplane in the hyperbolic
space. This holds only for gyroplanes that are close to the
boundary of the Poincaré ball and for pixels with high un-
certainty.

3. Zero label generalization
Table 1 provides the results for zero-label generalization

on COCO-Stuff-10k for the sibling and cousin variants of
the three metrics. Similar to the experiment in the main
paper, the standard Euclidean architecture without hierar-
chical knowledge has a near-random performance, while
hyperbolic embedding spaces with hierarchical knowledge
performs best. The s-mIOU increases from 21.17 to 25.60
and c-mIOU increases from 21.83 to 25.72. As such, our
approach performs even better for the hierarchical metrics
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Figure 1. Is hyperbolic uncertainty semantically meaningful?
We find that the per-pixel hyperbolic uncertainty strongly corre-
lates with semantic boundaries for 256 embedding dimensions.

COCO-Stuff-10k
Manifold Hierarchical S-Class Acc S-Pixel Acc S-mIOU

R 2.01 0.55 0.27
R X 7.89 59.96 21.17
D X 9.15 68.02 25.60

COCO-Stuff-10k
Manifold Hierarchical C-Class Acc C-Pixel Acc C-mIOU

R 3.71 0.87 0.37
R X 22.91 60.89 21.83
D X 24.83 68.35 25.72

Table 1. Zero-label generalization on COCO-Stuff-10k. Com-
bining hierarchical knowledge with hyperbolic embeddings pro-
vides a more suitable foundation with respect to sibling and cousin
variants of metrics.

compared to the standard metrics provided in the main pa-
per: the standard mIOU increases 2.62, while s-mIOU and
c-mIOU increase by 4.43 and 3.89.

4. Qualitative zero-label results
In Figure 4, we show qualitative examples of zero-label

experiments. We show outputs of DeepLabV3+ and our ap-
proach given inputs from unseen classes cow, giraffe, river,
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Figure 2. Hyperbolic vs Euclidean uncertainty for examples
from Pascal VOC.

and road from the COCO-Stuff-10K dataset. The red points
show the points classified as the target unseen class. To
generate the output, we select the points for which the joint
probability of animal, animal, water and ground (ancestor
nodes from the dataset hierarchy) is higher than 50%.

5. Dataset hierarchies

In Figures 3, 5, and 6, we provide the full hierarchies
for respectively Pascal VOC [2], COCO-Stuff-10K [1], and
ADE20K [3]. We have created the hierarchies ourselves and
will provide them in the final code repository.
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Figure 3. Pascal VOC dataset full hierarchy.
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Figure 4. Qualitative zero-label results on COCO-Stuff-10K. The red points indicate the points classified as the target unseen class using
both a standard DeepLabV3+ and the same model with hyperbolic embeddings. We find that our approach provides a more precise and
complete picture of unseen classes.



Figure 5. COCO-Stuff-10K dataset full hierarchy.



Figure 6. ADE20K dataset full hierarchy.


