
Learning Neural Light Fields with Ray-Space Embedding

Supplementary Material

Benjamin Attal∗

Carnegie Mellon University
Jia-Bin Huang

Meta

Michael Zollhöfer
Reality Labs Research

Johannes Kopf
Meta

Changil Kim
Meta

https://neural-light-fields.github.io

Abstract

In this document, we provide additional implementation de-
tails, analysis on our embedding network, and experimental
results. See the accompanying web page for more visual
results.

A. Implementation Details

Our code is written entirely in python, using the PyTorch
Lightning framework [2]. The design of our codebase was
inspired by [5]. Below we include additional implementation
details for our method for both the dense dataset (Stanford
Light Field [7]) and sparse forward facing datasets (Real
Forward-Facing [4] and Shiny [8]). We also include informa-
tion about the NeRF [4], NeX [8], and AutoInt [3] baselines.

A.1. Stanford Light Field Dataset

Calibration information is not provided with the Stanford
Light Field dataset, apart from the (x,y) positions of all im-
ages on the camera plane πxy. All Stanford Light Fields are
parameterized with respect to a plane πuv that approximately
cuts through the center of each scene. Thus, a pixel coordi-
nate in an image corresponds the location that a ray intersects
πuv. We heuristically set the location of πxy to z =−1, and
the location of the object plane πuv to z = 0. We scale the
camera positions so that they lie between [−0.25,0.25] in
both x and y, and the pixel coordinates on πuv so they lie
between [−1,1]. The camera positions, and the vector from
the camera origin to the location of the pixel on the object
plane then comprise our ray origins and directions.

For our method, we take camera coordinates and object
plane coordinates, which correspond to intersections of the
rays with πxy and πuv, as our initial two-plane ray parame-
terization.

For NeRF/NeX, we set the near distance to 0.5 and the
far distance to 2 for all scenes, except for the Knights scene,
where we set the near distance to 0.25. Note that, as de-
fined, the scene coordinates may differ from the true (metric)

world space coordinates by a projective transform. However,
multi-view constraints still hold (intersecting rays remain
intersecting, epipolar lines remain epipolar lines), and thus
NeRF is able to learn an accurate volume.

A.2. Real Forward-Facing Dataset

For the Real Forward-Facing Dataset, we perform all ex-
periments in NDC space. For our subdivided model, we
re-parameterize each ray r within a voxel v by first transform-
ing space so that the voxel center lies at the origin. We then
intersect the transformed ray with the voxel’s front and back
planes, and take the xy coordinates of these intersections,
which lie within the range [−voxel width,+voxel width] in
all dimensions as the parameterization.

A.3. Shiny Dataset

Our procedure for evaluating on Shiny [8] is identical to the
Real Forward-Facing dataset. We perform experiments in
NDC space and use a 323 voxel grid that covers all of NDC
space on all scenes except CD/Lab where we use a coarser
43 grid.

A.4. NeRF and AutoInt Baselines

For the Stanford Dataset, we train NeRF for 400k itera-
tions with a batch size of 1,024 for all scenes. For the Real
Forward-Facing dataset, AutoInt does not provide pretrained
models and training with their reported parameters on a
V100 GPU with 16GB of memory leads to out-of-memory
errors. They also do not provide multi-GPU training code.
As such, we report the quantitative metrics for their method
and for NeRF published in their paper, which come from
models trained at the same resolution (504×378), and using
the same heldout views as ours on the Real Forward-Facing
Dataset.

A.5. NeX Baseline

We train NeX on all datasets (Stanford, Undistorted RFF,
Shiny), using their public codebase, for 4000 epochs on all
scenes (the default number of epochs in their training script),

1

https://neural-light-fields.github.io


or about 36 hours each. We use their multi-GPU training
code to split training over 2 16GB V100 GPUs. We note
that NeX can perform real-time rendering after discretizing
their view dependent basis functions into 400×400 textures.
However the NeX codebase does not include evaluation code
for their real-time renderable MPIs, and thus the numbers for
NeX in Table 1 of the main paper are reported before baking.
While this presumably leads to an increase in quality, it takes
a longer time to render images, hence the smaller FPS scores
in Table 1.

B. Importance of Light Field Parameterization
Here, we expand on the discussion in Section 4 of the main
paper and describe why our light field parameterization is
crucial for enabling good view interpolation. Let the two
planes in the initial two plane parameterization be πxy and
πuv, with local coordinates (x,y) and (u,v). In addition, let
us denote the plane of the textured square as πst with local
coordinates (s, t), and assume that it is between πxy and πuv.
Assume, without loss of generality, that the depth of πxy

is 0, and suppose the depths of πst and πuv are zst and zuv
respectively.

For a ray originating at (x̂, ŷ) on πxy and passing through
(ŝ, t̂) on πst , we can write (by similar triangles):

ŝ− x̂ = (û− x̂)
zst

zuv
, (1)

t̂− ŷ = (v̂− ŷ)
zst

zuv
, (2)

which gives

û =
x̂(zst − zuv)+ ŝ

zst
, (3)

v̂ =
ŷ(zst − zuv)+ t̂

zst
. (4)

Recall that the positional encoding of the 4D input parame-
terization γ(x̂, ŷ, û, v̂) will be fed into the light field network.
Thus, the network will produce interpolation kernels aligned
with û and v̂. However for perfect interpolation, we would
like the output of the light field network to only depend on
(ŝ, t̂), or for the interpolation kernels to be aligned with (ŝ, t̂).
It can be observed in equations (3) and (4) that the greater
the distance (zst − zuv), the larger the difference between
(û, v̂) and (ŝ, t̂), and the less aligned the interpolation kernels
become with (ŝ, t̂).

On the other hand, by learning a re-parameterization of
the light field, such that πuv is moved towards πst (i.e. re-
ducing the distance (zst − zuv)), we align the color network’s
interpolation kernels with (ŝ, t̂). As in the feature-embedding
approach, the finite capacity of the light field MLP will drive
the embedding network to learn to map rays intersecting
the same point on the textured square to the same point in

Table B.1. Empirical validation of parameterization. We calcu-
late PSNR, SSIM, and LPIPS for our model without embedding
trained on different initial parameterizations.

πuv location PSNR↑ SSIM↑ LPIPS↓
z = 0 29.631 0.937 0.059
z = 1 24.411 0.848 0.096
z = 3 21.491 0.790 0.146

the latent space—and thus will drive learning of an optimal
re-parameterization that leads to good interpolation.

B.1. Empirical Validation

We claim that quality of a baseline neural light field is corre-
lated with (zst − zuv). In order to support this claim, we per-
form a set of simple experiments with parameterization. In
particular, we choose the Amethyst scene from the Stanford
Light Field dataset [7], which has very little depth variation.
As described in Section A.1, each Stanford light field has
the object plane πst at z = 0. We re-parameterize the input
light field for πuv at z = 0,1,3, train our model without an
embedding network, and report validation metrics, as well
as showing reconstructed epipolar images. See Figure B.1
and Table B.1.

As hypothesized, the models trained with the object plane
closer to z = 0 perform better qualitatively and quantitatively.
While this is, perhaps, an obvious result, we believe that it
is an important one. In particular, it means that light fields
with worse initial parameterization are more difficult to learn,
and supports the result that learning re-parameterization via
local affine transforms vastly improves neural light field
interpolation quality.

B.2. Non-Axis-Aligned Positional Encoding

Positional encoding with non-axis-aligned interpolation ker-
nels (e.g. Gaussian positional encoding [6]) could be seen
as a potential way around the issues discussed above. How-
ever, it is important to note that positional encoding with
any fixed set of interpolation kernels will break down for
certain scenes with different depths/depth ranges. For ex-
ample, this is the case when the interpolation kernels do not
align with the light field’s color level sets, or there are not
enough interpolation kernels to represent high frequencies
for particular directions in the light field. In other words,
no single-set of interpolation kernels works for all scenes,
and ray-space embedding effectively tunes the interpolation
per-scene/per-region in ray space,

C. Embedding Visualization
In Figure C.2 we visualize predicted views, predicted EPIs,
and the embedded ray-space given as input to the color
network for:

2



z = 0 z = 1 z = 3

Figure B.1. Effect of initial parameterization. The top row shows
predicted images, bottom predicted EPIs. Reconstruction becomes
progressively worse for a worse initial parameterization (πuv mov-
ing further and further from the object plane at z = 0).

1. The baseline approach

2. Feature space embedding

3. Local affine transform embedding

For the embedding visualization, RGB colors denote the first
three principal components of embedded ray-space.

Note the wiggling artifacts in the EPI predicted without
embedding (left) . As discussed above, the baseline approach
produces axis-aligned interpolation kernels which are ill-
suited for interpolating slanted color level sets in the EPI.

The feature embedding network (center) learns what is
essentially a set of texture coordinates for the object. It
registers disparate rays that hit the same 3D points, and
interpolates views fairly well, but does not guarantee multi-
view consistency as the embedding network is still under-
constrained for unobserved views.

Although the transforms themselves are not visualized
(it is ray-space after applying the transforms that is visual-
ized), the local affine transform network (right) predicts a
set of transforms that are largely constant. This is because
the depth range of the scene is limited, and a small set of
re-parameterizations works well for all of ray-space. As
the network learns a simpler output signal, it naturally inter-
polates more effectively, even to unobserved views. While
the results for feature embedding and local affine transform
embedding look similar in Figure C.2, we encourage readers
to visit our web-page. It is far easier to see artifacts of the
feature embedding approach in video form.

�

Lego (Ours)
GT Ours NeRF

Figure C.1. We achieve 29.14 dB on the Lego sequence from the
NeRF Synthetic dataset [4] with a 323 voxel grid at 800×800 pixel
resolution, compared to 27.26 dB for AutoInt [3] with 32 sections,
and 32.54 dB for NeRF.

No Embedding Feature Embedding Local Affine Embedding

Figure C.2. Effect of different embeddings. The top row shows
predicted images, middle predicted EPIs, and bottom a visualization
of the embedding space for each method.

D. More Experimental Results

We show per-scene metrics in Tables D.1, D.2, D.3, and D.4.
Additionally, we highly encourage readers to visit our project
webpage, which contains image comparisons for every scene
and video comparisons for a select few scenes.

360 ◦ Scenes. In Figure C.1 we show preliminary results
for our 323 subdivided model with Plücker parameterization
applied to the Lego scene in the NeRF Synthetic [4] dataset.
We use the same evaluation protocol as in NeRF for this
scene. Our PSNR is slightly worse than NeRF, but better
than AutoInt for the same grid resolution. Additionally, in
some regions, we are able to better recover fine-grained
texture on the Lego model.

Student-Teacher Training. We additionally provide re-
sults in Tables D.1 for our method when the input data is
augmented with a 10x10 grid of renderings from a fully
trained NeRF. We label this method as “Ours (w/t),” or our
method with “student-teacher” training. With this approach,
our method outperforms NeRF quantitatively in terms of
PSNR, but at the cost of increased training time.

3



References
[1] Mojtaba Bemana, Karol Myszkowski, Hans-Peter Seidel, and

Tobias Ritschel. X-fields: implicit neural view-, light- and time-
image interpolation. ACM Trans. Graph., 39(6):257:1–257:15,
2020. 5

[2] William Falcon and The PyTorch Lightning team. PyTorch
Lightning, 3 2019. 1

[3] David B Lindell, Julien NP Martel, and Gordon Wetzstein. Au-
toint: Automatic integration for fast neural volume rendering.
In CVPR, 2021. 1, 3, 5

[4] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. In ECCV, 2020. 1, 3, 5

[5] Chen Quei-An. Nerf pl: a pytorch-lightning implementation
of nerf, 2020. 1

[6] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimensional
domains. In NeurIPS, 2020. 2

[7] Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Tal-
vala, Emilio R. Antúnez, Adam Barth, Andrew Adams, Mark
Horowitz, and Marc Levoy. High performance imaging using
large camera arrays. ACM Trans. Graph., 24(3):765–776, 2005.
1, 2, 5

[8] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon Yen-
phraphai, and Supasorn Suwajanakorn. NeX: Real-time view
synthesis with neural basis expansion. In CVPR, 2021. 1, 5

4



Table D.1. Per-scene breakdown results from NeRF’s Real Forward-Facing dataset [4].

Scene
PSNR↑ SSIM↑ LPIPS↓

NeRF [4] AutoInt [3] Ours Ours (w/ t) NeRF [4] AutoInt [3] Ours Ours (w/ t) NeRF [4] AutoInt [3] Ours Ours (w/ t)

Fern 26.92 23.51 24.25 26.06 0.903 0.810 0.850 0.893 0.085 0.277 0.114 0.104
Flower 28.57 28.11 28.71 28.90 0.931 0.917 0.934 0.934 0.057 0.075 0.038 0.053
Fortress 32.94 28.95 31.46 32.60 0.962 0.910 0.954 0.961 0.024 0.107 0.027 0.028
Horns 29.26 27.64 30.12 29.76 0.947 0.908 0.955 0.952 0.058 0.177 0.044 0.062
Leaves 22.50 20.84 21.82 22.27 0.851 0.795 0.847 0.855 0.103 0.156 0.086 0.104
Orchids 21.37 17.30 20.29 21.10 0.800 0.583 0.766 0.794 0.108 0.302 0.103 0.113
Room 33.60 30.72 33.57 34.04 0.980 0.966 0.979 0.981 0.038 0.075 0.037 0.037
T-rex 28.26 27.18 29.41 28.80 0.953 0.931 0.959 0.959 0.049 0.080 0.034 0.040

Table D.2. Per-scene breakdown results from the Undistorted Real Forward-Facing dataset used in NeX [8]

Scene
PSNR↑ SSIM↑ LPIPS↓

NeX [8] Ours NeX [8] Ours NeX [8] Ours

Fern 26.46 24.49 0.913 0.856 0.068 0.107
Flower 29.39 28.93 0.947 0.937 0.041 0.033
Fortress 32.31 31.32 0.963 0.955 0.024 0.026
Horns 29.81 29.88 0.959 0.952 0.039 0.050
Leaves 22.66 21.62 0.879 0.845 0.082 0.082
Orchids 20.51 19.93 0.792 0.754 0.096 0.109
Room 33.40 33.24 0.979 0.978 0.033 0.036
T-rex 29.36 29.44 0.965 0.963 0.037 0.032

Table D.3. Per-scene breakdown results from NeX’s Shiny Dataset [8]

Scene
PSNR↑ SSIM↑ LPIPS↓

NeX [8] Ours NeX [8] Ours NeX [8] Ours

CD 31.92 35.44 0.971 0.980 0.028 0.014
Crest 24.78 24.48 0.870 0.858 0.051 0.052
Food 25.61 25.21 0.905 0.885 0.048 0.053
Giants 28.50 27.99 0.946 0.930 0.038 0.039
Lab 31.20 34.39 0.965 0.982 0.031 0.013
Pasta 23.21 22.11 0.915 0.890 0.045 0.065
Seasoning 31.07 29.48 0.970 0.957 0.028 0.045
Tools 29.86 28.90 0.974 0.968 0.018 0.022

Table D.4. Per-scene breakdown results from the Stanford Light Field dataset [7]

Scene
PSNR↑ SSIM↑ LPIPS↓

NeRF [4] X-Fields [1] NeX [8] Ours NeRF [4] X-Fields [1] NeX [8] Ours NeRF [4] X-Fields [1] NeX [8] Ours

Amethyst 39.746 37.232 39.062 40.120 0.984 0.982 0.983 0.985 0.026 0.032 0.023 0.019
Beans 42.519 40.911 41.776 41.659 0.9944 0.9931 0.9938 0.9933 0.014 0.017 0.016 0.012
Bracelet 36.461 34.112 34.888 36.586 0.9909 0.9857 0.988 0.9913 0.0094 0.0260 0.0152 0.0087
Bulldozer 38.968 37.350 38.131 39.389 0.983 0.986 0.985 0.987 0.063 0.032 0.027 0.024
Bunny 43.370 42.251 42.722 43.591 0.9892 0.9894 0.9885 0.9900 0.029 0.022 0.036 0.013
Chess 41.146 37.996 39.938 40.910 0.9915 0.9882 0.9910 0.9920 0.028 0.034 0.020 0.016
Flowers 37.910 37.590 36.982 39.951 0.977 0.981 0.978 0.984 0.076 0.035 0.036 0.030
Knights 35.978 31.491 35.678 34.591 0.986 0.974 0.986 0.982 0.0142 0.0501 0.0168 0.0143
Tarot (Small) 34.221 30.830 33.134 36.046 0.982 0.975 0.981 0.989 0.014 0.033 0.016 0.006
Tarot (Large) 24.907 24.154 22.487 24.904 0.910 0.893 0.833 0.914 0.059 0.074 0.117 0.039
Treasure 34.761 33.904 32.350 37.465 0.972 0.977 0.967 0.982 0.027 0.041 0.040 0.019
Truck 40.723 38.883 38.292 41.440 0.986 0.984 0.986 0.989 0.087 0.042 0.038 0.033

5


	. Implementation Details
	. Stanford Light Field Dataset
	. Real Forward-Facing Dataset
	. Shiny Dataset
	. NeRF and AutoInt Baselines
	. NeX Baseline

	. Importance of Light Field Parameterization
	. Empirical Validation
	. Non-Axis-Aligned Positional Encoding

	. Embedding Visualization
	. More Experimental Results

