
Frame Averaging for Equivariant Shape Space Learning

A. Additional Details

Here we provide additional details for each experiment
in section 5.

A.1. Global Euclidean Mesh → mesh.

Architecture. We start by describing in full details the
backbone architectures for both the encoder ϕ and decoder
ψ, for all the methods in table 1. Then, we describe the
relevant hyperparmaeters for our Frame Averaging version.
Note that the backbone architectures are similar to the ones
in [5], and are described here again for completeness. The
network consists of the following layers:

Conv(n, din, dout) : Rn×din → Rn×dout

Pool(n, n′) : Rn×d → Rn′×d

Linear(din, dout) : Rdin → Rdout .

The Conv(n, din, dout) is the Chebyshev spectral graph con-
volutional operator [3] as implemented in [5, 12], where n
denotes the number of vertices, and din, dout are the layer’s
input and output features dimensions respectively. All the
Conv(n, din, dout) layers have 6 Chebyshev polynomials.
The Pool(n, n′) layer is based on the mesh down/up sam-
pling schemes defined in [12], where we used the same
mesh samples as provided in [5] official implementation.
The n, n′ are the number of vertices in the input and the
output, respectively. The linear layer is defined by X ′ =
WX+b, where W ∈ Rdout×din and b ∈ Rdout are learnable
parameters.

Moreover, the backbone architecture consists of the fol-
lowing blocks:

EnBlock(n, n′, din, dout) : X ∈ Rn×din 7→ X ′ ∈ Rn×dout

X ′ = Pool(n, n′, dout) (σ (Conv(n, din, dout)))

DeBlock(n, n′, din, dout) : X ∈ Rn×din 7→ X ′ ∈ Rn×dout

X ′ = σ (Conv(n′, din, dout) (Pool(n, n
′, din)(X)))

where σ is the ELU activation function. Then, the encoder

ϕ : R6890×3 → R72 consists of the following blocks:

EnBlock(6890, 3445, 3, 32) →
EnBlock(3445, 1723, 32, 32) →
EnBlock(1723, 862, 32, 32) →
EnBlock(862, 431, 32, 64) → Linear(27584, 72) → .

Similarly, the decoder ψ : R72 → Rn×3 is consisted of
the following blocks:

Linear(72, 27584) → DeBlock(431, 862, 64, 64) →
DeBlock(862, 1723, 64, 32) →
DeBlock(1723, 3445, 32, 32) →
DeBlock(3445, 6890, 32, 32) →
Conv(6890, 6890, 32, 3) → .

For the Frame Averaging versions of these backbone ar-
chitectures, Φ = ⟨ϕ⟩F , and Ψ = ⟨ψ⟩F , we set m = 0 and
d = 24. For the frames construction of Φ and Ψ, F : V →
2E(3) \ ∅, we use the construction defined in section 3.3,
with w = 1. Note that for Φ the frames are calculated with
respect to the input vertices V = X ∈ R6890×3, and for Ψ
the frames are calculated with respect to V = Z ∈ R24×3.

Implementation details. For all methods in table 1, train-
ing was done using the ADAM [6] optimizer, with batch size
64. The number of epochs was set to 150, with 0.0001 fixed
learning rate. Training was done on 2 Nvidia V-100 GPUs.

Evaluation. The quantitative measure reported in table 1,
the average per-vertex distance error (MSE), is based on
the official implementation of [5]. Given a collection of
N test examples {Xi}Ni=1, and corresponding predictions
{Yi}Ni=1, the metric is defined by

MSE =
1

NM

N∑
i=1

M∑
j=1

∥Xij − Yij∥ , (1)

where M is the number of vertices.

1

A.2. Global Euclidean: Point cloud → implicit

Architecture. In this experiment, the backbone encoder
architecture is the same for the baseline VAE and our Frame
Averaging version. The network is based on the design and
implementation of OccupencyNetworks [9]. The encoder
network consists of layers of the form

FC(din, dout) : X ∈ Rn×din 7→ ν
(
XW + 1bT

)
MaxPool : X ∈ Rn×d 7→ [maxXei]

Linear(din, dout) : V ∈ Rdin 7→ W ′V + b′

where W ∈ Rdin×dout , W ′ ∈ Rdout×din , b ∈ Rdout , b′ ∈ Rdout

are the learnable parameters, 1 ∈ Rn is the vector of all
ones, [·] is the concatenation operator, ei is the standard
basis in Rd, and ν is the ReLU activation. Then, we define
the following block:

EnBlock(din, dout) : X 7→
[FC(din, dout/2)(X),1MaxPool(FC(din, dout/2)(X)],

and the encoder ϕ consists of the following blocks:

FC(3, 510) → EnBlock(510, 510) →
EnBlock(510, 510) → EnBlock(510, 510) →

FC(510, 255) → MaxPool
×2→ Linear(255, 255),

where the final two linear layers outputs vectors (µ,η),
with µ ∈ R255 is the latent mean, and η ∈ R255 is the
latent log-standard-deviation.

The decoder, ψ, similarly to [1, 10], is a composition
of 8 layers where the first layer is FC(255 + 3, 512), the
second and third layer are FC(512, 512), the fourth layer
is a concatenation of FC(512, 255) to the input, the fifth
to seventh layers are FC(512, 512), and the final layer is
Linear(512, 1). For the Frame Averaging architecture of Φ
and Ψ, we use the same as the above backbone encoder ϕ
and decoder ψ. We set m = 0 and d = 85. For the frames
construction of Φ and Ψ, F : V → 2E(3) \ ∅, we use the
construction defined in section 3.3, with w = 1. Note that
for Φ the frames are calculated with respect to the input
point cloud V = X ∈ R6400×3, and for Ψ the frames are
calculated with respect to V = Z ∈ R85×3.

Implementation details. For all methods in table 2, train-
ing was done using the ADAM [6] optimizer, with batch
size 64. The number of epochs was set to 4000, with
0.0001 fixed learning rate. Training was done on 4 Nvidia
QUADRO RTX 8000 GPUs.

Evaluation. We used the following Chamfer distance
metrics to measure similarity between shapes:

dC (X1,X2) =
1

2
(d→C (X1,X2) + d→C (X2,X1)) (2)

where

d→C (X1,X2) =
1

|X1|
∑

x1∈X1

min
x2∈X2

∥x1 − x2∥2 (3)

and the sets Xi are point clouds. As the input test set are
given as 3D point clouds, we use the test point clouds di-
rectly with this metric. However, as the reconstructions are
represented as implicit surfaces, we first mesh the predic-
tions zero levelset using the MarchingCubes [8] algorithm,
and second, we generate a point cloud of 30000 points by
uniformly sample from the predicted mesh.

A.3. Piecewise Euclidean: Mesh → mesh

Architecture. Here we provide additional details regard-
ing the architectures for the methods in table 3 applied on
the DFaust splits. The AE architecture is the same as the
one detailed in section A.1 for the global Euclidean mesh
→ mesh. For ARAPReg [5], random split, we used the
trained models provided with the official implementation.
Note that ARAPReg is an auto-decoder, where in test time,
latent codes are optimized to reconstruct test inputs. For
the Frame Averaging version with the above encoder and
decoder backbones, we describe next the design choices
that have been made. We set the weights W ∈ R6890×24

according to the template skinning weights provided with
SMPL [7]. For the random split, the latent space dimen-
sions were set to k = 24, m = 12, d = 20. For both
the unseen poses splits the latent space dimensions were
set to k = 24, m = 72, d = 24. For the frames of Φ,
Fi : V → 2E(3) \ ∅, with V = R6890×3 and 1 ≤ i ≤ 24,
we use the construction defined in section 3.3. We set the
weights w used for the weighted PCA of the i-th frame with
Wei, where W is the template skinning weights and ei is
the i-th element in the standard basis of R24. The frames
of ⟨ψ⟩F , F : V → 2E(3) \ ∅ (where V = R20×3), are
calculated with w = 1. Note that exactly the same Frame
Averaging architecture was also used in the experiment in
table 4.

For the experiment with SMAL in table 3, we next pro-
vide the baseline AE architecture based on the one provided
in ARAPReg. The encoder, ϕ, is consisted of the following
blocks, where each block is defined as in section A.1:

EnBlock(3889, 1945, 3, 32) →
EnBlock(1945, 973, 32, 32) →
EnBlock(973, 973, 32, 32) →
EnBlock(973, 973, 32, 64) → Linear(62272, 96) → .

The decoder, ψ, consists of the following blocks:

Linear(96, 62272) → DeBlock(973, 973, 64, 64) →
DeBlock(973, 973, 64, 32) →
DeBlock(973, 1945, 32, 32) →
DeBlock(1945, 3889, 32, 32) →
Conv(3889, 3889, 32, 3) → .

For our Frame Averaging architecture we set k = 33, m =
12, d = 28. The weights W ∈ R3889×33 are set according
to the template skinning weights provided with the dataset.
The frames for the encoder and the decoder are constructed
in the same fashion as the one described above for the Frame
Averaging DFaust architecture.

Implementation details. For our Frame Averaging
method in tables 3 and 4, training was done using the ADAM
[6] optimizer, with batch size 16. The number of epochs
was set to 100, with 0.0001 fixed learning rate. Training
was done on 4 Nvidia QUADRO RTX 8000 GPUs. For
ARAPReg, the numbers reported for the random split and
SMAL in table 3 are from the original paper [5]. For the
unseen pose and unseen global pose splits in table 3, we
retrained the ARAPReg and AE using the official imple-
mentation training details, where the only change is that the
latent size was set to 144 from 72 (to be equal to ours). The
numbers reported in table 4 for the baselines SNARF [2]
and NASA [4] are from table 1 in [2]. The qualitative re-
sults for SNARF in figure 5 were produced using SNARF
official implementation. Note that the meshes for the qual-
itative results in the original SNARF paper were extracted
using a Multiresolution IsoSurface Extraction [9], whereas
the meshing in the official SNARF implementation (used
in this paper) is based on the standard MarchingCubes [8]
algorithm, result in with more severe staircase artifacts.

Evaluation. The definition for the MSE metric reported
in 3 is the same as defined above in equation 1. The num-
bers reported for our method in table 3, were produced
with the evaluation code from the official implementation
of SNARF. For completeness, we repeat the procedure for
the calculation of the IoU metric here: Let X be a ground
truth shape and Y is the corresponding prediction. Then,
two samples of points in space, bbox (bounding box) and
near surface, are constructed. The near surface sample is
constructed by adding a Gaussian noise with σ = 0.01 to
a sample of 200000 points from the shape X . The bbox
is constructed by uniformly sampling of 100000 points in a
the bounding box of all shapes in the dataset. Then, the IoU
is computed by

IoU =
1

|S|
∑
x∈S

o(x;X) ∗ o(x;Y)

1 2 4 8 16

0.1

0.5

1

1.5

ARAPReg

Ours

AE

Batch Size

F
o
r
w

a
r
d
 T

im
e
 (

m
il
li
s
e
c
o
n
d
)

Figure A1. Timings for the methods in table 3 for various batch
sizes.

where S is the prepared sample (bbox or near surface), and
o(·;X) ∈ {0, 1}, o(·;Y) ∈ {0, 1} are the occupancy func-
tions of the shapes X and Y .

A.4. Interpolation in shape space

Here we provide additional details regarding the inter-
polation in shape space. Let Z(j) = (q(j),Q(j)) ∈ Z,
j = 0, 1, be two latent codes. Here we describe the case
k = 1, as for k > 1 the following scheme can be applied
in the same manner for each part. Note that q(j) is the in-
variant features, whereas Q(j) is the equivariant features.
Let R be the optimal rotation between Q̂(0) to Q̂(1), where
Q̂(j) denotes the centered version of Q(j). Then,

Qt =slerp(t, I,R)(Q̂(0) + tD)+

t
1

d
11TQ(0) + (1− t)

1

d
11TQ(1)

where D = RTQ(1) − Q(0), and slerp(t, I,R) denotes
the spherical liner interpolation between I to R. For the
invariant features, we perform regular linear interpolation
qt = tq(0) + (1− t)q(1). Then, the interpolant at time t is

Zt = (qt,Qt).

A.5. Timings

In figure A1 we report the training forward time for var-
ious batch sizes for the methods in table 3. Note that the
increase in forward time for our method with respect to the
baseline AE, stems from the computation of the backbone
network for all the different parts and possible elements in

the frame. Note that for ARAPReg, the forward time in test
reduces significantly as the computation of the ARAP reg-
ularizer is not needed. However, note that in the case of
ARAReg with an AutoDecoder, prediction time increases
significantly as it requires optimizing the latent codes.

B. Proofs
Proof of Proposition 1. The proof basically repeats the
proof in [11] but for the weighted case. Let g = (S,u) be
an element in E(3). We need to show that F(ρ1(g)V) =
gF(V). The above equality for the translations part R3 in
the group E(3) = O(3) ⋉ R3 is trivial. For showing the
above equality for O(3), Let CV be the covariance matrix
of V . That is CV = (V − 1wT

1Tw
V)Tdiag(w)(V − 1wT

1Tw
V).

A direct calculation shows that

CV = V T

[
diag(w)

(
I − 1wT

1Tw

)]
V .

Then, the covariance matrix of ρ1(g)V satisfies

Cρ1(g)V = STV T

[
diag(w)

(
I − 1wT

1Tw

)]
V S.

Thus, r is an eigen vector of CV if and only
if Sr is an eigen vector of Cρ1(g)V . To fin-
ish the proof, notice that by definition gF(V) =
{(SR,St+ u) |R = [±r1,±r2,±r3]}.

Proof of Proposition 2. We need to show that

Ψ(ρZ(g)Z) = ρY (g)Ψ(Z)

which is equivalent to showing that for all x ∈ R3

Ψ̂(ρZ(g)Z,x) = Ψ̂(Z,RT (x− t))

which is again equivalent to showing that for all x ∈ R3

Ψ̂(ρZ(g)Z,Rx+ t) = Ψ̂(Z,x)

which by definition of ρV is finally equivalent to showing
for all x ∈ R3

Ψ̂(ρP (g)(Z,x)) = ρR(g)Ψ̂(Z,x)

as required.

Proof of Theorem 1. If g ∈ Fj(X) then g = (R, t), where
t = (1Twj)

−1XTwj as defined in equation 7. Therefore

ρX(g)−1Xj = ((1−wj)t
T +wj ⊙X − 1tT)R

= wj ⊙ (X − 1tT)R

= wj ⊙ ρX(g)−1X

Furthermore, it can be directly checked that for hard
weights Fj(X) is an equivariant frame that is defined only
in terms of the rows of X that belong to the j-th part. Now,
Zj = ⟨ϕ⟩Fj

(Xj) where

⟨ϕ⟩Fj
(Xj) =

1

|Fj(X)|
∑

g∈Fj(X)

ρZj (g)ϕ(ρX(g)−1Xj)

=
1

|Fj(X)|
∑

g∈Fj(X)

ρZj (g)ϕ(wj ⊙ ρX(g)−1X).

Therefore Frame Averaging now implies that ⟨Xj⟩F is
equivariant to Euclidean motions of the j-th part. For the
decoder, ⟨Zj⟩F is equivariant to Euclidean motions of Zj

by Frame Averaging, and wj ⊙ ρY (gj)Y transforms the
decoded j-th part accordingly.

C. Additional results
We provide additional qualitative results for some of the

experiments in section 5. Figure A2 shows additional qual-
itative results for the comparison with an implicit pose-
conditioned method (SNARF). Figure A3 shows typical test
reconstructions on the SMAL dataset. Note that the test set
here does not include out of distribution poses, hence rela-
tively easy. Note that our method is able to capture the pose
better than the baselines (see the animal’s tail for example),
while achieving high fidelity (see base of the feet).

References
[1] Matan Atzmon and Yaron Lipman. SALD: sign agnostic

learning with derivatives. In 9th International Conference
on Learning Representations, ICLR 2021, 2021.

[2] Xu Chen, Yufeng Zheng, Michael J Black, Otmar Hilliges,
and Andreas Geiger. Snarf: Differentiable forward skin-
ning for animating non-rigid neural implicit shapes. arXiv
preprint arXiv:2104.03953, 2021.

[3] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. Advances in neural informa-
tion processing systems, 29:3844–3852, 2016.

[4] Boyang Deng, John P Lewis, Timothy Jeruzalski, Gerard
Pons-Moll, Geoffrey Hinton, Mohammad Norouzi, and An-
drea Tagliasacchi. Nasa neural articulated shape approxi-
mation. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part VII 16, pages 612–628. Springer, 2020.

[5] Qixing Huang, Xiangru Huang, Bo Sun, Zaiwei Zhang, Jun-
feng Jiang, and Chandrajit Bajaj. Arapreg: An as-rigid-as
possible regularization loss for learning deformable shape
generators. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5815–5825, 2021.

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[7] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-
ard Pons-Moll, and Michael J. Black. SMPL: A skinned
multi-person linear model. ACM Trans. Graphics (Proc.
SIGGRAPH Asia), 34(6):248:1–248:16, Oct. 2015.

[8] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. In ACM
siggraph computer graphics, volume 21, pages 163–169.
ACM, 1987.

[9] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 4460–4470, 2019.

[10] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 165–174, 2019.

[11] Omri Puny, Matan Atzmon, Heli Ben-Hamu, Edward J
Smith, Ishan Misra, Aditya Grover, and Yaron Lipman.
Frame averaging for invariant and equivariant network de-
sign. arXiv preprint arXiv:2110.03336, 2021.

[12] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and
Michael J Black. Generating 3d faces using convolutional
mesh autoencoders. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 704–720, 2018.

[13] Silvia Zuffi, Angjoo Kanazawa, David W Jacobs, and
Michael J Black. 3d menagerie: Modeling the 3d shape and
pose of animals. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6365–6373,
2017.

Figure A2. Comparison to SNARF on ”out of distribution” test.

Figure A3. Piecewise Euclidean mesh → mesh, qualitative results; SMAL [13] dataset.

