
A. Proofs of Geometric Properties
For a shape S, we consider visible oriented points (p, v)

(i.e., ⇠(p, v) = 1), such that q(p, v) = p + d(p, v)v 2 S,
unless otherwise specified.

A.1. Property I: Directed Eikonal Equation
First, note that for any visible (p, v) (with p /2 S), there

exists an ✏ > 0 such that any � 2 (�0 � ✏, �0 + ✏) satisfies
q(p, v) = q(p+ �v, v) 2 S. In such a case, by definition of
the directed distance field (DDF), d(p+�v, v) = d(p, v)��.
Restrict � to this open interval. The directional derivative
along v with respect to position p is then

rpd(p, v)
T v = lim

�!0

d(p+ �v, v)� d(p, v)

�

= lim
�!0

d(p, v)� � � d(p, v)

�
= �1,

as required.

A.1.1 Gradient Norm Lower Bound

For any visible (p, v), since |rpdv| =
||rpd||2||v||2 | cos(✓(rpd, v))| = 1, where ✓(u1, u2)
denotes the angle between vectors u1 and u2, we also see
that ||rpd||2 = 1/| cos(✓(rpd, v))|, and thus ||rpd||2 � 1.

A.1.2 Visibility Gradient

Consider the same setup as in A.1. The visibility field sat-
isfies a similar property: ⇠(p+ �v, v) = ⇠(p, v), as the visi-
bility cannot change when moving along the same view line
(away from S). Thus, we get rp⇠(p, v)T v = 0.

A.2. Property II: Surface Normals
Consider a coordinate system with origin q0 2 S, with a

frame given by (bi,bj,bk) where bk = n(q0) andbi,bj 2 Tq0(S)
spans the tangent space at q0. Locally, near q0, reparame-
terize S in this coordinate system via

S(x, y) = (x, y, fS(x, y)), (6)

where fS controls the extension of the surface in the normal
direction. Notice that

@↵S|q0 = (�x↵, �y↵, @↵fS |q0), (7)

where ↵ 2 {x, y} and �x↵ is the Kronecker delta, but since
@xS|q0 = bi and @yS|q0 = bj are in the tangent plane,

@↵fS |q0 = 0. (8)

Consider any oriented position (p, v) that points to
q(p, v) 2 S on the surface. Locally, the surface can be
reparameterized in terms of (p, v):

q(p, v) = p+ d(p, v)v 2 S. (9)

Yet, using q = (qx, qy, qz), we can write this via Eq. 6 as

S(qx, qy) = (qx, qy, fS(qx, qy)), (10)

where qx is the component along the x direction in local
coordinates, which depends on p and v. In other words, the
z component of q depends on p via:

qz(p, v) = fS(qx(p, v), qy(p, v)). (11)

Let (p0, v0) point to q0 (i.e., q0 = q(p0, v0)). Then:

@pifS |p0 = @qxfS |q0| {z }
0

@piqx|p0 + @qyfS |q0| {z }
0

@piqy|p0

= 0 8 i 2 {x, y, z},

since @q↵fS |q0 = 0 using Eq. 8.
Derivatives with respect to position are then given by

@pzqz|p0 = 1 + @pzd(p, v)|p0vz = @pzfS |p0 = 0 (12)
@p↵qz|p0 = @p↵d(p, v)|p0vz = @p↵fS |p0 = 0, (13)

using Eq. 9 and Eq. 11, with ↵ 2 {x, y}. Thus, using Eq.
12 and Eq. 13,

@

@(px, py, pz)
d(p, v)|p0 = (0, 0,�1/vz), (14)

in local coordinates. Since the z component here is along
the direction of the surface normal, n(q0) = n(p0, v0), this
can be rewritten as

rpd(p, v)|p0,v0 =
�1

vz
n(q0)

T =
�n(q0)T

n(q0)T v
. (15)

For any C1 surface S, and point q0 2 S (that is intersected
by visible oriented point (p, v)), we can always construct
such a coordinate system, so we can more generally write:

rpd(p, v) =
�nT

nT v
. (16)

A.3. Property III: Gradient Consistency
Consider the same setup (coordinate system) and nota-

tion as in the Proof of Property II above (Appendix A.2).
Since v 2 S2, it suffices to consider an infinitesimal rota-
tional perturbation of some initial view direction v0:

dR(t) = [!]⇥dt, (17)



where [!]⇥ is a skew-symmetric cross-product matrix of
some angular velocity vector !, so that ev = (I + dR(t))v0
and dv = ev � v0 = [!]⇥ dt v0 is the change in the view
(given dt) and a velocity of u := @tv = [!]⇥v0. The change
in surface position, q(p, v(t)) = p+d(p, v(t))v(t), with re-
spect to t is then

@tq = v@td+ d@tv

= (@vd@tv)v + d@tv

= (@vdu)v + du.

The z component, in local coordinates, is then

@tqz|q0 = @tfS(qx, qy)|q0
= @qxfS |q0@tqx + @qyfS |q0@tqy

= 0,

via Eq. 8. Thus, @tqz|q0 = (@vdu)vz + duz = 0, meaning

duTn = �(@vdu)v
Tn (18)

using uz = uTn and vz = vTn at q0. Recalling that @pd =
�nT /(nT v) and rearranging, we get

@vdu = �d
nT

vTn
u = d@pdu. (19)

Notice that u = @tv = [!]⇥v0 is orthogonal to v0 and the
arbitrary vector !. Hence, for any visible oriented point
(p, v) away from viewing the boundary of S (i.e., where
nT v = 0) and for all ! 2 R3, we have

rvd[!]⇥v = drvd[!]⇥v. (20)

This constrains the derivatives with respect to the view vec-
tor to be closely related to those with respect to position,
along any directions not parallel to v.

A.3.1 Alternative Expression

Note that the inner product with �v primarily serves to re-
strict the directional derivative in valid directions of v. A
cleaner expression can be obtained with a projection opera-
tor, which removes directional components parallel to v.

First, let us define d to normalize v:

d(p, v) := d

✓
p,

v

||v||2

◆
, (21)

for all v 2 R3
\ {0}. Then, consider a perturbation along

the view direction of size |�| < 1:

d(p0, v0 + �v0) = d(p0, v0(1 + �)) = d(p0, v0), (22)

with ||v0|| = 1 and using Eq. 21 for the last step. This
means the directional derivative along v must satisfy

@vd(p, v)v = 0. (23)

In the previous section, we showed that @vdu = d@pdu for
all u ? v. Let Pv = I � vvT be the orthogonal projection
removing components parallel to v. Then we can rewrite
the result of the previous section as @vdPv = d@pdPv . But
@vdPv = @vd � @vdvvT = @vd by Eq. 23. Thus, we may
write

@vd = d @pdPv, (24)

which agrees with Eq. 20.

A.4. Property V: Local Differential Geometry
Given a visible oriented point (p, v), we have shown that

the surface normal n(p, v) on S (at q = p+d(p, v)v) is com-
putable from rpd (see Appendix A.2). Curvatures, how-
ever, require second-order information.

We first construct a local coordinate system via n, by
choosing two tangent vectors at q: tx, ty 2 Tq(S), where
||t↵||2 = 1 and tTx ty = 0. In practice, this can be done
by sampling Gaussian vectors, and extracting an orthog-
onal tangent basis from them. We can then reparameter-
ize the surface near q0 = q(p0, v0) (with surface normal
n0 = n(q0)) via S(x, y) = q0 + xtx + yty + fS(x, y)n0,
where x and y effectively control the position on the tangent
plane. Alternatively, we can write S(x, y) = q(p(u), v0),
which parameterizes S about the oriented point (or view-
point) p(u), where u = (x, y), and p(u) = p0 + xtx + yty .
Notice that p(u) is essentially a local movement of p paral-
lel to the tangent plane at q0 2 S (which is “pointed to” by
(p0, v0)). Note that p0, v0, and q0 are fixed; only u and p(u)
are varied. Further, notice that the plane defined by p(u) (in
the normalized tangent directions tx and ty) is parallel to
the surface tangent plane at q0 (and thus orthogonal to n0),
but not necessarily perpendicular to v.

Using this local frame on Tq0(S), the first-order deriva-
tives of the surface are

@iS|u=0 = @i (p(u) + v0d(p(u), v0)) |u=0 (25)
= ti + @id(p(u), v0)|u=0v0 (26)
= ti + (rpd(p, v0)ti)v0 (27)

where i 2 {x, y} and pj is the jth component of p. Then
the metric tensor (first fundamental form) is given by

gij = @iS|
T
u=0 @jS|u=0 (28)

= �ij + cicj + civ
T
0 tj + cjv

T
0 ti, (29)

where i, j 2 {x, y}, u = (x, y), �ij is the Kronecker delta
function, and ck = rpdtk. Notice that rpd is parallel to
n (see Property II), and thus orthogonal to t1 and t2. Thus,
cx = cy = 0, and so, in theory, gij = �ij , but this may
not hold for a learned DDF, if one computes directly with
Eq. 29. However, in practice, we use the theoretical value
(where g = I2 in local coordinates), as deviations from it
are due to error only (assuming correct normals).



Next, the shape tensor (second fundamental form) IIij
can be computed from the second-order derivatives of the
surface [32] via:

IIij = nT
0 @ijS|u=0 (30)

= nT
0 @ij(p(u) + v0d(p(u), v0))|u=0

= nT
0 v0@ijd(p(u), v0)|u=0

= nT
0 v0@i

X

k

@pkd(p(u), v0) [@jp(u)]k| {z }
[tj ]k

|u=0

= nT
0 v0

X

k

@i@pkd(p(u), v0)[tj ]k|u=0

= nT
0 v0

X

k

[tj ]k
X

`

@p`@pkd(p(u), v0)[@ip(u)]`|u=0

= nT
0 v0

X

k

[tj ]k
X

`

@p`,pkd(p(u), v0)| {z }
Hp[d]k`

[ti]`|u=0

=
�
tTj Hp[d]ti

�
nT
0 v0, (31)

where i, j 2 {x, y}, u = (x, y), n0 = n(q0), [ti]k is the kth
component of ti, Hp[d] is the Hessian of d with respect to p
(at u = 0), and p(u) = p0+xtx+yty . Note that our param-
eterization of the surface using the DDF (i.e., q(p(u), v0))
defines surface deviations in terms of v0; the nT

0 v0 term
undoes this effect, rewriting the deviation in terms of n in-
stead.

Curvatures can then be computed via the shape tensor
(see, e.g., [32]). Gaussian curvature is given by CK =
det(II)/ det(g), while mean curvature is written CH =
tr(IIg�1). Notice that these quantities can be computed for
any visible (p, v), using only d(p, v) and derivatives of d
with respect to p (e.g., with auto-differentiation). Thus, the
curvatures of any visible surface point can be computed us-
ing only local field information at that oriented point.

A.5. View Consistency
DDFs ideally satisfy a form of view consistency, which

demands that an opaque position viewed from one direc-
tion must be opaque from all directions, with depth lower-
bounded by that known surface position. Consider two ori-
ented points (p1, v1) and (p2, v2). Assume (i) that (p1, v1)
is visible, such that q1 = p1 + d(p1, v1)v1 2 S, and (ii) that
there exists t > 0 such that `p2,v2(t) = p2 + tv2 = q1. That
is, if viewing the scene via (p2, v2), we assume our line of
sight intersects that of (p1, v1), at the surface point q1.

Then, in this case, we have that: (1) (p2, v2) is visible,
meaning ⇠(p2, v2) = 1, and (2) d(p2, v2)  ||p2�q1||2 = t.
These can be seen by the definition of ⇠ and d. For (1),
since there exists a surface intersection (at q1) along `p2,v2 ,
the oriented point (p2, v2) must be visible (i.e., ⇠(p2, v2) =
1). For (2), d(p2, v2) can be no further than t, since DDFs
return the minimum distance to a point on S along the line

`p2,v2(t), and hence its output can be no greater than the
known (assumed) distance t.

A.6. Neural Depth Renderers as DDFs
A natural question is how to parallelize a DDF. Consider

a function f : ⇤⇧ ⇥ ⇤S ! I
m
d,⇠, where Id,⇠ = R+ ⇥ [0, 1],

from continuous camera parameters (i.e., elements of ⇤⇧)
and some space of shapes ⇤S to an m-pixel depth and
visibility image. Then f is implicitly a conditional DDF,
as each pixel value can be computed as (d(p, v), ⇠(p, v)),
where p and v are a fixed function of ⇧ 2 ⇤⇧. In other
words, the camera intrinsics and extrinsics determine the p
and v value for each pixel, with p determined by the cen-
tre of projection (camera position) and v determined by
the direction corresponding to that pixel, from the centre
of projection out into the scene. We may thus regard the
depth pixel value as a function of p and v, via the cam-
era parameters. This holds regardless of the architecture of
f . Thus, all the properties of DDFs hold in these cases as
well: for example, for a depth image Id, camera position
Cp and viewpoint Cv , Property II relates @CpId to the sur-
face normals image, while Property III constrains @CvId.
We believe this point of view can improve the framework
for differentiable neural rendering of geometric quantities
(e.g., [50, 77, 84, 85]).

B. Mesh Data
We display visualizations of each data type in Fig. 10.

We briefly describe how each is computed (note that we
only need to obtain (p, v), after which (⇠, d) can be obtained
via ray-triangle intersection):

• Uniform (U): simply sample p ⇠ U [B] and v ⇠ U [S2].

• At-surface (A): start with q0 ⇠ U [S] (obtained via
area-weighted sampling) and v0 ⇠ U [S2]. Sample p
on the line between q0 and its intersection with B along
v0. Set v = �v0. Note that the final output data may
not actually intersect q0 (since one may pass through a
surface when sampling p).

• Bounding (B): sample p ⇠ U [@B] and v ⇠ U [S2], but
restrict v to point to the interior of B.

• Surface (S): simply use p ⇠ U [S] and then take v ⇠
U [S2].

• Tangent (T): the procedure is the same as for A-type
data, except we enforce v0 to lie in the tangent plane
Tq0(S).

• Offset (O): take a T-type (p, v) and simply do p  
p + &O✏On0, where n0 is the normal at q0, and we set
✏O = 0.05 and sample &O ⇠ U [{�1, 1}].



Mesh U A B S T O

Figure 10. Illustration [68] of data types. Left to right: input sphere mesh, U, A, B, S, T, and O data. Visible points depict p in blue, v in
green, and a line from p to q in turquoise; non-visible points depict p in black and v in red. See §3.4 for details and §C.2 for an ablation
study of the data types.

Since we assume B is an axis aligned box (with maximum
length of 2; i.e., at least one dimension is [�1, 1]), sampling
positions on it, or directions with respect to it, is straightfor-
ward. See also §C.2, which examines the effect of ablating
each data type.

C. Single Entity Fitting Details
Given a mesh, we first extract data of each type (see

§3.4), obtaining (p, v) tuples in the following amounts:
250K (A and U) and 125K (B, T, O, and S). Since rendering
outside B uses query points on @B, we bias the sampling
procedure for T, A, and O data, such that 10% of the p-
values are sampled from @B. For each minibatch, we sam-
ple 6K (A and U) and 3K (B, T, O, and S) points, across
data types. In addition to these, we sample an additional 1K
uniformly random oriented points per minibatch, on which
we compute only regularization losses (LV and LDE), for
which ground truth values are not needed.

We note that not all loss terms are applied to all data
types. As discussed in §3.4, the transition loss LT is only
applied to S and T type data (since we do not want spuri-
ous field discontinuities, due to the field switching between
components, except when necessary). As briefly noted in
Property II, the DDF gradientrpd (and hence field-derived
surface normals) are not well-defined when n and v are or-
thogonal. The gradients are also not well-defined on S-type
data (since d is explicitly discontinuous for p 2 S, and thus
rpd does not exist there). Hence, we do not apply the di-
rected Eikonal regularization LDE or the normals loss Ln to
S, T, or O data. Similarly, the weight variance loss LV (de-
signed to reduce weight field entropy) should not be applied
to S, T, or O samples, as the weight field should be transi-
tioning near those samples (and thus have a higher point-
wise Bernoulli variance). The remaining losses are applied
on all data types.

We then optimize Eq. 2 via Adam (learning rate: 10�4;
�1 = 0.9, �2 = 0.999), using a reduction-on-plateau learn-
ing rate schedule (reduction by 0.9, minimum of 5K itera-
tions between reductions). We run for 100K iterations, us-
ing �d = 5, �⇠ = 1, �n = 10, �V = 1, �E,d = 0.05, �E,⇠ =
0.01, and �T = 0.25. Note that we double �d on A and U
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Figure 11. Example showing underfitting without compositional
model (same scene as Fig. 6). Colours correspond to surface nor-
mals estimated via the DDF. (See Appendix C.1).

data. The field itself is implemented as a SIREN with seven
hidden layers, initialized with !0 = 1, each of size 512,
mapping (p, v) 2 R6

! ({di}Ki=1, {wi}
K
i=1, ⇠) 2 R2K+1

(note that the set of wi’s has K � 1 degrees of freedom).
We use K = 2 delta components. Since w2 = 1 � w1, we
output only w1 and pass it through a sigmoid non-linearity.
We apply ReLU to all dj outputs, to enforce positive val-
ues, and sigmoid to ⇠. We use the implementation from [9]
for SIREN. In terms of data, we test on shapes from the
Stanford Scanning Repository [73] (data specifically from
[8, 33, 78]).

C.1. Non-Compositional Fitting Example

To show the improved scaling of composing DDFs, we
also attempted to fit the same scene using the single-object
fitting procedure above. For fairness, we doubled the num-
ber of data samples extracted, as well as the size of each
hidden layer. In comparison to Fig. 6, this naive approach
struggles to capture some high frequency details, though we
suspect this could be mitigated by better sampling proce-
dures.



Ablation Minimum Distance Error (L1;⇥10) # Visibility Error (BCE) #
Ld,1-U Ld,1-A Ld,1-B Ld,1-O Ld,1-T Ld,1-S L⇠-U L⇠-A L⇠-B L⇠-O L⇠-T L⇠-S

U 0.58 0.79 0.18 0.49 0.75 0.47 2.11 0.03 0.07 0.56 0.14 0.05
A 0.48 0.82 0.20 0.49 0.81 0.54 0.20 0.05 0.07 0.49 0.18 0.07
B 0.37 0.67 0.20 0.46 0.73 0.58 0.20 0.03 0.10 0.50 0.15 0.06
O 0.39 0.67 0.18 0.56 0.70 0.59 0.28 0.01 0.11 1.71 0.03 0.03
T 0.39 0.70 0.19 0.45 0.84 0.65 0.19 0.09 0.06 0.32 0.48 0.07
S 0.55 0.95 0.23 0.51 0.89 1.43 0.14 0.06 0.06 0.42 0.17 0.48
– 0.45 0.75 0.19 0.50 0.77 0.67 0.23 0.04 0.08 0.56 0.15 0.07

Table 2. Data sample type ablation on the Stanford Bunny (see §C.2). Rows: type of data (i.e., (p, v) sample type) ablated. Columns:
errors on held-out data (left: minimum distance loss, but computed with L1 instead of L2, for greater interpretability; right: binary cross-
entropy-based visibility loss). Each column computes the error on a different sample type (e.g., Ld,1-A is the minimum distance error on
A-type data). Error computation is on 25K held-out samples, for each data type. Per loss type, the red numbers are the worst (highest)
error cases; the pink numbers are the second-worst error cases. Each ablation scenario uses 100K of each data type, except for the ablated
one (of which it uses zero); the “–” case uses 83,333 samples of all six data types (to control for the total number of points). Several
observations are notable: (1) in most cases, performance on a data type is worst or second-worst when that type is ablated in training; (2)
ablating S appears to be damaging across other data types as well; and (3) there is some interplay between data types (e.g., ablating T-type
data is worse for A-type data error, than ablating A-type data itself).

C.2. Data Sample Type Ablation Experiment

We perform a small-scale ablation experiment to discern
the importance of each data sample type. We perform a
single-shape fit to the Stanford Bunny, with slight modifi-
cations to the algorithm discussed in §C just above. In par-
ticular, we consider six scenarios, in each of which we train
with 100K samples of each type except one, which is re-
moved/ablated. We consider one other scenario that has the
same number of total points, but no single type is ablated
(i.e., 83,333 samples for each data type). We then measure
the depth and visibility prediction error on 25K held-out
samples of each data type, including the ablated one. All
other aspects of the fitting process remain the same.

See Table 2 for results. We first notice that the worst
errors are incurred for models trained where that data type
was ablated in training. For the minimum distance error,
the worse or second-worst result is always obtained for the
model that ablates that data type; this is also true for the vis-
ibility error, except for ablating and testing on A-type data.
This case may be due to the relation between A-type and
T-type data, since T-type data is effectively the hardest sub-
set of A-type data (excepting perhaps S-type data). There
is also significant overlap between U-type and B-type data
with A-type data. Hence, we speculate that ablating T-type
data removes access to the most difficult (and most likely to
have high error) of A-type samples, leading to high visibil-
ity error, whereas ablating A-type data itself can in part be
accounted for by other data types (e.g., U-type).

One surprising scenario is the S-type data ablation, as
it worsens performance across all other data types as well.
This is potentially due to the greater difficulty in the net-
work knowing when to transition between Dirac delta com-
ponents in the weight field.

Finally, we also found that ablating B-type data has a
relatively minor effect on the resulting errors. We remark
that, for rendering applications, where the camera is more
likely to be outside the box (and thus most field query posi-
tions p will be on @B; see §3.2), B-type data will be much
more important, and hence useful to concentrate on. Fur-
ther, we note that the data bias for T-, A-, and O-type data
(ensuring there are positions p 2 @B) leads to increased
overlap with B-type data, reducing the effect of ablating it.
Other effects, such as enforcing the directed Eikonal prop-
erty, should help as well. We remark that both A and B
sample types are biased: specifically, caring more about the
shape than the non-visible parts of the scene (for A), and
focusing on rendering-oriented applications (for B).

Overall, though this is only on a single shape with a sim-
plistic set of scenarios, it suggests that each data type has
information that the other types cannot completely make up
for, especially for U, O, T, and S data.

D. UDF and v⇤

D.1. v⇤ Extraction

We obtain v⇤ via a fitting procedure, with a forward pass
similar to composition (see §4.1). Starting from an already
trained (P)DDF, we define a small new SIREN network gv
(five hidden layers, each size 128), which maps position to a
set of Kc candidate directions, such that gv : R3

! S2⇥Kc

Given a position p and candidates {v⇤i }
Kc
i=1 = gv(p), we can

compute ⇣v⇤ = {d(p, v⇤i (p)), ⇠(p, v
⇤

i (p))}
Kc
i=1. To obtain a

UDF depth estimate, we use

[UDF(p) =
X

i

!(i)
⇣v⇤ (p) d(p, v

⇤

i (p)), (32)



where the weights !⇣v⇤ are based on those from our explicit
composition method:

!⇣v⇤ (p) = Softmax

✓⇢
⌘�1
T ⇠(p, v⇤i (p))

"s + d(p, v⇤i (p))

�

i

◆
. (33)

We use the same ⌘T and "s as for composition. Note
that this formulation essentially takes the candidate direc-
tions, computes their associated distances, and then (softly)
chooses the one that has lowest distance value while still
being visible. We can also obtain v⇤(p) via these weights,
using

ev⇤(p) =
X

i

!(i)
⇣v⇤ (p) v

⇤

i (p) (34)

v⇤(p) =
ev⇤(p)

||ev⇤(p)||2
, (35)

Note that, in the ideal case, v⇤(p) = �rpUDF(p)T , mean-
ing we could compute it with a backward pass, but we found
such an approach was noisier in practice.

To train gv to obtain good candidates, we use the follow-
ing loss:

Lv⇤ =
1

Kc

X

i

d(p, v⇤i (p))� ⇠(p, v⇤i (p)) (36)

+
2⌧n

K2
c �Kc

X

i

X

j 6=i

v⇤i (p)
T v⇤j (p) (37)

+
⌧d
Kc

X

i

⇥
v⇤i (p)

Tn(p, v⇤i (p)) + 1
⇤2

(38)

where the first sum encourages obtaining the direction with
minimum depth that is visible, the second prevents collapse
of the candidates to a single direction (e.g., local minima),
and the third encodes alignment with the local surface nor-
mals (similar to the directed Eikonal regularizer; see Ap-
pendix D.2). Note that the first sum (Eq. 36) includes a d
term, which linearly penalizes longer distances, and a �⇠
term, which pushes the visibility (i.e., probability of sur-
face existence in the direction v⇤i (p), from position p) to be
high. We use Kc = 5, ⌧n = 5⇥ 10�3, and ⌧d = 0.1. Opti-
mization was run for 104 iterations using Adam (LR: 10�4;
�1 = 0.9, �2 = 0.999). Each update used 4096 points,
uniformly drawn from the bounding volume (p ⇠ U [B]).

D.2. Surface Normals of v⇤

Let v⇤ be defined as in §4.2 and choose p such that v⇤(p)
is not multivalued (i.e., neither on S nor on the medial sur-
face of S). Recall that, by definition,

UDF(p) = d(p, v⇤(p)) (39)

and

n(p, v) = n(q(p, v)) =
rpd(p, v)T

||rpd(p, v)||
(40)

where n(p, v)T v < 0 (see Property II). Then, by Eq. 39,

rpUDF(p) = rpd(p, v
⇤(p))

= ||rpd(p, v
⇤(p))||

rpd(p, v⇤(p))

||rpd(p, v⇤(p))||

= ||rpUDF(p)|| n(p, v⇤(p))T

= n(p, v⇤(p))T ,

via the S/UDF Eikonal equation in the last step.
Finally, by the directed Eikonal property (I), we have:

rpUDF(p)v⇤(p) = rpd(p, v
⇤(p))v⇤(p) = �1, (41)

meaning rpUDF(p) = �v⇤(p)T . Indeed, recall that the
gradient of a UDF has (1) unit norm (i.e., satisfies the
Eikonal equation) and (2) points away from the closest point
on S, which is precisely the definition of �v⇤(p).

E. Single-Image 3D Reconstruction
Architecture and Optimization. Our CPDDF is a mod-

ulated SIREN [44] with layer sizes (512, 512, 512,

256, 256, 256, 256). Note that we use a softplus ac-
tivation instead of ReLU, when multiplying the modulator
to the intermediate features. The encoders (one ResNet-18
for the camera, and another for inferring the latent condi-
tioning shape vector) take 128 ⇥ 128 RGBA images as in-
put. However, when rendering the visibility mask for LM ,
we output 64 ⇥ 64 images. We set �R,S = 1, �R,⇧ = 5,
and �R,M = 10. We also used small weight decays on the
camera and shape predictors (10�6 and 10�3, respectively).
Training ran for 100K iterations with AdamW [42] and a
batch size of 32. We used dim(zs) = 512 and a SIREN
initializer of !0 = 1.

Shape-fitting Loss. We use the same settings as the
single-shape fitting experiments, with slight modifications:
�d = 5, �⇠ = 10, �n = 10, �V = 1, �E,d = 0.1,
�E,⇠ = 0.25, and �T = 0.1. An additional loss on the
variance of ⇠ is also applied (to reduce the visibility entropy
at each point, which leads to fuzzy renders):

LV,⇠ = �V,⇠⇠(p, v)[1� ⇠(p, v)], (42)

where we set �V,⇠ = 0.25. This encourages less blurriness
in the shape output due to uncertainty in the visibility field.
For minibatches, we sample 1.2K (A and U) and 300 (S,
B, T, and O) oriented points per shape, with each minibatch
containing 32 shapes.

Camera Loss. The camera fitting loss L⇧ utilizes a
camera representation only involving extrinsic position (the
camera is assumed to be looking at the origin). In partic-
ular, we use the azimuth, elevation, and radius representa-
tion of the camera position. Before computing the L2 loss,
we z-score normalize each element, based on the training



Figure 12. Single-image 3D reconstruction visualizations on held-out data. Per inset, columns represent (i) the input RGB image, (ii) the
visibility b⇠, (iii) the depth bd, (iv) the normals bn, (v) the sampled point cloud (PC) from the DDF, and (vi) a sample from the ground-truth
PC. Quantities (ii-v) are all differentiably computed directly from the CPDDF and b⇧, per point or pixel (i.e., no post-processing needed).
PC colours denote 3D coordinates. A high-error example is in the lower-right of each category. See also Fig. 8 and §E.2.

set statistics. We also restrict the predicted camera b⇧ to be
within the range of the parameters observed in the dataset.

Rendering Scale Factor. We note that an additional
scale factor is needed for rendering DDFs for ShapeNet.
Since ShapeNet shapes are normalized with an instance-
dependent measure (the bounding box diagonal), one needs
to know the scale to reproduce the output image. This is
an issue as our CPDDF always outputs a shape in [�1, 1]3,
with training data normalized to have longest axis-aligned
bounding box length equal to two. Further, it creates an am-
biguity (with respect to the output image) with the camera
position (radius from the shape). At train time, before ren-
dering to compute LM , we use the ground-truth scale factor.
At test time, we estimate it by sampling a point cloud and
measuring the diagonal.

Data Extraction. We use the ShapeNet-v1 [5] data and
splits from Pixel2Mesh [81, 82], with the renders by Choy
et al. [7]. For DDF training, per data type, we sample 20K

(A and U) and 10K (S, B, T, and O) training samples per
shape, using the watertight form of the meshes (via [24]),
decimated to 10K triangles. These samples are only used
for training, not evaluation, and are in a canonical aligned
pose. We set the maximum offset size for O-type data as
✏O = 0.02 (see §B); remaining parameters are the same as
those used for single shapes (see §C).

Explicit Sampling Details. We also remark that our ex-
plicit sampling algorithm slightly oversamples points ini-
tially (when requesting a point set of size np, we actually
sample (1 + "p)np via p ⇠ U [B]). The final point cloud,
however, is sorted by visibility (i.e., by ⇠(p, bv ⇤(p))) and
only the top np points are returned. We used "p = 0.1 in
all experiments. This is to prevent outputting non-visible
points.

PC-SIREN Baseline Details. Recall that the PC-SIREN
is our architecture-matched baseline, with identical en-
coders and a nearly identical decoder architecture to the



DDF
⇧g-L ⇧g-S b⇧-L b⇧-S

DC # 0.477 0.532 0.861 0.928
Chairs F⌧ " 54.37 47.26 46.81 40.35

F2⌧ " 71.62 66.33 63.09 58.09
DC # 0.201 0.231 0.748 0.799

Planes F⌧ " 80.69 76.71 63.86 60.48
F2⌧ " 90.23 88.49 75.30 73.55
DC # 0.235 0.309 0.545 0.628

Cars F⌧ " 68.21 57.36 59.84 49.98
F2⌧ " 83.99 76.41 76.87 69.32

Table 3. Single-image 3D reconstruction results with NH = 1.

DDF one. Here, the decoder is a mapping fb : R3
! R3,

which is trained to compute fb(p) 2 S from p ⇠ [�1, 1]3,
but uses an identical set of SIREN hidden layers as the DDF.
A set of sampled random points can thus be mapped into a
point cloud of arbitrary size. The baseline has 25,645,574
parameters, while the DDF-based model has 25,647,367 pa-
rameters. The camera loss L⇧ is unchanged and the mask-
matching loss LM is not used. The shape-fitting loss LS is
replaced with a standard Chamfer loss DC [16], computed
with 1024 points per shape with a batch-size of 32. The
remaining aspects of training remain the same.

E.1. Ablation with NH = 1

Recall that NH is the number of times to “cycle” the
points (projecting them towards the surface via the DDF)
when sampling an explicit point cloud shape from a DDF
(see §4.3). We show results with NH = 1 in Table 3. In
most cases, it is slightly worse than using NH = 3, by 1-3
F -score units; occasionally, however, it is marginally better:
on Planes-b⇧, it has slightly lower DC , though this does not
translate to better F -score.

E.2. Additional Visualizations

Some additional visualizations are shown in Fig. 12. For
highly novel inputs, we also observe that, sometimes, the
network does not adapt well to the shape (e.g., see the chairs
example in the second row and second column). While
much error is due to the incorrectly predicted camera, the
DDF outputs can also be a bit blurrier, especially when it is
uncertain about the shape. This can occur on thin structures,
which are hard to localize (e.g., the chair legs in either row
one and column one, or row three column two), or atypi-
cal inputs (e.g., row three, column two of the cars exam-
ples), where the network does not have enough examples to
obtain high quality geometry. One can also see some non-
uniform densities from our point cloud sampling algorithm
(e.g., concentrations of points on the chair legs in column
two, or on the wheels of several examples of cars).

(P,N) zs d(p, v|zs)
E

⇧

zs In

zT

+ IT
rpd fT

Figure 13. Two-stage unpaired generative modelling architecture.
Upper inset: VAE formulation mapping a point cloud P and asso-
ciated normals N to latent shape vector zs via PointNet encoder E,
and decoding into depth values via conditioning a PDDF. Lower

inset: latent shape zs and camera ⇧ are randomly sampled and
used to render a surface normals image In, via the derivatives of
the learned conditional PDDF (see Property II). The normals map
In is then concatenated (�) with a sampled latent texture zT , and
used to compute the final RGB image IT = fT (In, zT ). Coloured
circles indicate random variables sampled from a particular distri-
bution; dashed lines indicate computation with multiple forward
passes (per point or pixel).

F. Generative Modelling
See Fig. 13 for a diagram of our two-stage 3D-to-2D

modality translation architecture. See also Fig. 14 and 15
for additional sample visualizations (as in Fig. 9).

F.1. Shape VAE
The first stage learns a VAE [31, 62] on 3D shape, in

order to (i) obtain a latent shape variable zs that is approx-
imately Gaussian distributed, and (ii) learn a CPDDF using
zs that can encode a shape in a form that is easily and ef-
ficiently rendered, yet still encodes higher order shape in-
formation. We learn a PointNet encoder [58] E that maps
a point cloud with normals (P,N) to a latent shape vector
zs = E(P,N). The conditional PDDF (CPDDF) then acts
as the decoder, computing depth values as d(p, v|zs) for a
given input. To implement conditional field computations,
we use the modulated SIREN approach [44]. This can be
trained by the following �-VAE loss [21]:

LVAE = LS + �LKL, (43)

where LKL is the standard KL divergence loss between a
Gaussian prior and the approximate VAE posterior, and LS

acts analogously to the reconstruction likelihood. We use
ShapeNet cars [5] to fit the Shape VAE. Our goal is to show
that we can rapidly train a model that can sample renders of
surface normal geometry (from a unified 3D model), which
is either difficult (or computationally costly) for most im-
plicit approaches, or it uses a model directly on 2D surface
normal images (missing a unified 3D shape model). These
images could be useful for other downstream models, which
may expect 2D input, but still propagate gradients to an un-
derlying 3D object model.



Figure 14. Additional example samples from the ShapeVAE and translational image GAN.

Figure 15. Additional example interpolations from the ShapeVAE
and translational image GAN.

Data. Data is extracted from 1200 randomly chosen
shapes from ShapeNet-v1 cars [5], sampling 60k (A and U)
and 30K (S, B, T, and O) oriented points. We downsample
shapes to 10K triangles before extraction. For minibatches,
we sample 1.2K (A and U) and 300 (S, B, T, and O) ori-
ented points per shape, with each minibatch containing 32
shapes. We also sample point clouds P (with normals N )
of size 1024 to send to the PointNet at each minibatch.

Architectures. The PointNet encoder follows the
standard classification architecture [58], with four
Conv1D-BatchNorm-ReLU blocks (sizes: 64, 64,
128, 1024), followed by max pooling and a multilayer
perceptron with Linear-BatchNorm-ReLU blocks
(two hidden layers of size 512; dropout probability 0.1).
No point transformers are used. The final output is of size
2dim(zs). We then compute the approximate variational
posterior q(zs|P,N) = N (zs|µ(P,N),⌃(P,N)) with two
networks for mean µ and diagonal log-variance matrix ⌃,
each structured as Linear-ReLU-Linear (in which
all layers are of dimensionality dim(zs); note that each
posterior parameter network takes half of the vector output
from the PointNet encoder as input).

For the decoder, we use eight layers (512, 512,

512, 512, 256, 256, 256, 256) (with the mod-
ulated SIREN [44]). We set dim(zs) = 400 and dim(zT ) =
64.

Training. We run for 100K iterations, using � = 0.05,
�d = 5, �⇠ = 10, �n = 10, �V = 1, �E,d = 0.1,
�E,⇠ = 0.1, �V,⇠ = 0.1, and �T = 0.1. Adam is used for
optimization (learning rate 10�4; �1 = 0.9, �2 = 0.999).

F.2. Image GAN
After training a Shape VAE, the CPDDF decoder can be

used to render a surface normals image In (see §3.2 and
Fig. 5). To perform generation, we first sample latent shape
zs ⇠ N (0, I) and camera ⇧, which includes extrinsics
(position and orientation) and focal length, following with
normals map rendering to get In. We then use a convolu-
tional network fT to obtain the RGB image IT , based on the
residual image-to-image translation architecture from Cy-
cleGAN [92]. This is done by sampling zT ⇠ N (0, I) and
computing IT = fT (In, zT ), where one concatenates zT to
each pixel of In before processing. Notice that zs, zT , and
⇧ are independent, while the final texture (appearance) de-
pends directly on zT , and indirectly on zs and ⇧, through
In.

For training, a non-saturating GAN loss [14] with a zero-
centered gradient penalty for the discriminator [45, 65] is
used (as in [4,51]). To ensure that fT preserves information
regarding 3D shape and latent texture, we use two consis-
tency losses:

LC,S = MSE(In, bIn) & LC,T = MSE(zT , bzT ), (44)

where MSE is the mean squared error, bIn = gT (IT ) (with
gT having identical architecture to fT ), and bzT = hT (IT )
(with hT implemented as a ResNet-20 [17, 22]). The first
loss, LC,S, encourages the fake RGB image IT to retain the
3D shape information from In through the translation pro-
cess (i.e., implicitly forcing the image resemble the input
normals) while the second loss, LC,T, does the same for the



latent texture (implicitly strengthening textural consistency
across viewpoints). The final loss for the GAN image gen-
erator is

LGAN = LA + �C,SLC,S + �C,TLC,T, (45)

where LA is the adversarial loss for the generator and the
last two terms enforce consistency (see also [1,28,48]). We
fit to the dataset of ShapeNet renders from Choy et al. [7].
Note that information on the correspondence with the 3D
models is not used (i.e., the images and shapes are treated
independently).

Generation process. Recall that our generation process
can be written IT = G(zs, zT ,⇧) = fT (In(zs,⇧) � zT ),
where In(zs,⇧) denotes the CPDDF normals render (see
§3.2) and � refers to concatenating zT to every pixel of In.
For latent sampling, zs, zT ⇠ N (0, I), while the camera
⇧ is sampled from the upper hemisphere above the object,
oriented toward the origin at a fixed distance and with a
fixed focal length. The image size was set to 64⇥ 64.

Networks. The translation network fT exactly follows
the architecture from CycleGAN [92] consisting of resid-
ual blocks (two downsampling layers, then six resolution-
retaining layers, followed by two upsampling layers), using
the code from [93]. The normals consistency network, gT ,
has identical architecture to fT , while the texture consis-
tency network, hT , is a ResNet-20 [17, 22]. We utilize the
convolutional discriminator implementation from Mimicry
[36], based on DCGAN [59].

Training. Our image GAN is trained in the standard
alternating manner, using two critic training steps for ev-
ery generator step. The non-saturating loss [14] was used,
along with a zero-centered gradient penalty [45, 65] (with a
weight of 10 during critic training). We used the following
loss weights: �C,S = 1 and �C,T = 1 For optimization,
we use Adam (learning rate 10�4; �1 = 0.0, �2 = 0.9) for
100K iterations (with the same reduce-on-plateau scheduler
as in Appendix C).

2D GAN Comparison. As mentioned in the paper, we
trained a convolutional GAN with the same loss and critic
architecture using the Mimicry library [36]. We evaluated
both our model and the 2D GAN with Frechet Inception
Distance (FID), using torch-fidelity [53] with 50K samples.
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