A. Comparison of Terminologies between Game Theory and GAN

Table 1. Comparison of Terminologies between Game Theory and GAN

Game Theory terminology GAN terminology

Player Generator/ discriminator

Strategy The parameter setting of generator/ discriminator, e.g., 7, and g

Policy The sequence of parameters (strategies) till epoch ¢, e.g., (W;, 7r§7 e 7r§)
Note: Not used in DO-GAN.

Game The minmax game between generator and discriminator

The minmax game between generator & discriminator with

Meta-game/ meta-matrix . . X
g their respective set of strategies at epoch ¢ of DO framework

Meta-strategy The mixed NE strategy of generator/discriminator at epoch ¢

B. Full Algorithm of DO-GAN

Algorithm 1: GeneratorOracle (o5, D)

1 Initialize a generator G with random parameter setting 7r;;

2 for iteration kg . . . k,, do

3 Sample noise z;

4 74 = Sample a discriminator from D with afi*;

5 Initialize a discriminator D with parameter setting 74;

6 Update the generator G’s parameters 7r; via Adam optimizer:

Vi, log (1 — D(G(2)))

Algorithm 2: DiscriminatorOracle (Jf,*, g)

1 Initialize a discriminator D with random parameter setting 7/;;
2 for iteration kg . . . k,, do

3 Sample a minibatch of data x;

4 for a minibatch do

5 Sample noise z;

6 my = Sample a generator from G with 05*;

7 Initialize a generator G’ with a parameter setting 7y;

8 Generate and add to mixture G(z);

9 Update the discriminator D’s parameters 7/; via Adam optimizer:
10

Va, log D(x) + log (1 — D(G(2)))

We train the oracles for some iterations which we denote as kg 1 o, For experiments, we train each oracle for an epoch for

sLyLyee

the real-world datasets and 50 iterations for the 2D Synthetic Gaussian Dataset. At each iteration ¢, we sample the generators
from the support set G with the meta-strategy UZ* to generate the images for evaluation. Similarly, we conduct the performance

evaluation with the generators sampled from G with the final o at termination. SGAN consists of a top-down stack of GANS,
e.g, for a stack of 2, Generator 1 is the first layer stacked on Generator 0 with each of them connected to Discriminator 1 and 0
respectively. Hence, in DO-SGAN, we store the meta-strategies for the Generator 0 and 1 in o;* and the Discriminator 1 and 0
for o'*. In GeneratorQOracle(), we first sample Discriminator 1 and 0 from discriminator distribution o;* and train Generator
1 first then followed by calculating loss with Discriminator 1 and train Generator O subsequently, and finally calculate final
loss with Discriminator 0 and train the whole model end to end. We perform the same process for DisciminatorQOracle().

C. Implementation Details

Table 2. Training Hyperparameters

GAN DCGAN SNGAN SGAN

Generator Learning Rate 0.0002 0.0002 0.0002 0.0001
Discriminator Learning Rate 0.0002 0.0002 0.0002 0.0001
batch size 64 64 64 100
Adam: beta 1 0.5 0.5 0.5 0.5
Adam: beta 2 0.999 0.999 0.999 0.999

We implement our proposed method with Python 3.7, Pytorch=1.4.0 and Torchvision=0.5.0. We set the hyperparameters as
the original implementations. We present the hyperparameters set in Table We use Nashpy to compute the equilibria of the
meta-matrix game.

C.1. Value of)

The experiment in [|17] has done ablation studies for FFHQ dataset which are emoji faces and hence we used the A value for
CelebA. Meanwhile, we adopted the results from [34] and set 1000 for MNIST and the maximum value of ablation study for
SVHN dataset to train CIFAR-10 as we want to use A values from the most similar datasets. The experiments in [[34] reported
that they observed little difference in visual quality regarding with ablation study but high values of X cause no loss in visual
fidelity when beginning training on a new task rather than lower value of A. Hence, we use the maximum value.

D. Full Training Process of 2D Gaussian Dataset

Epoch 0 Epoch 1000 Epoch 2000 Epoch 3000 Epoch 4000 Epoch 0 Epoch 1000 Epoch 2000 Epoch 3000 Epoch 4000
. - .
- - Y . < . = % &°.
- \ .. » et et
Epoch 5000 Epoch 6000 Epoch 7000 Epoch 8000 Epoch 9000 Epoch 5000 Epoch 6000 Epoch 7000 Epoch 8000 Epoch 9000
o™ ... - - - - - " e - - e
2 . 2 . » . - - . . .- . - . .- . . .
. -~ .- - -
Epoch 10000 Epoch 11000 Epoch 12000 Epoch 13000 Epoch 14000 Epoch 10000 Epoch 11000 Epoch 12000 Epoch 13000 Epoch 14000
- - -e - - L - - e . e - -
. - - - - - . . - - - - - - - - - - - -
.- - -- - - - - - e . e e
Epoch 15000 Epoch 16000 Epoch 17000 Epoch 18000 Epoch 19000 Epoch 15000 Epoch 16000 Epoch 17000 Epoch 18000 Epoch 19000
&S .. - _: -: e ..-} .-’o- ..'.. -.'-. ..'-. .-‘..
- - - LI g ~.
(a) GAN (b) DO-GAN/P

Figure 1. Full comparison of GAN and DO-GAN/P on 2D Synthetic Gaussian Dataset

Epoch 0 Epoch 5000 Epoch 10000 Epoch 15000 Epoch 20000

GAN
.
'

Epoch 0 Epoch 5000 Epoch 10000 Epoch 15000 Epoch 20000
. " - o®e - >* e
- - . - - - - -
- - - - - - -

Figure 2. GAN and DO-GAN/P comparison with Gaussian Mixture 7 modes

DO-GAN

Figure shows the full training process of DO-GAN/P and GAN on 2D Synthetic Gaussian Dataset. From the results,
we find that GAN struggles to generate the samples into 8 modes while DO-GAN/P can generate all the 8 modes of the
distribution. Furthermore, DO-GAN/P takes shorter time (less than 5000 iterations) to identify all 8 modes of the data
distribution. Moreover, we present the experiment results on 7 mode and 9-mode Gaussian Mixtures in Figureand

Epoch 0 Epoch 5000 Epoch 10000 Epoch 15000 Epoch 20000
= - - - -
.

Epoch 0 Epoch 5000 Epoch 10000 Epoch 15000 Epoch 20000
E ' e . . ' - - : : :
Q e - - - - - - -
o]

a

Figure 3. GAN and DO-GAN/P comparison with Gaussian Mixture 9 modes

E. Investigation of Support Set Size for DO-GAN/P

We vary the support set size s to 5, 10, 15 and record the training evolution and the running time as presented in Table
and Figure[4] We find that if the support size is too small, e.g., s = 5, the best responses which are not optimal yet have better
utilities than the models in the support set are added and pruned from the meta-matrix repeatedly making the training not
able to converge. However, s = 15 takes a significantly longer time as the time for the augmenting of meta-matrix becomes
exponentially long with the support set size. Hence, we chose s = 10 as our experiment support set size since we observed

that there is no significant trade-off and shorter runtime.

s=5

s=10

s=15

Table 3. Runtime of DO-GAN/P on 2D Gaussian Dataset with s = 5,10, 15

Support Set Size Runtime (GPU hours)
s=5 >1
s =10 0.5627
s=15 0.9989
- - - - - . -
- . - - - - - - E - -
» - o - o ® - -
Epoch 0 Epoch 5000 Epoch 10000 Epoch 15000 Epoch 20000 Epoch 25000 Epoch 30000
-" - ®e o® -" - .t -"e
- - - - - - - - - - - -
Epoch 0 Epoch 5000 Epoch 10000 Epoch 15000 Epoch 20000 Epoch 25000 converged
- - - - - e eo® -
- - - - - -
Epoch 0 Epoch 5000 Epoch 10000 Epoch 15000 Epoch 20000 converged

Figure 4. Training evolution on 2D Gaussian Dataset with s = 5, 10, 15

F. Generated images of CelebA and CIFAR-10

In this section, we present the training images of CelebA and CIFAR-10 datasets. We do not evaluate the performance of
vanilla GAN and its DO variant on CelebA dataset since DCGAN and SGAN outperform vanilla GAN in image generation

tasks [28].

N
>

DCGAN

%5

I

;4

DO-DCGAN/C

Epoch 19

Epoch 0

Figure 5. Training images with fixed noise for DCGAN and DO-DCGAN until termination.

Figureshows the training samples of DCGAN, DO-DCGAN/P and DO-DCGANY/C through the training process. FigureEl
also shows those of SNGAN which is trained for 40 epochs with termination € of 5 x 10~ for DO-SNGAN/P and DO-
SNGAN/C. Figuremshows those of SGAN which is trained until 20 epochs as well as DO-SGAN/P and DO-SGAN/C with
the same termination settings. The results show that DCGAN suffers from mode-collapse, generating similar face while DO-
DCGANY/P can generate more plausible and varying faces. We also present the generated images of DCGAN, DO-DCGAN/P,
DO-DCGAN/C, SNGAN, DO-SNGAN/P, DO-SNGAN/C, SGAN, DO-SGAN/P and DO-SGAN/C of CIFAR-10 dataset
showing that the variants of DO-DCGAN, DO-SNGAN and DO-SGAN can generate better and more identifiable images
than DCGAN, SNGAN and SGAN respectively. We present more of the generated samples from SNGAN, DO-SNGAN/P,
DO-SNGAN/C, SGAN, DO-SGAN/P, DO-SGAN/C on CelebA dataset in FigureEl

G. FID score against iterations

To compute FID score, we use Inception_v3 model with max pool of 192 dimensions and the last layer as coding layer as
mentioned in [9]. We resized MNIST, CIFAR-10 generated and test images to 32 x 32 and CelebA images to 64 x 64. The
FID score against training epochs for CIFAR-10 dataset is as follows:

Figurepresents the FID score against each epoch of training for SGAN and DO-SGAN/P on CIFAR-10. While both
perform relatively well in generating plausible images, we can see that DO-SGAN/P terminates early at epoch 288 and has a
better FID score of 16.56 compared to 24.83 at 300 epoch until 21.284 at 500 epoch for the training of SGAN.

AN -

Epoch 30

DO-SNGAN/C

Epoch 10 ~ Epoch 20 Epoch 30 Epoch 33

Figure 6. Training images with fixed noise for SNGAN and DO-SNGAN until termination.

H. Choice of GAN Architectures for Experiments

We carried out experiments with the variants of GANs to evaluate the performance of our DO-GAN framework. We refer to
the taxonomy of GANs and choose each architecture from the groups of GANs focused on Network Architecture, Latent
Space and Loss: DCGAN, SNGAN and SGAN as shown in Figure We have also included comparisons with mixture
architectures such as MIXGAN and MGAN.

I. Example of Meta-matrix of DO-SGAN/P on CIFAR-10

DO-SGAN/P

g
=
=
U]
@
Q
a
I

Epoch 5 Epoch 10 o Epoch 15 "

Figure 7. Training images with fixed noise for SGAN and DO-SGAN until termination.

(c) SdAN ‘

ry
b

(g) DO-DCGAN/C (h) DO-SNGAN/C (i) DO-SGAN/C

Figure 8. Generated images of CIFAR-10 dataset

rW.ﬂ!Piﬁ.W‘MAQ:M

O

L

. S S iy
a Tgv el Qe
2 e ~—- z

- Pt o
21 ‘.a‘us-wwn‘mmmmﬂ Gl

il

UL CER L
‘.m j) 1 .@ =

(c) DO-SNGAN/C

(b) DO-SNGAN/P

(a) SNGAN

Figure 9. Generated images of CelebA dataset for DO-SNGAN/P, DO-SNGAN/C and SNGAN

(e) DO-SGAN/P (f) DO-SGAN/P

(d SGAN

Figure 9. Generated images of CelebA dataset for DO-SGAN and SGAN

—<— SGAN
- DO-SGAN

| | | | | |
200 250 300 350 400 450 500
Epochs

|
150

|
100

-

|
N
o
—

|
0
—
[en)
i

Q102§ dIA

10!

Figure 10. FID score vs. Epochs for SGAN and DO-SGAN trained on CIFAR-10

;LAPGAN, 2015 (Laplacian pyramid coding)
,DCGAN, 2016 (Transposed convolution in generat

“or))
Net K hitect 2BEGAN, 2017 (Autoencoder as discriminator)
etwork architecture n = —
°° ::?GAN' 2017 (Progressive manner during traini |_ AutoGAN, 2019 (multi-level architecture search)

©9BigGAN, 2019 (Deeper net and larger batch size)
©°SAGAN, 2018 (Self-attention module){
YLG, 2020 (A local sparse attention layer)

,CGAN, 2014 (Label info into discrimi and ge { 2AC-GAN, 2017 (Auxiliary classifier)
_nerator) 2InfoGAN, 2016 (Classifier for labels) |
‘BiGAN, 2016 (Encoder for learning inverse mappi
ng)
2SGAN, 2016 (Multi-headed layer in)

CycleGAN, 2017; DiscoGAN, 2017; DualGAN, 2017 — Image style transfer
SRGAN, 2016 — Image super-resolution

étyleGAN. 2015 scale-speciﬁc face generau’oﬁ

Application focused [Face Completion GAN, 2017 — Face completion

Proposed GANs Taxonomy AlphaGAN, 2018 — Image matting,

Moco-GAN , 2018 — DVD-GAN, 2019 — Video generation)

SinGAN, 2019 — Image manipulation learned by one image

©°RGAN, 2018 (Integral probability metric)

2WGAN, 2017 (Wasserstein distance)

- YGeometric GAN, 2017 (Hinge loss) — Sphere GAN, 2019 (Riemannian manifolds)

"FCGAN, 2014 (JS divergence) — 2LSGAN, 2016 (Pearson divergence) — f-GAN, 2016 (f-divergence)
YUGAN, 2016 (Second order gradient loss)

oLS-GAN, 2017 (Designated margin between real a
nd fake samples)

©° WGAN-GP, 2017 (Gradient penalty on WGAN)
WGAN-CT, 2018 (Soft consistency on WGAN)
WGAN-LP, 2017 (Lipschitz penalty on WGAN, less

IPM based

Non-IPM based

Regularization

, 2016 (| lize missing modes) |
©9SN-GAN, 2018] lization))

SS-GAN, 2019 (Self-supervision avoid discriminat
or forgetting)

Figure 11. Taxonomy of GAN Architectures from

Epoch 5

10
©- 038008 1e-05 6e-05 0.00027 0.0004
8
- 3e-05
n 6
o
©
En 3e-05
‘c
@
z
-4
m 7.4184 4e-05
-2
@ - 0.01739
'
2 4
Generators
(a) Meta-matrix at epocht = 5
Meta-Strategies: 05* = [0,0,0,0,1], c5* = [0,0,0,0,1]
Expected Payoff: U®(c5*,05*) = 0.017
Converged
° WE] 000012 0.00011 0.00011 0.0001 9%-05 9e-05 00001 00001 00001
0.00018
- €] 0.00011 0.00011 0.00011 0.0001 9e-05 9e-05 9e-05 9e-05
~ 0 DERIINE] 000012 00001 00001 9e-05 905 905 905
0.00016

0.0001 00001 9e-05 9e-05

00001 9e-05 9e-05 9e-05

4

0.00014

5

£l 0.0001

Discriminators

-0.00012
~ -0.00012 0.00012 0.00012 0.00012 0.00012 ﬁ 00017

© - %-05 9%-05 9%-05 9e-05

-0.00010
o - %05 9%-05 905 9e-05

0 1 2 3

Generators

(b) Meta-matrix at convergence

Meta-Strategies:

0388* = [0.015196, 0.025942, 0.141215, 0.000000, 0.0989, 0.163399, 0.000000, 0.535331, 0.000000, 0.020017]
0588* = [0.320082, 0.004844, 0.000000, 0.111335, 0.141493, 0.071708, 0.046, 0.000000, 0.000000, 0.304538|
Expected Payoff: U288(5288+, 5288*) = —0.000133

