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1. Additional Examples

In this section we provide additional examples of the ap-
plications and the failure cases that were mentioned in the
main paper. In addition, we show that our method naturally
supports an iterative editing process. Lastly, we demon-
strate the naïve blending approach (main paper, Section
4.2.1).

1.1. Applications — Additional Examples

We provide additional examples for the applications
mentioned in the paper: Figures 1 to 3 demonstrate the abil-
ity of our method to add new objects to an existing image,
where Figures 1 and 2 show that different results can be
obtained for the same text prompt, while Figure 3 shows re-
sults obtained using a variety of prompts. Figure 4 demon-
strates the ability to remove or replace objects in an exiting
image, while Figure 5 demonstrates the ability to alter an
existing object in an image. Figures 6 and 7 demonstrate
the ability to replace the background of an image. Fig-
ure 8 demonstrates more examples of scribble-guided edit-
ing, and Figure 9 demonstrates text-guided image extrapo-
lation.

1.2. Iterative Editing

The synthesis results that are given by our method are at
times exactly what the user envisioned, but they can also be
different from the user’s intent or might include unwanted
artifacts. Unlike other text-driven image editing techniques
that operate on the entire image (e.g., StyleCLIP [14]), our
method is region-based, thus allowing the user to progres-
sively refine their result in an incremental editing session.

Figure 10 demonstrates such an editing session. At first,
the user starts by replacing the background, as described
in Section 5.3 in the main paper, and obtains a result that
is mostly satisfactory, but is not perfect: there are two un-
wanted generated objects on the grass that the user wishes
to remove. In addition, the user decides that the initial mask
used in the previous step was not accurate enough, causing
a mismatch between the generated grass and the grass from
the original scene. The user then provides additional masks,

without a text prompt, causing our method to inpaint these
areas, yielding the final result. Figures 11 to 13 demonstrate
more editing sessions. Each of the sessions utilizes a vari-
ety of editing types: adding, changing and removing objects
and backgrounds, scribble-guided edits, and clip-art-guided
edits. Out method is compositional by design, and does not
require any modifications to support such mixed editing ses-
sions.

Unless stated otherwise, all the results in the main pa-
per and in this supplemental document are without such in-
cremental refinements — we show the raw results with no
further user interaction.

1.3. Failure Cases

Figure 14 demonstrates the susceptibility of our model to
typographic attacks [8]. Figure 15 demonstrates synthesis
of objects which appear natural on their own, but possess
the wrong size compared to the rest of the photo.

1.4. Naïve blending example

As discussed in Section 4.2.1 of the paper, naïve blend-
ing of the input image and the diffusion-synthesized result
inside the masked area yields an unnatural result, as can be
seen in Figure 16.

1.5. High-resolution generation

Most results presented in the paper use an unconditional
DDPM model of resolution 256×256, producing generated
images of that resolution. Nevertheless, we are not con-
strained to this resolution, as can be seen in Figure 10 in the
main paper and in Figure 9 in this supplementary document
(for more details read Section 2.5.2). We can also use Ope-
nAI’s unconditional 512×512 version of the model [12], by
feeding the one-hot encoding with zeroes vector (similarly
to [2]). Demonstration of using the higher resolution model
for blended diffusion can be seen in Figure 17.

1.6. Comparison to DDIM

Our method uses Denoising Diffusion Probabilistic
Models (DDPMs). Recently, Song et al. propose Denoising
Diffusion Implicit Models (DDIMs) [16], a fast sampling
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Input image Image mask Result 1 Result 2 Result 3 Result 4

Result 5 Result 6 Result 7 Result 8 Result 9 Result 10

Figure 1. Adding a new object (multiple results for the same input): Given the input image, mask and text description “rock”, our
model is able to generate multiple plausible results.

Input image Image mask Result 1 Result 2 Result 3 Result 4

Result 5 Result 6 Result 7 Result 8 Result 9 Result 10

Figure 2. Adding a new object (multiple results for the same input): Given the input image, mask, and text description “a dog”, our
model is able to generate multiple plausible results. Some results are better (first row) than others (second row).

algorithm for DDPMs that produces a new implicit model
with the same marginal noise distributions, but determinis-
tically maps noise to images. Nichol et al. [10] showed that
DDIMs produce better samples than DDPMs with fewer
than 50 sampling steps, but worse samples when using 50
or more steps. In order to check the effect of using DDIM
instead of DDPM we first adjusted the DDIM version of
the guided-diffusion algorithm [5] with Blended Diffusion
in Algorithm 1. As we can see experimentally in Figure 18,
the same holds for image generation using Blended Diffu-
sion: DDPMs produce better results than DDIMs when us-
ing 100 diffusion steps, but worse results when using less
than 50 diffusion steps.

2. Implementation Details
For all the experiments reported in this paper we used

a pre-trained CLIP model [15] and a pre-trained guided-
diffusion model [5]:

• For the CLIP model we used ViT-B/16 as a backbone
for the Vision Transformer [6] that was released by
OpenAI [11].

• For the diffusion model we used an unconditional
model of resolution 256× 256 [12].

Both of these models were released under MIT license
and were developed using PyTorch [13]. All the input im-
ages in this paper are real images (i.e., not synthesized),
except the ones in Figure 5 of the main paper, which were



Input image Input mask “car tire” “big stone” “meat” “tofu”

“grass” “blue ball” “silver brick” “ice cube” “plastic bag” “bowl of water”

“black rock” “cardboard” “tooth” “water bottle” “bread” “smoke”

“chocolate” “clay pot” “cola” “egg” “flower” “glass”

“glow stick” “gravestone” “helmet” “lamp” “milk” “hole”

Figure 3. Adding a new object (different prompts): Given an input image and mask, our model is able to generate different objects
corresponding to different text descriptions.

generated by Bau et al. [1]. All images were released freely
under a Creative Commons license.

2.1. Hyperparamters

We used the CLIP model as-is, without changing any pa-
rameters. In addition, we did not utilize any prompt engi-
neering techniques as described by Radford et al. [15].

We used the following hyperparameters in the guided-
diffusion model across the different experiments (both in
our model and in the baselines):

• Fast sampling speed: We follow the fast sampling

speed from [10] which showed that 100 sampling steps
are sufficient to achieve near-optimal FID score [9] on
ImageNet [4]. This scheme reduces the sampling time
to 27 seconds, for more details see Section 2.3.

• Number of diffusion steps: In most of our experi-
ments we set the number of diffusion steps to k = 75,
allowing the model to change the input image in a suf-
ficient manner. Exceptions are scribble-based editing
(k = 60) and background editing (k = 67).

In Algorithm 2 we use the following hyperparameters:



Input image Input mask No prompt “white ball” “bowl of water” “stool”

“hole” “red brick” “pile of dirt” “laptop” “plastic bag” “rat”

“bonfire” “snake” “spider” “plant” “candle” “blanket”

“bottle” “cardboard” “chocolate” “clay pot” “egg” “flower”

“glass” “glow stick” “gravestone” “helmet” “milk” “smoke”

Figure 4. Removing/replacing a foreground object: Given an input image and a mask, we demonstrate inpainting of the masked region
using different guiding texts. When no prompt is given, the result is similar to traditional image inpainting.

• Number of extending augmentations: We found that
setting this to N = 16 was sufficient to mitigate the
adversarial example phenomena.

• Number of total repetitions: As explained in Section
4.2.3, we generate several results and rank them using
the CLIP model. In our experiments, we generate 64
samples and choose the best ones. For more details on
inference time see Section 2.3.

2.2. Extending Augmentations

Given an input image x, in the resolution of the diffusion
model (256 × 256 in our case), we first resize it to the in-
put size of the CLIP model (224× 224) along with its input
mask. Next, we create N copies of this image and perform
a different random projective transformation on each copy,
along with the same transformation on the corresponding
mask (see Figure 19). Finally, we calculate the gradients
using the CLIP loss w.r.t each one of the transformed copies
and average all the gradients. This way, an adversarial ma-
nipulation is much less likely, as it would have to “fool”



Input image Input mask Result 1 Result 2 Result 3 Result 4

Result 5 Result 6 Result 7 Result 8 Result 9 Result 10

Result 11 Result 12 Result 13 Result 14 Result 15 Result 16

Result 17 Result 18 Result 19 Result 20 Result 21 Result 22

Figure 5. Altering a part of an existing foreground object: Given an input image and a mask, we aim to alter the foreground object
corresponding to the guiding text “body of a standing dog”. Multiple plausible results are generated, some more plausible than others.
(The first two rows are better than the bottom two rows.)

Algorithm 1 DDIM blended diffusion: given a diffusion
model (µθ(xt),Σθ(xt)), and CLIP model

Input: source image x, target text description d, input mask m, diffu-
sion steps k, number of extending augmentations N
Output: edited image x̂ that differs from input image x inside area m
according to text description d
xk ∼ N (

√
ᾱkx0, (1− ᾱk)I)

for all t from k to 0 do
µ,Σ← µθ(xt),Σθ(xt)

x̂0 ← xt√
ᾱt
−

√
1−ᾱtϵθ(xt,t)√

ᾱt

x̂0,aug ← ExtendingAugmentations(x̂0, N)

∇text ← 1
N

∑N
i=1∇x̂0,augDCLIP(x̂0,aug, d,m)

ϵ̂← ϵθ(xt)−
√
1− ᾱt∇text

xfg ←
√
ᾱt−1

(
xt−

√
1−ᾱt ϵ̂√
ᾱt

)
+
√
1− ᾱt−1ϵ̂

xbg ∼ N (
√
ᾱtx0, (1− ᾱt)I)

xt−1 ← xfg ⊙m+ xbg ⊙ (1−m)
end for
return x−1

CLIP under multiple transformations.
As mentioned in Section 5.2 we performed an ablation

study for the extending augmentations. Figure 20 demon-
strates the importance of the augmentations: the same ran-
dom seed is used in two runs, one with and the other without
augmentations. We can see that the images generated with
the use of augmentations are more visually plausible and
are more coherent than the ones generated without the aug-
mentations. (This is an extended version of Figure 7 from
the main paper.)

2.3. Inference Time

We report synthesis time for a single image using one
NVIDIA A10 GPU:

• Our method (Algorithm 2) & Local CLIP-guided dif-
fusion (Algorithm 1): 27 seconds.

• PaintByWord++: 78 seconds.



Input image Input mask “big mountain” “swimming pool” “big wall” “New York City”

“green hills” “red house” “oasis” “Acropolis” “fire” “big waterfall”

“China” “Colosseum” “festival” “Golden Gate Bridge” “Machu Picchu” “Mount Fuji”

“Petra” “The Great Pyramid of Giza” “river” “snowy mountain” “Stanford University” “Stonehenge”

“sunrise” “rainy” “volcanic eruption” “The Western Wall” “Arc de Triomphe” “big ship”

Figure 6. Background replacement: Given a source image and a mask of the background, the model is able to replace the background
according to the text description. Note that the famous landmarks are not meant to accurately appear in the new background, but serve as
an inspiration for the image completion.

Original paint by word [1] did not release their code and
did not mention the run-time.

In practice, as described in Section 4.2.3, we generate
several results for the same inputs and use the best ones.
Instead of generating them sequentially, we accelerate the
generation process using two techniques:

1. Batch generation: Instead of generating a single im-
age in each diffusion pass, we multiplied the input sev-
eral times and generated several instances on the same
pass. Because of the stochasticity of the diffusion pro-
cess, each result is different.

2. Parallel generation: Because each of the generation
processes is independent, we can distribute the gener-
ation across multiple GPUs. In our experiments, we
concurrently used 4 NVIDIA A10 GPUs.

Using the above accelerations, we generate 64 synthesis re-
sults in about 6 minutes — less than 6 seconds per image.

2.4. Comparison with Baselines

PaintByWord Because the models and code that was used
by Bau et al. [1] are currently unavailable, we used as input
the images and masks extracted from their paper.



Input image Input mask “Acropolis” “fire” “China” “Colosseum”

“desert” “festival” “Grand Canyon” “Machu Pichu” “north pole” “parking lot”

“Petra” “river” “snowy mountain” “Stanford University” “Stonehenge” “rainy”

“volcanic eruption” “The Western Wall” “in the woods” “beach” “big waterfall” “flower field”

“green hills” “lake” “oasis” “book cover” “fog” “gravel”

Figure 7. Background replacement: Given a source image and a mask of the background, the model is able to replace the background
corresponding to the text description. Note that the famous landmarks are not meant to accurately appear in the new background, but serve
as an inspiration for the image completion.

PaintByWord++ We adapted the VQGAN+CLIP [3] im-
plementation to support masks using the same DCLIP loss
from Equation (6). We used the VQGAN [7] model that
was trained on ImageNet with reduction factor f = 16. For
the latent optimization, we used the Adam optimizer with
a learning rate of 0.1 for 500 steps. We found that con-
straining the optimization of the latent space z only to the
corresponding mask area, the same way it was done by Bau
et al. [1], improved the background preservation.

2.5. Implementation Details for Applications

In this section, we provide the implementation details for
scribble-guided editing and text-guided image extrapolation
applications.

2.5.1 Scribble-guided editing

In order to create the results that are demonstrated in Fig-
ure 9 of the main paper, the user first scribbles on the input
image, then masks the scribble area (the masking can also
be done automatically by taking the scribbles area and di-
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Input image Image + scribble Mask Result 1 Result 2 Result 3

Figure 8. Scribble-guided editing: Users scribble a rough shape of the object they want to insert, mark the edited area, and provide a
guiding text. The model uses the scribble as a general shape and color reference, transforming it to match the guiding text. Note that
the scribble patterns can also change. In the last example, we embedded a clip art of a table instead of a manual scribble, it shows the
effectiveness of our model to transform unnatural clip arts into real-looking objects.

lating it by morphological operations), then provides a text
prompt and uses the same algorithm as for object altering.

An important hyper-parameter for this application is the
number of target diffusion steps k in Algorithm 2. Figure 21
demonstrates the effect of changing this parameter: when
diffusing for a longer period (e.g., 80 diffusion steps out
of 100), only the main red color of the blanket is kept, the
blanket shading is more realistic, and the results are more
diverse. When diffusing for a shorter period (e.g., 20 diffu-
sion steps out of 100), the scribble is hardly modified.

2.5.2 Text-guided image extrapolation

In order to extend the image beyond its original resolution,
we gradually predict the unknown parts of the image in a se-
quential manner. Figure 22 demonstrates the building pro-
cess: at each stage, (2) we translate the image 1

4 to the op-
posite of the desired direction and fill the missing area us-
ing standard reflection padding, (4) then we inpaint the new
area guided by the text description, using the regular algo-
rithm for foreground editing. (5-7) We repeat the process 3
times until we have a new image. The new image is still a
bit noisy — due of the gradual inpainting, each synthesis re-
sult is noisier than the previous one because of the chaining



(a) Source image

(b) Extrapolated result

Figure 9. Text-guided image extrapolation: The user provides an image and two text descriptions that guide the extrapolation to the left
(“sunny day” in this example) and to the right (“dark night”).

Input image Input mask First result Refinement mask Final result

Figure 10. Result refinement: The initial synthesis result of our model can be further refined. For example, here the user first masks a
rough area in the source image and replaces the background using the prompt “New York City”. Next, they wish to remove two unwanted
objects from the generated result and to further refine the rough mask that was used in the first stage. They provide additional masks and
no guiding text in this case (to perform inpainting) in order to obtain the final result.

of the natural image statistics. In order to mitigate it, (8) we
denoise this image using the diffusion process again. We
repeat the same process in the other direction. Our output
can have an arbitrarily large image resolution.

We also notice that gradual diffusion steps are beneficial:
we diffuse the first quarter for a small number of diffusion
steps, and then in each step, we enlarge the number of dif-
fusion steps.

2.6. Ranking Implementation Details

We utilized the ranking algorithm that is explained in
Section 4.2.3 in the main paper using 64 synthesis results.
As described in Section 6 in the main paper, the ranking is
not perfect because it takes into account only the generated
area. In addition, the ranking is not accurate enough in the
resolution of single images: the top-ranked image isn’t al-
ways better than the second one, etc. Nonetheless, the top
20% of the images are almost always better than the bottom

20%. In practice, we generate 64 results and choose manu-
ally from the top 10 images ordered by their ranking (in both
the baselines and our method). Figure 23 demonstrates the
effectiveness of the ranking algorithm.

3. User Study

In order to evaluate our model quantitatively, we con-
ducted a user study. The only results of the Paint By Word
model on general images (albeit GAN-generated) that were
available are the ones in their paper. Hence, we chose to
conduct the user study on these images (along with their
corresponding masks). The study was conducted on 35 par-
ticipants.

The participants were shown each time the inputs to the
model (image, mask and text description) along with the
model prediction, and were asked to rate the prediction, on
a scale of 1–5, for one of the following criteria:
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Input image Mask Result

Figure 11. Editing session mix example: The user can use several editing operations consecutively. For example, as the first step, the user
masks the hair of the person and provides the guiding text “curly blond hair”. As the second step, the user masks the tie and provides the
guiding text “shiny purple tie”. At the last step, the user scribbles red dots on the jacket, masks the jacket, and provides the guiding text
“floral jacket”.

1. The overall realism of the prediction.

2. The amount of background preservation of the predic-
tion in the unedited area.

3. The correspondence of the edited image to the guiding
text description.

The questions were randomly ordered, and the partici-
pant had the ability to go back and edit their previous ratings
until submission.

Mean user study scores are presented in Table 1 of the
main paper. The difference between conditions is statisti-
cally significant (Kruskal-Wallis test, p < 10−130). Fur-

ther analysis using Tukey’s honestly significant difference
procedure [17] shows that the improvement shown by our
method is statistically significant vs. all other conditions
(Table 1).
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Input image Mask Result

Figure 12. Editing session mix example: The user can use several editing operations consecutively. For example, here the user starts by
pasting a clip art of a table on the image, then masks the relevant area and provides the guiding text “table” to get a more natural looking
table. In the second stage, the user masks an area on the previous synthesis result and provides the guiding text “orange”. In the last stage,
the user masks the background of the previous synthesis result and provides the guiding text “river bank” to get the final synthesis result.

Method 1 Method 2 Realism Background preservation Text match
p-value p-value p-value

Local CLIP GD [2] Ours 0.003 <0.001 <0.001
Local CLIP GD [2] PaintByWord [1] 0.435 0.578 <0.001
Local CLIP GD [2] PaintByWord++ [1, 3] <0.001 0.106 <0.001

Ours PaintByWord [1] <0.001 <0.001 <0.001
Ours PaintByWord++ [1, 3] <0.001 <0.001 <0.001

PaintByWord [1] PaintByWord++ [1, 3] <0.001 0.719 0.704

Table 1. User study statistical analysis: We use Tukey’s honestly significant difference procedure [17] to test whether the differences
between mean scores in our user study are statistically significant. Significant results in bold. Our results are statistically better than all
other methods on all the measured conditions.
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Input image Mask Result

Figure 13. Editing session mix example: The user can use several editing operations consecutively. As a first step, the user masks the
chair and provides the guiding text “dresser”. Next, the user scribbles a rough shape of a lamp on the result of the previous step, masks
the area of the lamp, and provides the guiding text “ceiling lamp”. Finally, the user masks an area over the wall in the previous result, and
provides the guiding text “window” to obtain the final result.
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Input image Mask Result

Figure 14. Typographic failure: Our model inherits CLIP [15] susceptibility to typographic attacks [8]. Instead of generating an object
or a scene, the model might generate a textual description.



Input image Mask Synthesis result

Figure 15. Out of proportion synthesis: We show a failure case in which our method generates objects the look natural by themselves,
but with the wrong proportion to the rest of the scene. For the guiding text “grapes”, the synthesized result contains grapes which are huge
compared to the leopard and to the rest of the scene.

Input image Input mask Initial prediction Naïve blend

Figure 16. Naïve Blending: When providing the model the input image and mask with the text prompt “a dog”, and without using the
background preservation loss — the result is a dog whose head is inside the mask, but most of the dog’s body is outside the mask. Blending
such a result with the input image using the input mask we obtain an unnatural result.



Input image Input mask “blanket” “blue ball” “pile of books” “bowl of water”

“bread” “cardboard” “carrot” “pile of dirt” “egg” “fire”

“flower” “glass” “glow stick” “golden coins” “grave” “green flame”

“lamp” “newspaper” “clay pot” “puddle” “red ball” “rock”

“smoke” “soap” “spoon” “car tire” “vase” “shiny ball”

Figure 17. High resolution results: Given an input image of and mask, our model is able to generate different objects corresponding to
different text descriptions. Results were produced using 512× 512 DDPM model.
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Input image Input mask 100 steps 50 steps 25 steps 12 steps

Figure 18. Blended Diffusion DDPM VS Blended Diffusion DDIM comparison: The part corresponds to the editing text “a shiny ball”,
the middle part to “a rock” and the bottom part to “green hills”. As we can see, DDPM produces better results when using 100 diffusion
steps, whereas it produces worse results in less than 50 diffusion steps.



Input + mask Augmentation 1 Augmentation 2 Augmentation 3

Figure 19. Extending augmentation example: Given an input image and mask, we augment the masked area in the image using various
projective transformations.
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Input image Input image + mask (1) (2)

Figure 20. Extending augmentations ablation: In order to assess the importance of the extending augmentation technique, we used
the same random seeds for the same inputs to ensure that the results would differ in the use of augmentations. As we can see, (2)
using extending augmentations makes the resulting images more natural and coherent with the background in comparison to (1) not using
extending augmentations.
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Figure 21. Scribble-guided editing diffusion steps effect: when the diffusion steps are large (e.g. k = 80), the resulting images are more
realistic and diverse but do not preserve the colors of the input scribble, on the other hand, when the diffusions steps are low (e.g. k = 20),
the resulting images are almost identical to the input scribble.



(1) Source image (2) Translated and reflected (3) Mask (4) 1st prediction

(5) 2nd prediction (6) 3rd prediction (7) 4th prediction (8) Denoised prediction

Figure 22. Text-guided image extrapolation: We aim to extrapolate the source image (1) to the right according to the guiding text
“heaven”. We start by (2) translating the image to the left by 1

4
of the input resolution, and filling the missing area with reflection padding.

Then we mask the new area (3) and predict the missing part (4) using the foreground altering algorithm. We perform this process 3 more
times (5-7) to get a noisy prediction (7). In order to denoise it, we do the same process with a mask that covers the entire image and get the
denoised result (8) that we can stitch to the source image. Notice that we can reach an arbitrary resolution using this method.
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Input image Input mask 1st ranked result 2nd ranked result 63th ranked result 64th ranked result

Figure 23. Ranking algorithm effectiveness: We generate 64 synthesis results and rank them using CLIP. We found that this method only
roughly ranks the results: the top 20% are consistently better than the bottom 20%, but in the resolution of a single image, this is not the
case — the first result isn’t always better than the second one.
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