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Figure 1. Our method obtains a high-quality 3D reconstruction from an RGB-D input sequence by training a multi-layer perceptron.
In comparison to state-of-the-art methods like BundleFusion [3] or the theoretical NeRF [9] with additional depth constraints, our ap-
proach results in cleaner and more complete reconstructions. As can be seen, the pose optimization of our approach is key to resolving
misalignment artifacts.

1. Implementation Details

We implement our method in TensorFlow v2.4.1 using
the ADAM [7] optimizer with a learning rate of 5 × 10−4

and an exponential learning rate decay of 10−1 over 2.5 ×
105 iterations. In each iteration, we compute a gradient
w.r.t. |Pb| = 1024 randomly chosen rays. We set the num-
ber of S′f samples to 16. S′c is chosen so that there is on av-
erage one sample for every 1.5 cm of the ray length. Tab. 1
gives an overview of ray length and number of samples for

each of the experiments. Internally, we translate and scale
each scene so that it lies within a [−1, 1]3 cube. Depending
on scene size, our method takes between 9 and 13 hours to
converge on a single NVIDIA RTX 3090 (see Sec. 6). We
set the loss weights to λ1 = 0.1, λ2 = 10 and λ3 = 6×103.
We use 8 bands for the positional encoding of the point co-
ordinates and 4 bands to encode the view direction vector.

To account for distortions or inaccuracies of the intrin-
sic parameters, a 2D deformation field of the camera pixel
space in form of a 6-layer MLP, with a width of 128, is used.



Scene S′c
ray length

(m) #frames

Scene 0 512 8 1394
Scene 2 256 4 1299
Scene 5 256 4 1159
Scene 12 320 5 1335
Scene 24 512 8 849
Scene 50 256 4 1163
Scene 54 256 4 1250

Breakfast room 320 5 1167
Green room 512 8 1442
Grey-white room 512 8 1493
ICL living room 320 5 1510
Kitchen 1 512 8 1517
Kitchen 2 640 10 1221
Morning apartment 256 4 920
Staircase 512 8 1149
Thin geometry 256 4 395
White room 512 8 1676

Table 1. We list the number of samples S′
c and the ray length in

meters that were used to reconstruct each of the ScanNet scenes
and the synthetic scenes. Note that these settings are dependent on
the scene size.

2. Per-scene Quantitative Evaluations

In Tab. 3 and Tab. 4 we present a per-scene breakdown
of the quantitative analysis from the main paper (see Sec. 4,
Tab. 1 and Tab. 2 in the main paper). The corresponding
qualitative results are shown in Fig. 9 and Fig. 10.

Reconstruction Evaluation. The goal of our method is
to reconstruct a scene from color and depth data, i.e., we
do not aim for scene completion. To evaluate the recon-
struction quality, we evaluate the quality of reconstruc-
tions w.r.t. Chamfer distance (C-`1), intersection-over-
union (IoU), normal consistency (NC) based on cosine sim-
ilarity, and F-score. These metrics are computed on surfaces
which were visible in the color and depth streams (geometry
within the viewing frusta of the input images). Specifically,
we subdivide all meshes to have a maximum edge length of
below 1.5 cm and use the ground truth trajectory to detect
vertices which are visible in at least one camera. Triangles
which have no visible vertices, either due to not being in any
of the viewing frusta or due to being occluded by other ge-
ometry, are culled. This is necessary to avoid computing the
error in regions such as occluded geometry in the synthetic
ground truth mesh or in regions where the network output
is unpredictable because the region was never seen at train-
ing time. The culled geometry is sampled with a density of
1 point per cm2 and the error metrics are evaluated on the

Scene URL License

ScanNet http://www.scan-net.org/ MIT

Breakfast room https://blendswap.com/blend/13363 CC-BY
Green room https://blendswap.com/blend/8381 CC-BY
Grey-white room https://blendswap.com/blend/13552 CC-BY
ICL living room https://www.doc.ic.ac.uk/ ahanda/VaFRIC/iclnuim.html CC-BY
Kitchen 1 https://blendswap.com/blend/5156 CC-BY
Kitchen 2 https://blendswap.com/blend/11801 CC-0
Morning apart. https://blendswap.com/blend/10350 CC-0
Staircase https://blendswap.com/blend/14449 CC-BY
Thin geometry https://blendswap.com/blend/8381 CC-BY
White room https://blendswap.com/blend/5014 CC-BY

Table 2. Source and license information of the used data.

sampled point clouds. To evaluate the IoU, we voxelize the
reconstruction using voxels with an edge length of 5 cm.
The F-score is also computed using a 5 cm threshold.

Synthetic Dataset. Our synthetic dataset which we use
for numeric evaluation purposes consists of 10 scenes pub-
lished under either the CC-BY or CC-0 license (see Tab. 2).
We define a trajectory by a Catmull-Rom spline interpola-
tion [12] on several manually chosen control points. We use
BlenderProc [4] to render color and depth images for each
camera pose in the interpolated trajectory. Noise is applied
to the depth maps to simulate sensor noise of a real depth
sensor [1,2,5,6]. For the ICL scene [6], we use the color and
noisy depth provided by the authors and do not render our
own images. The scenes in the dataset have various sizes,
complexity and materials like highly specular surfaces or
mirrors. BundleFusion [3] is used to get an initial estimate
of the camera trajectory. This estimated trajectory is used
by all methods other than COLMAP to allow a fair compar-
ison.

Figure 2. The photometric energy term encourages correct depth
prediction in areas where the depth sensor did not capture any
depth measurements.



Scene Method C-`1 ↓ IoU ↑ NC ↑ F-score ↑ Pos. error ↓ Rot. error ↓
Breakfast room BundleFusion 0.033 0.698 0.944 0.890 0.037 0.697

RoutedFusion 0.033 0.714 0.918 0.901 - -
COLMAP + Poisson 0.033 0.668 0.935 0.893 0.009 0.210
Conv. Occ. Nets 0.047 0.474 0.879 0.780 - -
SIREN 0.060 0.566 0.922 0.822 - -
NeRF + Depth 0.041 0.619 0.811 0.854 - -

Ours (w/o pose) 0.031 0.720 0.930 0.914 - -
Ours 0.030 0.793 0.934 0.920 0.007 0.135

Green room BundleFusion 0.024 0.694 0.923 0.926 0.027 0.546
RoutedFusion 0.018 0.755 0.904 0.969 - -
COLMAP + Poisson 0.018 0.849 0.925 0.967 0.014 0.227
Conv. Occ. Nets 0.053 0.554 0.855 0.737 - -
SIREN 0.023 0.746 0.913 0.940 - -
NeRF + Depth 0.030 0.668 0.748 0.871 - -

Ours (w/o pose) 0.014 0.766 0.931 0.982 - -
Ours 0.013 0.921 0.932 0.990 0.012 0.104

Grey-white room BundleFusion 0.038 0.567 0.860 0.751 0.056 1.891
RoutedFusion 0.033 0.606 0.850 0.790 - -
COLMAP + Poisson 0.029 0.727 0.899 0.899 0.029 0.296
Conv. Occ. Nets 0.048 0.480 0.841 0.601 - -
SIREN 0.033 0.635 0.868 0.812 - -
NeRF + Depth 0.040 0.563 0.764 0.697 - -

Ours (w/o pose) 0.032 0.640 0.864 0.806 - -
Ours 0.015 0.886 0.924 0.987 0.014 0.146

ICL living room BundleFusion 0.018 0.743 0.956 0.958 0.022 0.382
RoutedFusion 0.019 0.698 0.939 0.976 - -
COLMAP + Poisson 0.023 0.727 0.947 0.966 0.029 0.836
Conv. Occ. Nets 0.112 0.352 0.841 0.507 - -
SIREN 0.020 0.768 0.950 0.967 - -
NeRF + Depth 0.021 0.689 0.900 0.956 - -

Ours (w/o pose) 0.014 0.790 0.964 0.992 - -
Ours 0.011 0.905 0.969 0.994 0.007 0.109

Kitchen 1 BundleFusion 0.234 0.368 0.860 0.620 0.038 0.327
RoutedFusion 0.265 0.401 0.805 0.680 - -
COLMAP + Poisson 0.252 0.459 0.888 0.748 0.103 0.941
Conv. Occ. Nets 0.262 0.352 0.839 0.483 - -
SIREN 0.265 0.357 0.850 0.575 - -
NeRF + Depth 0.271 0.336 0.710 0.600 - -

Ours (w/o pose) 0.255 0.420 0.887 0.700 - -
Ours 0.252 0.447 0.886 0.718 0.030 0.114

Table 3. We compare the quality of our reconstruction on several synthetic scenes for which ground truth data is available. The Chamfer
`1 distance, normal consistency and the F-score [8] are computed between point clouds sampled with a density of 1 point per cm2. We use
a threshold of 5 cm for the F-score. We further voxelize each mesh to compute the intersection-over-union (IoU) between the predictions
and ground truth.



Scene Method C-`1 ↓ IoU ↑ NC ↑ F-score ↑ Pos. error ↓ Rot. error ↓
Kitchen 2 BundleFusion 0.089 0.441 0.856 0.687 0.050 0.566

RoutedFusion 0.059 0.572 0.842 0.787 - -
COLMAP + Poisson 0.037 0.675 0.919 0.818 0.043 1.154
Conv. Occ. Nets 0.052 0.484 0.861 0.653 - -
SIREN 0.055 0.453 0.898 0.735 - -
NeRF + Depth 0.051 0.435 0.708 0.630 - -

Ours (w/o pose) 0.034 0.488 0.908 0.796 - -
Ours 0.032 0.637 0.903 0.890 0.083 0.450

Morning apartment BundleFusion 0.012 0.767 0.885 0.968 0.008 0.165
RoutedFusion 0.013 0.815 0.870 0.976 - -
COLMAP + Poisson 0.017 0.668 0.877 0.959 0.017 0.380
Conv. Occ. Nets 0.045 0.450 0.802 0.784 - -
SIREN 0.013 0.727 0.873 0.966 - -
NeRF + Depth 0.022 0.587 0.838 0.975 - -

Ours (w/o pose) 0.011 0.787 0.887 0.983 - -
Ours 0.011 0.716 0.888 0.982 0.005 0.093

Staircase BundleFusion 0.091 0.373 0.860 0.623 0.039 0.643
RoutedFusion 0.069 0.340 0.864 0.622 - -
COLMAP + Poisson 0.074 0.322 0.895 0.628 0.043 0.305
Conv. Occ. Nets 0.069 0.315 0.838 0.508 - -
SIREN 0.067 0.432 0.885 0.676 - -
NeRF + Depth 0.087 0.396 0.644 0.624 - -

Ours (w/o pose) 0.057 0.457 0.899 0.704 - -
Ours 0.045 0.565 0.920 0.853 0.016 0.123

Thin geometry BundleFusion 0.019 0.764 0.909 0.922 0.009 0.126
RoutedFusion 0.023 0.708 0.829 0.881 - -
COLMAP + Poisson 0.047 0.440 0.820 0.721 0.079 2.400
Conv. Occ. Nets 0.022 0.723 0.882 0.910 - -
SIREN 0.021 0.733 0.887 0.913 - -
NeRF + Depth 0.014 0.825 0.847 0.989 - -

Ours (w/o pose) 0.009 0.857 0.911 0.995 - -
Ours 0.009 0.865 0.910 0.995 0.010 0.037

White room BundleFusion 0.062 0.528 0.869 0.701 0.045 0.375
RoutedFusion 0.038 0.545 0.817 0.799 - -
COLMAP + Poisson 0.036 0.652 0.904 0.796 0.018 0.167
Conv. Occ. Nets 0.061 0.424 0.853 0.470 - -
SIREN 0.046 0.617 0.888 0.752 - -
NeRF + Depth 0.073 0.385 0.716 0.619 - -

Ours (w/o pose) 0.034 0.631 0.902 0.813 - -
Ours 0.028 0.738 0.911 0.915 0.028 0.133

Table 4. We compare the quality of our reconstruction on several synthetic scenes for which ground truth data is available. The Chamfer
`1 distance, normal consistency and the F-score [8] are computed between point clouds sampled with a density of 1 point per cm2. We use
a threshold of 5 cm for the F-score. We further voxelize each mesh to compute the intersection-over-union (IoU) between the predictions
and ground truth.



Method C-`1 ↓ IoU ↑ NC ↑ F-score ↑
Ours (depth-only) 0.017 0.791 0.910 0.944
Ours (full) 0.009 0.865 0.910 0.995

Table 5. Detailed reconstruction results for Fig. 4 from the main
paper. Our method reconstructs geometry visible only in color im-
ages, leading to significantly better reconstruction results in scenes
with geometry which is not captured by the depth sensor.

3. Ablation Studies
In this section, we present additional details for the ab-

lation studies described in the main paper, and show fur-
ther studies to test the robustness and the limitations of our
method. In Fig. 1, the additional results on real data demon-
strate the advantages of the signed distance field and our
camera refinement.

3.1. Effect of the Photometric Energy Term

In Tab. 5, we list the quantitative evaluation of the exper-
iment on the effectiveness of the photometric energy term
from Fig. 4 in the main paper. Fig. 2 shows the effect of
the term on a real scene from the ScanNet dataset. The
legs of the piano stool were not visible in any of the depth
maps. Nevertheless, our method is able to reconstruct them
by making use of the corresponding color data.

3.2. Number of Input Frames

The reconstruction quality of any reconstruction method
is dependent on the number of input frames. We evalu-
ate our method on the ‘whiteroom’ synthetic scene through
multiple experiments in which we remove different num-
bers of frames in the dataset used for optimization. Re-
construction results are presented in Fig. 3. Note that for
these experiments we use the camera poses initialized with
BundleFusion which uses all 1676 depth frames.

Figure 3. We test the robustness of our method by remov-
ing frames from the dataset used for optimization. Our method
achieves good reconstruction results using as few as 13 frames.

3.3. Robustness to Noisy Pose Initialization

To analyze the robustness of our method w.r.t. presence
of inaccuracies in camera alignment, we apply Gaussian
noise to every camera’s position and direction in the ‘white-
room’ scene. In Fig. 4 we present reconstruction results
for poses of increasing inaccuracy. We separately show the
pose errors of the refined cameras in Fig. 5. On the recon-
struction metrics, our method is robust to camera position
and orientation errors of up to 5 cm and 5◦ respectively.
The pose refinement is robust up to a noise level of 3 cm
and 3◦. At noise levels with a standard deviation of 10 cm
and higher, some cameras are initially positioned inside ge-
ometry, preventing our method from refining their position
and leading to large errors in geometry reconstruction.

Figure 4. We test the robustness of our reconstructions to
noise in the initial camera position and direction. Our method
achieves good results even in the presence of significant noise. At
σ = 10 cm, some of the cameras intersect geometry, degrading the
reconstruction quality.

Figure 5. We test the robustness of our pose refinement to noise
in the initial camera position and direction. The rotation error has
been scaled by a factor of 10 for better visibility. Our method
is able to correct poses even in the presence of significant noise.
At σ = 10 cm, some of the cameras start intersecting geometry,
making refinement impossible.



Figure 6. Reconstruction quality with varying batch size.

3.4. Batch Size
Optimization with a lower batch size leads to more noise

and might miss areas without depth supervision due to a
lower number of multi-view constraints within the batch.
A batch size that is too large will slow down the optimiza-
tion and consume more GPU memory, while not offering
improvements in reconstruction quality (see Fig. 6).

3.5. Truncation Size
The reconstruction quality is dependent on the width of

the truncation region, as shown in Tab. 6. The truncation re-
gion needs to account for the noise in the input (i.e., needs to
be greater than the noise of the depth camera). In our experi-
ments a truncation radius of tr = 5 cm gives the best results
(evaluated based on the mean across multiple scenes).

4. Comparison to RGB-based methods
NeuS [10] and VolSDF [11] are concurrent works that

propose learning a signed distance field of an object from a
set of RGB images. In contrast to these methods, our focus
lies on reconstructing indoor scenes which often have large
textureless regions (e.g., a white wall). Methods which
use only color input will not have enough multi-view con-
straints to properly reconstruct these regions. In Fig. 7, we
show a case where methods that rely only on color input
struggle to reconstruct high-quality geometry.

Figure 7. Comparison between NeuS and our method on the
‘morning apartment’ scene.

Truncation (cm) C-`1 ↓ IoU ↑ NC ↑ F-score ↑
2 0.053 0.671 0.855 0.862
3 0.023 0.766 0.901 0.930
5 0.021 0.786 0.912 0.933
10 0.024 0.742 0.908 0.912

Table 6. Impact of the truncation width on reconstruction quality.

5. Color Reproduction of Classic and NeRF-
style Methods

While our focus lies on geometry reconstruction and
not accurate view synthesis, we conducted a brief analysis
of the advantages and drawbacks of classic reconstruction
methods [3, 13] and MLP-based radiance fields [9] when
synthesizing unseen views. Classic reconstruction methods
usually do not try to decouple intrinsic material parame-
ters [3, 13] and instead optimize a texture that represents
the average observation of all the input views. The result-
ing texture is usually high-resolution (bounded by the res-
olution of the input images), but does not allow for correct
synthesis of view-dependent effects. Furthermore, inaccu-
racies in camera calibration may lead to visible seams in
the optimized texture. Methods like NeRF that focus purely
on high-quality novel view synthesis do not explicitly re-
construct geometry and may thus produce images riddled
with artifacts for views that are too far from the input views.
We believe that it is possible to combine both of these ap-
proaches to improve novel view synthesis on views far away
from the ones used during the optimization and would like
to encourage research in this direction. Fig. 8 shows an ex-
ample view synthesis result on the ScanNet dataset, for an
out-of-trajectory camera position and orientation.

Figure 8. We compare the color synthesis of BundleFusion and
NeRF-style methods. NeRF without any depth constraints shows
severe fogging when rendering an image from a novel view. This
gets resolved after adding depth constraints to the optimization.
BundleFusion produces the sharpest results, but suffers from in-
correct view-dependent effects and misalignment artifacts. Our
method produces results similar to NeRF with a depth constraint.
A combination of classic and NeRF-style methods may yield both
high-quality geometry and high-quality view synthesis and we en-
courage further research in this direction.



6. Runtime and Memory Requirements

Our method. The runtime and memory requirements of
our method are dependent on the scene size. For smaller
scenes where it is enough to have S′c = 256 samples,
our method completes 2 × 105 iterations in 9 hours on an
NVIDIA RTX 3090 and requires 8.5 GB of GPU memory.
When S′c is set to 512, the runtime increases to 13 hours
and the memory requirement to 10.5 GB. The memory con-
sumption can be reduced by using smaller batches.

BundleFusion. We run BundleFusion at a voxel resolu-
tion of 1 cm for all scenes. On an NVIDIA GTX TITAN
Black, depending on the size of the scene and number of
frames in the camera trajectory, it takes 10 to 40 minutes to
integrate the depth frames into a truncated signed distance
field and extract a mesh using Marching Cubes. The mem-
ory usage is around 5.8 GB.

RoutedFusion. To train and test RoutedFusion, we used
an NVIDIA RTX 3090. The routing network was trained
for 24 hours on images with a resolution of 320× 240 pix-
els. As per suggestion of the authors, we train the fusion
network for 20 epochs which takes about 1.5 hours. We re-
construct all scenes at a voxel resolution of 1 cm for a fair
comparison to other methods. The runtime ranges from 40
minutes to 6 hours depending on scene size and number of
frames. The memory usage also heavily depends on scene
size and ranges from 5.5 GB to 23 GB.

COLMAP + Poisson. In the COLMAP + Poisson base-
line, the bottleneck is the global bundle adjustment process
performed by COLMAP. The total runtime depends on the
number of frames in the trajectory. Using all 8 cores of
an Intel i7-7700K CPU, it took us about 4 hours to align
all 1167 cameras in the ‘breakfast room’. The couple of
minutes needed to backproject all depth maps at full reso-
lution and run the screened Poisson surface reconstruction
are negligible in comparison.

Convolutional Occupancy Networks. We reconstruct
each scene using the pre-trained model provided by the au-
thors. This takes about 2 minutes per scene and requires
about 10 GB of memory.

SIREN. We train SIREN for 104 epochs on each scene.
SIREN is trained over the complete point cloud in each
epoch, so the runtime depends on the number of points in
the point cloud. In our experiments on an NVIDIA RTX
3090, this ranged from 6 to 12 hours with 12 GB of mem-
ory being in use.

NeRF + Depth. We optimize NeRF using 64 samples for
the coarse network and 128 samples for the fine network.
On an NVIDIA RTX 3090 it takes 6 hours for 2× 105 iter-
ations to run. The memory usage is 4.7 GB.
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Figure 9. We show a qualitative comparison of synthetic scene reconstructions obtained using our method and several baseline methods.The
BundleFusion reconstruction is incomplete in some regions, screened Poisson and SIREN attempt to fit noise in the depth data, while the
NeRF reconstruction suffers from noise in the density field. Our method manages to fill in gaps in geometry, while maintaining the
smoothness of classic fusion approaches.



Figure 10. We show a qualitative comparison of synthetic scene reconstructions obtained using our method and several baseline meth-
ods.The BundleFusion reconstruction is incomplete in some regions, screened Poisson and SIREN attempt to fit noise in the depth data,
while the NeRF reconstruction suffers from noise in the density field. Our method manages to fill in gaps in geometry, while maintaining
the smoothness of classic fusion approaches.


