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1. Mathematical Formulation
In this section, we provide the mathematical formu-

lation for the proposed probabilistic depth sampling and
consistency-weighted multi-view matching.

1.1. Probabilistic Depth Sampling

Suppose that, for pixel (u, v) in the reference image, D-
Net estimates the single-view depth probability distribution
(parameterized as a Gaussian) of mean µu,v and variance
σ2
u,v . We first define the search space [µu,v −βσu,v, µu,v +

βσu,v], where β is a hyper-parameter. Given the probability
density function pu,v(x), the probability mass P ∗

u,v covered
by the search space is

P ∗
u,v =

∫ µu,v+βσu,v

µu,v−βσu,v

pu,v(x)dx

= Fu,v(µu,v + βσu,v)− Fu,v(µu,v − βσu,v)

= erf
(

β√
2

)
,

(1)

where Fu,v(·) and erf(·) are the cumulative distribution
function and the error function. P ∗

u,v depends only on β and
we can thus drop the subscripts. We then split the search
space into Ns bins of equal probability mass, P ∗/Ns, and
select their mid-points as depth candidates. The k-th depth
candidate, du,v,k, is thus defined as

du,v,k =
1

2

[
F−1
u,v

(
k − 1

Ns
P ∗ +
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2

)
+ F−1

u,v

(
k

Ns
P ∗ +

1− P ∗

2

)]
,

(2)

where F−1
u,v(·) is the Gaussian quantile function (i.e. the in-

verse of Fu,v(·)). Eq. 2 can be simplified into Eq. 4 in the
paper by using the relation F−1

u,v(p) = µu,v + σu,vΦ
−1(p),

where Φ−1(p) is the quantile function of the standard nor-
mal distribution (i.e. the probit function).

1.2. Consistency-Weighted Multi-View Matching

In this section, we explain how the consistency-weighted
multi-view matching score of each depth candidate can be
calculated.
Step 1. Pixel coordinates of It → World coordinates.
A 3D point Xc

t in the camera-centered coordinates of the
reference image It at time t is projected to the pixel co-
ordinates wt via perspective projection. Given the camera
calibration matrix K, this can be written as

w̃t = KXc
tsusv

s

 =

αu 0 u0

0 αv v0
0 0 1

Xc
t

Y c
t

Zc
t

 ,
(3)

where w̃t is the homogeneous representation of the pixel
coordinates wt = (u, v). Suppose that, for pixel (u, v)
in the reference image It, we have sampled Ns depth can-
didates {dk}Ns

k=1. Each depth candidate, together with the
pixel coordinates, defines Xc

t as

Xc
t =

Xc
t

Y c
t

Zc
t

 =

u−u0

αu
v−v0
αv

1

× dk. (4)

The world coordinates of Xc
t is then given as X̃w

t =
P−1

t X̃c
t , where Pt is the rigid body transformation matrix

(i.e. camera pose) of It, and X̃ is the homogeneous repre-
sentation of X.
Step 2. World coordinates → Pixel coordinates of Ii. Xw

t

is then projected to a neighboring image, Ii. The projection
can be written as

X̃c
i =


Xik

Yik

dik
1

 = PiX̃
w
t

and w̃i =

suik

svik
s

 = KXc
i .

(5)
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Method NLL (lower the better)
ScanNet 7-Scenes KITTI

D-Net (single-view) 2.235 2.794 2.644
Full pipeline (multi-view) 0.145 1.561 1.805

Table 1. Negative log-likelihood of the ground truth depth evalu-
ated for D-Net (single-view) and the full pipeline.

In Eq. 5, Xc
i = (Xik, Yik, dik) is the camera-centered

coordinates of image Ii and wi = (uik, vik) is the corre-
sponding pixel coordinates. It is the projection of the 3D
coordinates - defined by (u, v) and dk in It - on Ii. This
defines uik, vik and dik that appear in Eq. 3 and 5 in the
paper.
Step 3. Calculating the matching score. The match-
ing score for the k-th depth candidate is computed in
terms of the dot product between the feature vectors -
fu,v(It) and fuik,vik

(Ii). Since uik and vik are continu-
ous values, fuik,vik(Ii) is obtained by bilinearly interpolat-
ing the 4-pixel neighbors - (⌈uik⌉, ⌈vik⌉), (⌊uik⌋, ⌈vik⌉),
(⌈uik⌉, ⌊vik⌋) and (⌊uik⌋, ⌊vik⌋).
Step 4. Consistency-weighting. Similarly, µuik,vik

(Ii)
and σuik,vik(Ii) can be bilinearly interpolated to evaluate
the single-view depth probability of dik at (uik, vik), which
gives the depth consistency weight (Eq. 5 in the paper).

2. Additional Quantitative Results

Negative log-likelihood. Depth metrics (e.g. RMSE) only
reflect the accuracy of the predicted mean µ. In order
to evaluate the accuracy of the distribution N (µ, σ2), we
report the average negative log-likelihood (NLL) of the
ground truth depth. Tab. 1 shows how NLL is reduced via
multi-view matching.

3. Additional Qualitative Results

Update in the pixel-wise prediction. Fig. 1 shows how
the pixel-wise prediction is updated throughout the pipeline.
The initial D-Net prediction has high uncertainty, mainly
due to the inherent ambiguity of single-view depth. This
leads to large search space. After performing the multi-view
matching for the sampled candidates, G-Net shifts the mean
towards the candidate with high matching score. The vari-
ance is reduced so that the spacing between the candidates
is smaller in the next iteration (i.e. better depth resolution).
Qualitative comparison against the state-of-the-art. Fig.
2 and Fig. 3 provide additional qualitative comparison
against [4] (extension of Fig. 4 in the paper). Our net-
work shows superior performance especially on texture-
less/reflective surfaces and moving objects.

4. Network Architecture
Tab. 2, 3 and 4 show the architecture of D-Net, G-Net

and the learned upsampling layer.
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Figure 1. Iterative update in the pixel-wise depth probability distribution. The black curves and blue vertical lines are the estimated depth
probability distributions and the ground truth depth, respectively. Red bar plots show the consistency-weighted multi-view matching scores
measured at the sampled depth candidates. Throughout the iterative refinement, the distribution becomes more accurate and confident (i.e.
σ is reduced).
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Figure 2. Qualitative comparison against [4] on ScanNet [2]. With the proposed fusion of single-view depth probability (probabilistic
sampling and consistency weighting), MaGNet can make accurate prediction for reflective surfaces (a-c) and texture-less surfaces (d-e). If
a depth candidate is occluded in a particular neighboring frame, the corresponding single-view depth probability estimated from that view
will be low. In such case, MaGNet ignores that view by setting the depth-consistency weight to zero. This improves the prediction near
occlusion boundaries (f).
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Figure 3. Qualitative comparison against [4] on KITTI [3]. Examples (a-c) show dynamic objects, for which multi-view consistency
assumption is violated. Examples (d-f) show images where the camera was static within the local window. In such case, all depth
candidates lead to same matching score (i.e. ambiguous matching). In both scenarios, MaGNet can make accurate predictions. This is
because the proposed fusion enforces the final output to be consistent with the single-view depth probability distributions.



Input Layer Output Output Dimension
image - - H ×W × 3

Encoder

image EfficientNet B5 [5]

FEAT4 H/4×W/4× 40
FEAT8 H/8×W/8× 64
FEAT16 H/16×W/16× 176
FEAT32 H/32×W/32× 2048

Decoder
FEAT32 Conv2D(ks=1, Cout=2048, padding=0) x d0 H/32×W/32× 2048

upsample(x d0) + FEAT16

Conv2D(ks=3, Cout=1024, padding=1),
BatchNorm2D(),

LeakyReLU()

× 2 x d1 H/16×W/16× 1024

upsample(x d1) + FEAT8

Conv2D(ks=3, Cout=512, padding=1),
BatchNorm2D(),

LeakyReLU()

× 2 x d2 H/8×W/8× 512

upsample(x d2) + FEAT4

Conv2D(ks=3, Cout=256, padding=1),
BatchNorm2D(),

LeakyReLU()

× 2 x d3 H/4×W/4× 256

x d3
Conv2D(ks=3, Cout=128, padding=1), ReLU(),
Conv2D(ks=1, Cout=128, padding=0), ReLU(),

Conv2D(ks=1, Cout=2, padding=0)
out H/4×W/4× 2

Table 2. D-Net architecture. In each convolutional layer, ”ks” means the kernel size and Cout is the number of output channels. FEATN

represents the feature-map of resolution H/N ×W/N . X + Y means that the two tensors are concatenated, and upsample(·) is bilinear
upsampling. Note that a different activation function is applied to each channel of the final output, as explained in Sec. 3.1 of the paper.

Input Layer Output Output Dimension

cost-volume + x d3

Conv2D(ks=3, Cout=128, padding=1), ReLU(),
Conv2D(ks=1, Cout=128, padding=0), ReLU(),
Conv2D(ks=1, Cout=128, padding=0), ReLU(),

Conv2D(ks=1, Cout=2, padding=0)

out H/4×W/4× 2

Table 3. G-Net architecture. Using the cost-volume and the feature-map from D-Net as input, G-Net updates the initial depth probability
distribution by estimating ∆µ/σ and σnew/σ. Similar to D-Net, we use linear activation for ∆µ/σ, and the modified ELU function [1],
f(x) = ELU(x) + 1 for σnew/σ to ensure positive variance and smooth gradient.

Input Layer Output Output Dimension

x d3

Conv2D(ks=3, Cout=128, padding=1), ReLU(),
Conv2D(ks=1, Cout=128, padding=0), ReLU(),
Conv2D(ks=1, Cout=128, padding=0), ReLU(),

Conv2D(ks=1, Cout=4×4×9, padding=0)

out H/4×W/4× (4× 4× 9)

Table 4. Architecture of the learned upsampling layer. The output, which has the shape of H/4 × W/4 × (4 × 4 × 9) is reshaped into
H × W × 9, and softmax is applied to the last channel. Then, the depth of each pixel in the full resolution is calculated as the weighted
sum of the 3× 3 grid of its coarse resolution neighbors [6].
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