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In this Supplemental Document, we present additional
details and analysis in support of the findings we reported
in the main document. Specifically, we provide here

• additional details on the temporal-polarimetric re-
flectance and image formation,

• additional details on ellipsometric reconstruction,

• additional details on scene reconstruction,

• calibration discussion,

• an imaging system part list,

• additional details on temporal-polarimetric BRDF
model,

• additional discussion on acquisition time and high-
order light transport, and

• additional synthetic and experimental results.

1. Temporal-Polarimetric Reflectance Model
and Image Formation

In this section, we provide an extended formulation of
our reflectance model and the image formation which was
presented in the main paper in concise forms.

1.1. Mueller Matrices of Optical Elements, Surface
Reflection, and Coordinate Conversion

Our BRDF and image formation models rely on the
Mueller matrices of various optical elements and light-
matter interaction. We provide the individual matrices in
this Supplemental Document for completeness. For further
reading, we refer to Collet [4].

Linear Polarizer A linear polarizer placed at an angle θ
with respect to a reference axis has the Mueller-matrix form

L =
1

2


1 cos 2θ sin 2θ 0

cos 2θ cos2 2θ cos 2θ sin 2θ 0
sin 2θ cos 2θ sin 2θ sin2 2θ 0
0 0 0 0

 .

(1)

Wave Plate The Mueller matrix of a wave plate with re-
tardance ϕ at angle θ to the horizontal is defined as

R =


1 0 0 0
0 R11 R12 R13

0 R21 R22 R23

0 R31 R32 R33

 ,

R11 = cos22θ + sin2 2θ cosϕ,

R12 = sin 2θ cos 2θ(1− cosϕ),

R13 = sin 2θ sinϕ,

R21 = sin 2θ cos 2θ(1− cosϕ),

R22 = cos2 2θ cosϕ+ sin22θ,

R23 = − cos 2θ sinϕ,

R31 = − sin 2θ sinϕ,

R32 = cos 2θ sinϕ,

R33 = cosϕ. (2)

Note that the ideal half/quarter-wave plates have a retar-
dance values of π and π/2, respectively, resulting in the
Mueller matrices

W(θ) = R(θ, ϕ← π),

Q(θ) = R(θ, ϕ← π/2). (3)

We use the calibrated retardance values of our QWP and
HWP at the laser wavelength of 635 nm.

Non-polarizing Beam Splitter Even though not de-
scribed in the main paper, our non-polarizing beam splitter
also affects the polarization state of light. The beam splitter



has a minimal impact on the polarization of the transmitted
light, resulting in the identity Mueller matrix

BT =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (4)

For the reflected light, the beam splitter negates the last two
elements of the Stokes vector in the same fashion as an ideal
mirror, that is

BR =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (5)

Surface Fresnel Reflection and Transmission Light in-
teracting with a smooth surface changes its polarization
state according to Fresnel law. Specifically, the transmit-
ted and reflected components are represented as the Fresnel
Mueller matrices

FT,R =
F⊥+F∥

2
F⊥−F∥

2 0 0
F⊥−F∥

2
F⊥+F∥

2 0 0

0 0
√
F⊥F∥ cos δ

√
F⊥F∥ sin δ

0 0 −
√
F⊥F∥ sin δ

√
F⊥F∥ cos δ

 .

(6)

We can compute the perpendicular and parallel Fresnel co-
efficients F⊥,∥ for reflection and transmission [4], respec-
tively. Here, δ is the phase shift that has the value of ϕ or
0 for the dielectric component. Specifically, if the incident
angle is smaller than the Brewster angle, δ is ϕ, otherwise
0. The Fresnel Muller matrices used by us for surface and
sub-surface reflections can be computed from this general
Fresnel Mueller matrix by using the corresponding param-
eters of the refractive index of a material η, incident angle,
and outgoing angle. A similar derivation can be found in
Baek et al. [2].

Coordinate Conversion The Stokes-Mueller formalism
is defined based on the coordinate systems used. Specif-
ically, a Stokes vector is defined with respect to a coor-
dinate. A Mueller matrix is defined for a pair of input
Stokes coordinate and an output Stokes coordinate. This re-
quires careful coordinate conversion for every operation ap-
plied to Stokes vectors and Muller matrices. A coordinate-
conversion Mueller matrix can be used for this purpose and
has the following form

C =


1 0 0 0
0 cos 2θ sin 2θ 0
0 − sin 2θ cos 2θ 0
0 0 0 1

 , (7)

where θ is the rotation angle of the input x basis vector. That
is, multiplying the coordinate conversion matrix rotates the
coordinate frame of the xy axes by the angle θ while the
propagation direction of the z axis is maintained.

1.2. Modeling Intensity-Attenuation based on
Micro-facet Distribution

We model surface reflection based on microfacet theory.
Specifically, we use the Smith Shading and masking term G
from [7] and the GGX facet distribution term D from [9] to
represent realistic BRDFs. They are defined as follows

D(θh;σ) =
σ2

π cos4 θh(σ2 + tan2 θh)2
,

G(θi, θo;σ) =
2

1 +
√
1 + σ2 tan2 θi

2

1 +
√

1 + σ2 tan2 θo
,

(8)

where θh is the half-way angle, θi and θo are the incident
and outgoing angles. Here, σ is the surface roughness.

1.3. Complete Image Formation Model

In the main manuscript, we listed Muller matrices of the
analyzing and polarizing optics. We provide here a non-
factored formulation including the beam splitter and the
galvo mirror, that is

A = LQBRG, P = GBTQW, (9)

where G is the Mueller matrix of the galvo mirror which can
be modeled with Fresnel Muller matrices [8]. We plug the
complete Mueller matrices of the analyzing and the polar-
izing optics into the original image formation model (Equa-
tion (6) in the main manuscript).

2. Additional Details on Ellipsometric Recon-
struction

We perform least-square optimization to estimate the
Mueller matrix of each temporal-spatial pixel from the po-
larimetric measurements with varying rotation angles, fol-
lowing Baek et al. [3]. That is, we first rearrange the cap-
tured intensities Ii∈{1,··· ,N} into a vector I. We can then
reconstruct the target Mueller matrix H using a pseudo-
inverse as

Ḣ = (K⊺K)−1K⊺I, (10)

where Ḣ is the vectorized version of M, and K is the
stacked system Matrix for all rotation angles Ki,∀ =
[Ai]0,∀[Pi]∀,0.

3. Additional Details on Scene Reconstruction
Once we obtain the Mueller matrix H via the ellipsomet-

ric reconstruction, we now turn to reconstruct scene param-
eters by fitting our temporal-polarimetric rendering model



to the Mueller matrix H. In the main paper, we formulated
this as an optimization problem

minimize
Θ̇

∥∥∥Ẇp ⊙
(
f(Θ̇)− Ḣmeas

)∥∥∥
1
+
∥∥∥Ẇd ⊙∇ṅ

∥∥∥
1
.

(11)

Reparameterizing Constrained Scene Parameters One
of the key details for solving this optimization problem is
to constrain the range of each scene parameter based on
its physical interpretation and target scene configurations.
While constrained optimization has been extensively stud-
ied in optimization, we present a simple reparameterization
technique that we can incorporate into existing gradient-
descent optimization frameworks. Specifically, for each
scene parameter x ∈ Θ, we apply a scaled logit function
to obtain the corresponding optimization variable xo as

xo ← logit

(
x− vmin

vmax − vmin

)
, (12)

where vmin and vmax are the minimum and maximum val-
ues manually set for the scene parameter x. This opera-
tion is differentiable for the expected input range: vmin <
x < vmax, enabling gradient flow throughout the op-
timization process. We operate the Adam optimizer on
this reparameterized optimization variable xo instead of
the scene parameter x, allowing to constrain the range of
the scene parameter. We convert the optimization variable
xo to the original scene parameter x when we predict the
temporal-polarimetric Mueller matrix using the image for-
mation model f(). We perform this inverse operation as

x← (vmax − vmin)sigmoid (xo) + vmin. (13)

We set the minimum and maximum values (vmin

and vmax) of the entire scene parameters as: vmin =
0.5, vmax = 2 for the depth in meters, vmin = 1.2, vmax =
1.9 for the refractive index, vmin = 0.1, vmax = 2 for the
roughness, vmin = 0, vmax = 0.8 for the scattering mean
µ, vmin = 0.004, vmax = 0.4 for the scattering standard
deviation σ, and vmin = 0.01, vmax = 4 for the scattering
scalar a.

We apply a unit-norm constraint to the surface normals.
To this end, we normalize the unconstrained optimization
variable of the surface normals when we use the rendering
function f .

Weighted Optimization We introduce the weighting ma-
trix Wd for preventing overly-smoothed surface normals
around depth edges. Specifically, we compute the sum of
x and y gradients of the depth map d and compute the con-
fidence map for the smoothness term as

Wd(x) = 0.0001(1−sigmoid(10(|gx(p)|+|gy(p)|−0.5))),
(14)

where x is a pixel, and gx and gy are the x and y gradients
of the depth map d. This weighting function evaluates to
one if we do not evaluate on a depth edge but decreases
as we get closer to the edges. The other weighting matrix
Wp sets different weighting values for the Mueller matrix
elements, which is useful as their scales are significantly
different, especially for the diagonal and the non-diagonal
Mueller-matrix elements. This is particularly important for
real-world measurements where SNRs are different for each
matrix element. We use 0.1 for the weighting values of all
matrix elements in the synthetic evaluation. For the real
experiments, we apply the weighting values of 0.3 for the
first element H00 and 0.1 for the elements H22,33,10,20, and
set the others to zero.

Material Clustering In our synthetic experiments, we ex-
tract the cluster maps directly from the Blender renderer.
For the real-world scenes, given a manually-selected num-
ber of clusters, we perform k-means clustering on the vec-
torized steady-state intensity image

∑
t H00(t).

4. Calibration
Locating accurate 3D scene points in a scene requires

precise geometric calibration of the imaging system. We
capture checkerboards at different positions and estimate
the intrinsic parameters [11]. This allows for converting a
depth map d into a point cloud p which we can use for com-
puting the per-point incident and outgoing vectors ωi and
ωo. We also perform polarimetric calibration to compensate
for the mismatch between the image formation model and
the real measurements due to non-ideal optics. Specifically,
we capture an unprotected gold mirror (Thorlabs PF10-03-
M03) with known Mueller matrix, i.e, an ideal mirror, and
estimate the correction Mueller matrix [5].

5. Imaging System Parts List
We list all parts used to build the experimental prototype

system in Table 1.

6. Details on Temporal-Polarimetric BRDF
Coordinate Conversion for Sub-surface Scattering For
sub-surface scattering, we do a coordinate conversion of
Stokes vectors in our temporal-polarimetric BRDF model.
Specifically, for incident/outgoing light to/from a surface,
we define the corresponding Stokes vector in a coordinate
that has a z axis matching the light propagation direction,
while the x and y axes can be arbitrarily chosen to form an
orthonormal basis [4]. Among infinite candidates for the x
and y axes, we choose them following the halfway coordi-
nate approach [3]. In halfway coordinates, we define the y
axis on a plane spanning the halfway vector h and the prop-
agation direction, which determines x axis as y × z. In this



Item # Part description Quantity Model name
1 Singe-photon avalanche diode 1 MPD
2 Time-correlated single photon counting 1 PicoQuant TImeHarp 260 PICO
3 Objective lens 1 Canon EF 50mm f/1.8 STM
4 Linear polarizer 1 Newport 10LP-VIS-B
5 Achromatic quarter-wave retarder 2 Thorlabs AQWP10M-580
5 Achromatic half-wave retarder 1 Thorlabs AHWP10M-600
7 Motorized rotary stage 4 Thorlabs KPRM1E
8 Non-polarizing beamsplitter 1 Thorlabs BS013
9 Beamsplitter cage 1 Thorlabs CCM1-4ER
10 Dielectric mirror 1 Thorlabs BB1-E02
11 Right-angle mirror mount 1 Thorlabs KCB1
12 Beam block 1 Thorlabs LB1
13 Cage aperture 1 Thorlabs CP20S
14 Picosecond pulsed diode laser 1 Edinburgh Instruments EPL-635
15 Galvo mirror 1 Thorlabs GVS012
16 Galvo power supply 1 GPS011-US
17 EOS-to-C-mount adaptor 1 Fotodiox pro EOS (α)-C-D-Click

Table 1. Part list of our imaging system.

convention, we convert the halfway coordinate of the inci-
dent/outgoing light direction also to a surface normal coor-
dinate. This results in the y axis to fall in a plane that spans
the surface normal and the propagation direction because
the transmission event itself is defined on the correspond-
ing surface normal coordinate, see also [2].

Experimental Validation Validating the representation
capability of a parametric BRDF model can be done by
comparing the real BRDF measurements of many materi-
als and the BRDFs predicted from the parametric model.
However, this mandates the availability of sufficiently many
real-world BRDF measurements, which is unfortunately not
the case for temporal-polarimetric BRDFs. Instead, we
conducted an experiment that validates the agreement of
the real-world temporal-polarimetric measurements and our
model prediction for a single spherical object. Figure 5 in
the main manuscript shows the two temporal slices of the
polarimetric measurements and our prediction with man-
ually chosen parameter sets. Our temporal-polarimetric
BRDF model allows us to match the two important aspects
of the real-world BRDF: temporal-polarimetric changes of
(1) specular highlight arising from surface reflection and (2)
normal-dependent periphery due to sub-surface reflection.
We note that using a perfectly calibrated material in terms
of geometry, roughness, refractive index, and scattering pa-
rameters could be an alternative way for the BRDF eval-
uation even though it is also challenging to fabricate and
calibrate such a material.

7. Additional Discussion

Improving Acquisition Time For our experiments, we
use a low-speed galvo mirror (Thorlabs GVS012) and me-
chanically rotating polarizers (Thorlabs KRPM1e) available
to us. As such, the acquisition speed may be drastically
increased by using existing mega-pixel SPAD sensors and
electronically-controllable liquid-crystal tunable filters.

High-order Light Transport Higher-order light trans-
port including interreflection may degrade our reconstruc-
tion quality. We do not consider these transport components
in our work as the proposed coaxial capture configuration
suppresses the capture of these components.

8. Additional Results

8.1. Synthetic Experiments

For the synthetic experiments, we designed scenes in
Blender similar to the popular Cornell Box. Specifically, we
used models from the Berlin Egyptian Museum, Stanford
Bunny, and Stanford XYZ Dragon [6]. We render depth,
surface normals, and index maps and manually assign the
material parameters of our reflectance model to each mate-
rial index. In the main manuscript, we provided results on
a synthetic dataset for the scene Nefertiti. We here present
additional results for Nefertiti, Bunny, and Dragon scenes,
shown in Figures 3, 4, and 5. Note that material properties
and local surface curvature affect the reconstruction accu-
racy of material and geometry. We compute per-object (box
and target) material reconstruction accuracy in Figures 3, 4,
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Figure 1. Error maps of the estimated normals for the three syn-
thetic scenes in degrees. Our method recovers precise geometry
except for occlusion edges and geometric discontinuities.
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Figure 2. All-photon polarimetric imaging captures geomet-
ric discontinuities (red arrow) that cannot be resolved in non-
polarimetric all-photon imaging [49], and also after bilateral fil-
tering, both in simulation and experimentally.

and 5. In addition, we show the error maps for normal re-
construction in Figure 1 for the three scenes. Our method
recovers accurate geometry for most regions except occlu-
sion edges and discontinuities.

8.2. Real Experiments

We present the additional results on four real-world
scenes (Pot, Basketball, Dragon, and Candle) in Figures 6,
7, 8, and 9. Specifically, we compare the estimated ge-
ometry from conventional peak-finding ToF, shape-from-
polarization (SfP), and our polarimetric ToF imaging ap-
proach. The results validate the effectiveness of our all-
photon polarimetric ToF imaging, which is capable of ob-
taining high-fidelity continuous geometry. We also visu-
alize the time-varying angle-of-linear polarization (AoLP)
and degree of linear polarization (DoLP) [3]. This visu-
alization highlights the temporal-polarimetric structure of
surface and sub-surface reflections. In additiona, we show
the measured, initialized, and disentangled time-varying
intensities. We find that the proposed polarimetric ToF
method effectively decomposes the scene reflection into
surface and sub-surface reflections in the temporal and po-
larimetric dimensions as also evidenced by the optimized
temporal-polarimetric matrices H. We further evaluate the
experimental geometric precision of the proposed method
by comparing our estimated geometry to ground truth ge-

ometry obtained with a structured-light scanning in the re-
cent polarimetric probing method [1]. Specifically, we used
the dragon statue shown in Figure 8. The average errors of
the estimated surface normals are 45 and 23 degrees for the
conventional peak-finding ToF and our method.

Comparison to Non-Polarimetric All-photon Imaging
Non-polarimetric all-photon ToF imaging [10] fits a para-
metric temporal BRDF model to temporal measurements in
order to estimate scene depth. Exploiting all temporal pho-
tons in the fitting process improves reconstruction accuracy
of scene depth especially in the presence of measurement
noise, compared to conventional peak-finding ToF imaging
methods. However, its depth resolution is still fundamen-
tally limited by the temporal resolution, which is generally
low due to the hardware limitation of existing affordable
temporal-sensing devices such as MPD SPAD. Our polari-
metric all-photon ToF imaging tackles this problem by ad-
ditionally incorporating the high-resolution geometry cue
from polarization. It allows us to reconstruct geometric de-
tails from polarization as shown in Figure 2. We recover
the vase crease, i.e., the geometric discontinuity indicated
by the red arrow.
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Figure 3. Reconstruction for the Synthetic Experiment on Scene (Nefertiti).
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Figure 4. Reconstruction for the Synthetic Experiment on Scene (Bunny).
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Figure 5. Reconstruction for the Synthetic Experiment on Scene (Dragon).
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Figure 6. Scene Reconstruction for Experimental Measurement (Pot).
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Figure 7. Scene Reconstruction for Experimental Measurement (Basketball).
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Figure 8. Scene Reconstruction for Experimental Measurement (Dragon).
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Figure 9. Scene Reconstruction for Experimental Measurement (Candle).


