
7. Appendix
7.1. Derivation of the Lipschitz Constants

To ensure stability of the gradient-based method, we scale the learning rate of � and A by (the inverse of) approximate
upper-bounds of the Lipschitz constants of the gradients, 1
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, respectively. To simplify calculations, we only bound

the Lipschitz constant of the gradients with respect to the matrix approximation term M , as we note this term typically
dominates the Lipschitz constant of the gradient. Additionally, for notational simplicity we show the derivation for balanced
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where (·)�2 denotes raising to the second power entry-wise.
From this, the relevant gradients are
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We first bound the Lipschitz constant of r�f . For gj , we have
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where the inequality is due to the sub-multiplicative property of the Frobenius norm and the operator norm inequality. Now
we consider hj . Here we make the simplifying assumption that in addition to each column of � being a unit vector, � also
approximately satisfies �>� = I , which is known to be true near the globally optimal solution from the analysis of [21].
Now, we have the following approximation

h̄j(�) ⇡ �Diag(Aj)
2. (14)

which implies,

kh̄j(�+��)� h̄j(�)kF
k��kF

⇡ k��Diag(Aj)2kF
k��kF

(15)

 kAjk21 (16)

Since f(�,A) has a summation over class j, we get the following approximate upper bound for the Lipschitz constant
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7.2. Architecture

We utilize the following architectures for the experiments in Section 5. We use a fairly simple architecture for MNIST,
and for the other datasets, we use a slightly modified version of ResNet18. Note d is the feature dimension.

Architecture 1 Neural Network Architecture for MNIST
1: Conv2d(in channel=1, out channel=32, kernel=3, stride=1)
2: ReLU()
3: Conv2d(in channel=32, out channel=64, kernel=3, stride=1)
4: ReLU()
5: MaxPool2d(kernel=2, stride=None)
6: Dropout(p=0.25)
7: Flatten()
8: Linear(12544, d)
9: ReLU()

10: Dropout(p=0.5)
11: Linear(d, d)
12: Normalize()

For CIFAR-10/100 and Tiny Imagenet, we use the Torchvision ResNet18 model as the featurizer, but we remove the final
layer of the ResNet18 and replace it with the following to reshape the output into the desired feature dimension d. We also
normalize the output at the end to fulfill the constraint that the features lie on the unit sphere in the MCR2 objective.

Architecture 2 Reshaping Layers for ResNet18
1: Linear(512, 512, bias=False)
2: BatchNorm1d()
3: ReLU()
4: Linear(512, d, bias=True)
5: Normalize()

For cross-entropy experiments, we add another linear layer on top to map the output of the featurizer to logits.

7.3. Data Augmentation

We utilize the following data augmentations for the experiments in Section 5.

Transformations 1 Transformations for MNIST, CIFAR-10, CIFAR-100
1: import torchvision.transforms as transforms
2: TRANSFORM = transforms.Compose([
3: transforms.RandomCrop(32, padding=8),
4: transforms.RandomHorizontalFlip(),
5: transforms.ToTensor()])

Transformations 2 Transformations for Tiny ImageNet
1: import torchvision.transforms as transforms
2: TRANSFORM = transforms.Compose([
3: transforms.Resize(32)
4: transforms.RandomHorizontalFlip()
5: transforms.ToTensor()])



7.4. Additional Experiments
The experiments conducted and presented in the main body, Table 2, were only meant to compare the computational effi-

ciency for different methods under the same conditions. The settings however were not chosen to optimize the classification
performance since we did not conduct data augmentation or other training recipes normally adopted, e.g. see [22].

Here we report experimental results on CIFAR-100 and Tiny ImageNet by training with a similar training recipe adopted
in [22]. Specifically, as in [22], we use PreAct ResNet-18 as the backbone and train with both cross-entropy loss and V-
MCR2. All networks are trained by SGD with momentum 0.9, and weight decay of 10�4. Similar to [22], we set the learning
rate to be 10�1 for the first half of training epochs, divide it by 10 for the next quarter of epochs, and finally divide it again
by 10 for the remaining iterations. Additionally, we utilize the same transformations to augment the data. Note that the only
difference we make between our strategy and the one in [22] is the choice of batch size and total number of training epochs
(both specified in Section 4.3) to ensure fair comparison between CE and V-MCR2. In addition to the training strategy, we
set µ = 10�1 for V-MCR2 as we find a smaller value for µ helps stabilize training in the early stage. We keep all other
hyperparameters identical to ones specified in Section 4.3.

Dataset Objective Training �R Test Accuracy
CIFAR-100 V-MCR2 130.2177 0.6951

CE - 0.7146
Tiny ImageNet V-MCR2 134.9504 0.4189

200 CE - 0.4843

Table 3. Comparison of classification performance. We evaluate the training �R and test accuracy of V-MCR2 after 2000 training epochs
for CIFAR-100 and Tiny ImageNet. For CE, we evaluate the test accuracy at each epoch and report the highest test accuracy achieved
across the 2000 epochs. [22] similarly achieved an accuracy 0.7529 for CIFAR-100 and 0.5647 for Tiny ImageNet for CE training. With
V-MCR2, we achieve a lower test accuracy. Note that the hyperparameters for V-MCR2 such as latch frequency, dictionary size, and µ
were not rigorously tuned. Additionally, due to the computational cost of the nearest subspace classification algorithm, we only evaluate
the test performance at the 2000 epoch mark.


