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In this document, we present the supplementary materials to the main paper including the overal algorithm, more qualita-
tive results, more quantitative results and how the model works in rasterized space.

1. Overall algorithm
In this section, we demonstrate the overall algorithm for the chosen search method. The pseudo-code of the algorithm for

generating a scene is shown in Algorithm 1. The goal is to generate the scene S∗ for a given scenario x, a, S and predictor
g. The process is called for kmax iterations. In each iteration, we start with selecting a transformation function (L. 3). Then,
the transformation function generates the corresponding scene (L. 4). After that, the observation trajectory is scaled to ensure
feasibility of the scenario (L. 5). Next, the prediction of the model in the new scenario is computed and used to calculate the
loss (L. 6, L. 7). The best-achieved loss determines the final generated scene.

Algorithm 1: Scene search method
Input: Sequence h, Scene S, Predictor g, Surrounding vehicles a, Transformation set f , Number of iterations kmax

Output: Generated scene S∗

1 Initialize l∗ ← 1
2 for k = 1 to kmax do
3 Choose a transformation function
4 S̃ = [s̃] where s̃← Eq. 2
5 Obtain h̃, ã from phys constraints Sec. 3.3
6 z̃ = g(h̃, S̃, ã)
7 Calculate l using Eq. 7
8 if l < l∗ then
9 S∗ = S̃

10 end
11 end

2. Additional qualitative results
1. Real-world retrieval images. We show more real-world examples for both cases where the trajectory prediction model

fails and succeeds in Figure 1.

2. More generated scenes. Figure 2 provides more visualizations for the performance of the baselines in our generated
scenes.

∗ Equal contribution as the first authors.
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(a) Paris location (b) New York location (c) Hong Kong location

(d) New Mexico location (e) Hong Kong location (f) Paris location

(g) New York location (h) New Mexico location (i) New York location

Figure 1. Retrieving real-world places using our real-world retrieval algorithm. We observe that the model fails in Paris (a), New York
(b), Hong Kong (c) and New Mexico (d). The model also successfully predicts in the drivable area in the remaining figures.

3. Noise in the drivable area map. The models predict near perfect in the original dataset with HOR of less than 1%.
Our exploration shows that most of the 1% failed cases are due to the annotation noise in the drivable area maps of the
dataset and the models are almost error-free with respect to the scene. Some figures are provided in Figure 3.

4. Gifs. We provide gifs on the perfromance of model when smoothly transforming the scene in Figure 4. We observe

https://www.openstreetmap.org/#map=19/48.81605/2.22530
https://www.openstreetmap.org/#map=19/40.75142/-73.92815
https://www.openstreetmap.org/#map=19/22.2736954/114.1589233
https://www.openstreetmap.org/#map=19/19.38772/-99.20424
https://www.openstreetmap.org/#map=19/22.278162/114.182714
https://www.openstreetmap.org/#map=19/48.878975/2.212208
https://www.openstreetmap.org/#map=19/40.72878/-73.97212
https://www.openstreetmap.org/#map=19/19.38772/-99.20424
https://www.openstreetmap.org/#map=19/40.748401/-74.024646
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Figure 2. The predictions of different models in some generated scenes. All models are challenged by the generated scenes and failed
in predicting in the drivable area.
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Figure 3. Some examples showing the noise in the drivable area map. All these predictions were considered as off-road because of an
inaccurate drivable area map.



Model
Original Generated (Ours)

Smooth-turn Double-turn Ripple-road All
SOR / HOR SOR / HOR SOR / HOR SOR / HOR SOR / HOR

DATF [5] 1 / 2 44 / 92 43 / 91 50 / 95 51 / 99
WIMP [2] 0 / 1 30 / 80 23 / 71 29 / 77 31 / 82
LaneGCN [3] 0 / 1 23 / 65 32 / 75 34 / 77 37 / 81
MPC [8] 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

Table 1. Comparing the performance of different baselines in the original dataset scenes and our generated scenes after removing
trivial scenarios. SOR and HOR are reported in percent and the lower represent a better reasoning on the scenes by the model. Numbers
are rounded to the nearest integer.

Optimization algorithm on LaneGCN [3] GPU HoursSOR / HOR
Baysian [6, 7] 13 / 40 17.5
GA [4] 14 / 45 25.0
TPE [1] 14 / 45 12.1
Brute force 23 / 66 4.2

Table 2. Comparing the performance and computation time of different optimization algorithms in the generated scenes.

that in some cases the model fails and in some succeeds.

Figure 4. The animations show the changes of the models predictions in different scenes. It is best viewed using Adobe Acrobat
Reader.

3. Additional quantitative results
3.1. Excluding trivial scenes.

In this section, we remove some trivial scenes, i.e., the scenes that fooling is near impossible, e.g., the scenes with zero
velocity. Excluding them, we report in Table 1 and compared to table 1 of the paper, the off-road numbers substantially
increase.

3.2. Exploring black box algorithms

In the paper, we mentioned that we used a brute-force approach for finding the optimal values as the search space is not
huge. Here, we investigate different block box algorithms for the search. The results of applying different search algorithms
are provided in Table 2. They cannot overcome the brute-force approach because of their bigger search spaces (the continuous
space instead of the discrete space) and the large required computation time.



4. Generalization to rasterized scene
In the paper, we assumed S is in the vector representation, i.e., it includes x-y coordinates of road lanes points. In the

case of a rasterized scene, an RGB value is provided for each pixel of the image. Therefore, it is the same as the vector
representation unless here we have information (RGB value) about other parts of the scene in addition to the lanes. Hence,
the transformation function can be applied directly on all pixels of the image. In other words, in image representation, s is
the coordinate of each pixel which has an RGB value and ŝ represents the new coordinate with the same RGB value as s.
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