
A. Implementation details
A.1. Standard augmentations

First, an 224×224 image patch is randomly cropped
from the image of scale in [0,2, 1.0] with random horizon-
tal flip, followed by a color distortion with brightness, con-
trast, saturation, hue strength of {0.4, 0.4, 0.4, 0.1} with an
applying probability of 0.8, and an optional grayscale con-
version with applying probability of 0.2. At last, Gaussian
blur with kernel std in [0.1, 2.0] processes the image patch
with applying probability of 0.5. Each of above image aug-
mentations has been proved to be effective in at least one
typical instance-wise self-supervised learning method. The
composition of all above image augmentations are treated
as standard augmentation T .

A.2. Heavy augmentations

RandAugment covers various of image transformations
and has been demonstrated with significant performance
improvement on supervised representation learning. It has
two tunable hyperparameters m,n, where n is the num-
ber of augmentation policies randomly selected from 14
predefined augmentations, m is the magnitude for all the
transformation. Larger m and n results in stronger image
transformation. In this paper, we denote RandAugment as
RA(n,m). Similarity, Jigsaw has also been used in pretext
task based self-supervised representation learning and fine-
grained visual patterns. The hyperparameter n for Jigsaw is
the number of grid n × n for each images. Our heavy aug-
mentations T̂ consists of RA(2,5) and Jigsaw(4) with proba-
bility of 0.9 and 0.1 respectively. Except these two augmen-
tation policies, we applied RA(8,16) and UniformAugment
as the additional heavy augmentation (+T̂ ) for robustness
analysis experiments in Table 3. There is no hyperparam-
eter for UniformAugment. It is a search-free DA method
consists of 13 different image transformations by assuming
that the augmentation space is approximately distribution
invariant.

We show some example images augmented by the stan-
dard augmentations and various heavy augmentations in
Figure A1. All heavy augmented images are derived from
the standard augmentation results.

A.3. ImageNet linear evaluation

For linear evaluation on ImageNet, we follow a similar
procedure of SimCLR, BYOL, and SimSiam. The frozen
ResNet’s global average pooling layer outputs are used to
train a supervised linear classifier. For SimCLR, we use
the SGD optimizer as the original paper recommended. For
SimSiam and BYOL, we used a LARS optimizer. We
trained all linear classifier with base lr = 1.6 (following
lr = 0.1 × BatchSize/256) and batch size of 4096 for 90
epochs. For the SGD optimizer, we decay the learning rate

Algorithm A1 The Pseudocode of SimSiam baseline with
2 view-pairs
# f: feature encoder; g: prediction head;
# aug: data augmentations;

for I in dataloader:
# random augmentation
v1, v′

1, v2, v′
2 = aug(I), aug(I), aug(I), aug(I)

# projections
y1, y′

1, y2, y′
2 = f(v1), f(v′

1), f(v2), f(v′
2)

# predictions
z1, z′

1, z2, z′
2 = g(y1), g(y′

1), g(y2), g(y′
2)

# loss
L = D(z1,y

′
1)/4 + D(z′

1,y1)/4 + D(z2,y
′
2)/4 + D(z′

2,y2)/4

L.backward() # back-propagate
update(f, h) # SGD update

def D(z, y): # negative cosine similarity
y = y.detach() # stop gradient
# l2-normalize
z = normalize(z, dim=1)
y = normalize(y, dim=1)
return -(z * y).sum(dim=1).mean()

Baseline Implementation CIFAR-10 ImageNet

1 standard view-pair 92.14 67.7
2 standard view-pairs 91.68 67.4
2 heavily augmented view-pairs collapse collapse

Table A1. Linear evaluation Top-1 accuracy of SimSiam on Ima-
geNet and CIFAR-10 with same training epochs but different train-
ing pair settings.

with the linear decay schedule. For the LARS optimizer,
we decay the learning rate with the cosine decay schedule.
After training the linear classifiers, we evaluate them on the
center cropped 224×224 resolution inputs in validation set.

B. Experimental results
B.1. Compared methods

Algorithm A1 shows the Pseudocode of our re-
implemented SimSiam with four views. We list the
SimSiam results of its original version (with two stan-
dard views), our re-implemented version with four stan-
dard views, and re-implemented versions with four heav-
ily augmented views in Table A1. Although previous
work SwAV [1] shows that contrasting more image crops
with smaller size (e.g., 96×96) with regular image crops
(224×224) results in performance improvement owing to
more visual details in low-resolution crops are highlighted,
introducing more views with the same resolution in each
min-batch has little impact on performance. Even though
the number of views is increased, the frequency of model
updating during training and the number of raw samples in
min-batch keep the same and results in similar results (one
view-pair vs. two view-pairs).

For SimCLR that considers negative samples in the
whole min-batch (batch size of n), DSSL only add two
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Figure A1. Example views augmented by various data augmentation on ImageNet dataset. For each original image (in the first row), we
show their standard views (in the second row), the heavily augmented views derived from the standard views by applying T̂ as RA(2,5)
and Jigsaw(4) (in the third row), and the results of the additional heavy augmentation RA(8,16) and UA (in the last two rows).

m = 1 m = 2 m = 5 m = 9

n = 1 88.0 (92.3) 85.4 (92.8) 85.7 (94.0) 86.0 (92.6)
n = 2 84.3 (93.1) 82.8 (92.56) 83.5 (94.2) collapse (92.8)
n = 5 collapse (92.6) collapse (92.9) collapse (93.0) collapse (90.9)
n = 9 collapse (91.8) collapse (91.2) collapse (88.2) collapse (87.7)

Table A2. SimSiam and (SimSiam w/DSSL) linear evaluation accuracy (%) on CIFAR-10. T̂ = RA(n,m)

heavily augmented views and two t(I) ← t̂(I) asymmet-
ric loss items for each image. The computation complexity
slightly increases from 2n2 to 2n2+2n for each min-batch
after applying DSSL.

As shown in Algorithm 1 and Eq. (5), DSSL has no addi-
tional hyperparameters comparing to the standard instance-
wise self-supervised learning methods.

B.2. Ablation Studies

Impact of distortion magnitudes of T̂ . In Tab. A2, we
compared the results from the standard SimSiam and its
DSSL version by introducing only RA as heavy augmen-
tation but with various distortion magnitudes. We use the
hyperparameter m, n of RandAugment to control the dis-
tortion magnitudes and amount of the randomly selected
policies respectively.

It can be found that, after increasing m and n, the self-
supervised models result in divergence. In contrast, Sim-
Siam w/ DSSL can converge stably in a wide range of m
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Figure A2. Results of models by removing symmetric loss.

and n. It further demonstrates the robustness of our pro-
posed directional self-supervised learning on partially or-
dered views.
Impact of the original symmetric loss Fig. A2 (Left)
show the result of model by removing the symmetric loss
LS in Eq. (5). The symmetric loss is still essential to learn
high-quality representation by clustering the slightly aug-
mented views. The asymmetric loss in DSSL is designed
for merely handing the missing information heavily aug-
mented views, it can not completely substitute the effect of
symmetric loss among slightly augmented views.
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