
Supplementary Material
The supplementary document is organized as follows:

• Sec. A depicts the detailed network architectures of our
transformer decoder layers.

• Sec. B provides the implementation details of TransFu-
sion and the training settings on nuScenes and Waymo.

• Sec. C reports our sensitivity analysis of the matching
cost during label assignment.

• Sec. D presents the effect of NMS on TransFusion and
CenterPoint.

• Sec. E provides the results of using PointPillars as our
3D backbone.

• Sec. F discusses the effect of 2D backbone in TransFu-
sion.

• Sec. G shows the results with different number of ob-
ject queries.

• Sec. H discusses the performance gain of image infor-
mation on Waymo.

• Sec. I provides visualization results on the nuScenes
and Waymo datasets.

A. Network Architectures
The detailed architectures of the respective transformer

decoder layers for initial bounding box prediction and
LiDAR-camera fusion are shown in Fig. 6. Following [20],
we adopt the common practice of transformer except that
we use the learned positional encoding instead of the fixed
sine positional encoding [46]. For the image-guided query
initialization module, we use the LiDAR BEV features as
query sequence and collapsed image features as key-value
sequence, and only perform cross attention to save the com-
putation cost. Our model can benefit from the efficient at-
tention mechanisms in recent works such as [71].

B. Implementation Details
Our implementation is based on the open-sourced code-

base MMDetection3D [6], which provides many popu-
lar 3D detection methods, including PointPillar, VoxelNet,
and CenterPoint. For our 3D backbone, we set its hyper-
parameters according to CenterPoint-Voxel’s official im-
plementation. For the transformer-decoder-based detection
head, the hidden dimension d is set to 256 and dropout is set
to 0.1. We use N = 200 and 300 queries for nuScenes and
Waymo since the max numbers of objects in one frame are
142 and 185, respectively. Since our object queries are non-
parametric, we are able to modify the number of queries
during inference. We provide the ablations on the number of
object queries in Sec. G. When selecting object queries from
the heatmap, we pick local maximum pixels whose values
are greater than or equal to their 8-connected neighbors. To
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Figure 6. Left: Architecture of the transformer decoder layer for
initial bounding box prediction. Right: Architecture of the trans-
former decoder layer for image fusion.

avoid mistakenly suppress nearby instances for small ob-
jects, we do not check the local maximum for pedestrian
and traffic cone on nuScenes and for pedestrian and cyclist
on Waymo. Following PointAugmenting [48], we adopt
DLA34 of CenterNet pre-trained on monocular 3D detec-
tion task as our 2D backbone for nuScenes. Since there
is no public available 2D backbone pre-trained on Waymo
dataset, we train a Faster-RCNN [31] using the 2D labels
provided by Waymo and use its ResNet50 and FPN as our
2D backbone. We freeze the weight of image backbone dur-
ing training and set the image resolution to half of the full
resolution for both nuScenes and Waymo to speed up the
training process.
nuScenes. Following the common practice, we transform
previous ten LiDAR sweeps into the current frame to pro-
duce a denser point cloud input for both training and infer-
ence. The detection range is set to [�51.2m, 51.2m] for
X and Y axes, and [�5m, 3m] for Z axis. The maximum
numbers of non-empty voxels for training and inference
are set to 120,000 and 160,000, respectively. In terms of
the data augmentation strategy, we adopt random flipping
along both X and Y axes, global scaling with a random fac-
tor from [0.9, 1.1], global rotation between [�⇡/8,⇡/8], as
well as the copy-and-paste augmentation [53]. We follow
CBGS [69] to perform class-balanced sampling and opti-
mize the network using the AdamW optimizer with one-
cycle learning rate policy, with max learning rate 0.001,
weight decay 0.01, and momentum 0.85 to 0.95. We train
the 3D backbone with the first decoder layer and FFN for



20 epochs, and the LiDAR-camera fusion components for
6 epochs with batch size of 16 using 8 Tesla V100 GPUs.
We use gradient clipping at an l2 norm of 0.1 to stabilize
the training process. The weighting coefficients of heatmap
loss, classification loss, and regression loss are 1.0, 1.0
and 0.25, respectively. The coefficients of matching cost
�1,�2,�3 are 0.15, 0.25, 0.25, respectively. The sensitivity
analysis of the matching cost coefficients is provided in the
next section.
Waymo. For Waymo, we only use a single sweep as input
and set the detection range to [�75.2m, 75.2m] for X and
Y axes, and [�2m, 4m] for Z axis. The maximum number
of non-empty voxels is set to 150,000. We adopt the same
training strategies as nuScenes except: 1) The first stage
training last for 36 epochs with batch size of 16 under a
max learning rate of 0.001. 2) The weighting coefficient of
regression loss is changed to 2.0, following CenterPoint. 3)
The matching cost coefficients are set to 0.075, 0.25, 0.25,
respectively.

C. Label Assignment Strategy
Following DETR, we perform label assignment by find-

ing the bipartite matching between predictions and ground-
truth objects through the Hungarian algorithm. In Table 12,
we study the effect of the coefficient of each matching cost
term on the detection performance of TransFusion-L. Since
the matching results are only decided by the relative values
of individual matching cost terms, we keep �2 = 0.25 and
try different values for �1 and �3. As shown in Table 12, we
find the network suffers from a convergence issue when the
coefficient of the classification cost is too large, and the de-
tection performance is not sensitive to the coefficient within
a reasonable range. Since the weighting coefficients of the
matching cost need some tuning, we additionally propose
a heuristic label assignment strategy (denoted as Heuris-
tic) to avoid hyper-parameter tuning. The Heuristic assign-
ment strategy follows the simple rules: each GT box will
only be assigned to the predicted box with the same cate-
gory and the smallest center distance. If a conflict appears,
the predicted box will be matched to the closer GT box.
In this way, we also find the one-to-one matching between
prediction and GT but with some GT boxes unused. We
find Heuristic works quite well for uncrowded scenes but
for objects in a crowded scene, such as pedestrian or traffic
cone in nuScenes, it is unable to prevent duplicate predic-
tions, which will be further explained in Sec. D.

D. Effect of NMS
Recently, many works [2, 45, 71] in 2D detection have

focused on removing the last non-differentiable compo-
nent, Non-Maximum Suppression (NMS), in the detection
pipeline. OneNet [42] systematically compares the end-

Matching strategy �1 �2 �3 mAP NDS Ped. T.C.
Hungarian 2.0 0.25 0.25 Not Converge
Hungarian 0.5 0.25 0.25 58.5 66.0 83.8 70.5
Hungarian 0.25 0.25 0.25 59.2 66.1 85.2 71.6
Hungarian 0.15 0.25 0.25 60.0 66.8 86.1 72.1
Hungarian 0.1 0.25 0.25 59.3 66.3 85.3 71.6
Hungarian 0.15 0.25 0.5 59.2 66.1 85.2 70.2
Hungarian 0.15 0.25 0.15 59.5 66.3 85.2 71.8
Hungarian 0.15 0.25 0.1 59.0 65.9 85.1 72.4

Heuristic (w/o NMS) 56.7 65.3 67.3 56.6
Heuristic (w NMS) 60.0 67.0 85.6 71.0

Table 9. Ablation study on the matching cost coefficients in Eq. 1.
‘Ped.’, and ‘T.C.’ are short for pedestrian, and traffic cone, respec-
tively.

to-end detectors with non-end-to-end detectors, and claims
that the one-to-one positive sample assignment as well as
classification cost in the matching cost are the two key fac-
tors in producing a large score gap between duplicate pre-
diction and building an end-to-end detection system with-
out NMS. We refer readers to the original paper [42] for
more details. Following DETR’s label assignment strat-
egy, our method naturally satisfies these two requirements
and do not need NMS. As show in Table 10, our method
still maintains a high mAP without NMS while CenterPoint
drops about 12% mAP. This advantage eliminates the hand-
designed NMS post-processing step and makes TransFu-
sion more practical and handy for deployment to new sce-
narios in the real applications. Besides, since the Heuristic
strategy mentioned in Sec. C does not have classification
cost involved in the assignment stage, this strategy is un-
able to produce a large score gap between duplicate predic-
tion. This is why it does not perform as well as the baseline
model on Pedestrian and Traffic cone.

Method with NMS without NMS
CenterPoint 57.41 45.70

TransFusion-L 59.95 59.98
TransFusion 65.58 65.60

Table 10. Effect of NMS. We report the mAP of CenterPoint and
our TransFusion on nuScenes validation set. The results of Cen-
terPoint are reproduced using MMDetection3D, which also uses a
resolution of (0.075m, 0.075m, 0.2m) without any test time aug-
mentation.

E. Pillar-based 3D Backbone
To demonstrate our framework’s compatibility with

other 3D backbones, we use PointPillars as our 3D back-
bone to produce the BEV features, while keeping all the
other settings the same as the main experiments. The voxel
size is set to (0.2m, 0.2m). As shown in Table 11, our
model outperforms CenterPoint by a remarkable margin un-
der the same pillar-based backbone, showing its great gen-
eralization ability.



PointPillars VoxelNet
mAP NDS mAP NDS

CenterPoint 50.3 60.2 59.6 66.8
TransFusion-L 54.5 62.7 65.1 70.1
TransFusion 58.3 64.5 67.5 71.3
Table 11. Results on nuScenes validation set.

F. Discussions of the 2D Network

Current multi-modality detection models usually employ
CNN features from 2D networks pre-trained on different
tasks (i.e., segmentation or detection) and with different res-
olution (i.e., different levels from ResNet or DLA). There is
no existing work analyzing what kind of image features are
most useful for a 3D detection model, and using improper
image features might prevent the release of the potential for
a multi-modality detection system. We believe that the se-
quential design of our method enables a flexible and off-the-
shelf experiment base to explore the effects of different im-
age features. Therefore, we explore this question by fixing
the 3D backbone with the first decoder layer and performing
the second stage training with different image features.

Arch. Task mAP NDS
DLA34 Monocular 3D Det. 65.6 69.7

R50+FPN Level 0 2D Det. 66.4 70.1
R50+FPN Level 0 2D Instance Seg. 66.6 70.1
R50+FPN Level 1 2D Instance Seg. 66.5 70.1
R50+FPN Level 2 2D Instance Seg. 66.3 70.0
R50+FPN Level 3 2D Instance Seg. 65.4 69.6

Table 12. mAP under different 2D backbones. ‘Det.’ and ‘Seg.’
are short for detection and segmentation, respectively. For DLA34
on monocular 3D detection, we acquire the CenterNet pre-trained
on nuScenes4 following PointAugmenting. For ResNet50 on in-
stance segmentation, we acquire the model pre-trained on nuIm-
ages from MMDetection3D. For ResNet50 on 2D detection, we
train the model by ourself using MMDetection3D since there is no
open-sourced model weights.

From Table 12, we find image features of the 2D instance
segmentation model bring the largest performance boost
compared with that of detection models. In terms of dif-
ferent levels of the feature pyramid, the feature map of level
0 (stride 4) brings a slightly larger performance gain. We
suspect the image features at that level contain more fine-
grained information which is important to distinguish small
or distant objects. Image features from level 1 (stride 8) and
level 2 (stride 16) can bring a similar gain with a smaller
resolution of feature maps, while image features from level
3 (stride 32) yields a drop of 1.2% mAP in comparison with
the level-0 counterpart due to the row resolution.

4https://github.com/xingyizhou/CenterTrack

G. Adapt Queries at Test Time
Unlike DETR, our object queries are non-parametric and

input-dependent. These two characteristics allow us to use
different numbers of queries during inference. It could be
useful when we have some prior knowledge about a scene,
such as its crowdedness. In Table 13, we provide the perfor-
mance evaluated under different object queries for the same
model trained under N = 200 queries. Note that we use
N = 200 to get all the numbers in the main text for its bet-
ter performance-efficiency trade-off and use N = 300 for
online submission for a slightly better performance.

#queries 100 200 300 500
mAP 64.2 65.6 65.9 66.0
NDS 69.2 69.7 69.8 69.8

Table 13. Results with different numbers of queries. We keep the
model unchanged and only use different numbers of queries for
evaluation.

H. Dicussions on Waymo
Our TransFusion brings smaller performance gain over

TransFusion-L on Waymo compared with that on nuScenes.
We speculate that this is mainly due to the following two
reasons:

(i) As shown in Table 1, compared with TransFusion-
L, TransFusion brings the largest performance in-
crease for bicycle (+8.7%), motorcycle (+5.4%), and
construction vehicle (+4.9%) in terms of mAP on
nuScenes. Due to the geometrical ambiguity, objects
from the above three categories are difficult to dis-
tinguish using LiDAR information only, and thus the
semantic information of images is extraordinarily im-
portant for more accurate classification. However, the
categorization of Waymo is rather coarse-gained (i.e.,
vehicle, pedestrian, cyclist), which hides the improve-
ment brought by the image information to some extent.

(ii) The LiDAR point clouds in Waymo are much denser
than those in nuScenes (see Sec. I for visualizations).
Thus the bounding box predictions of TransFusion-L
are already with accurate localization, which reduces
the room for further improvement by image fusion.

I. Qualitative Results
We first compare the detection results of TransFu-

sion and TransFusion-L on the nuScenes dataset in Fig. 7.
The image information improves the performance of the
LiDAR-only baseline through reducing the False Positive
and False Negative. More visualization results on Waymo
and nuScenes datasets are shown in Fig. 8 and Fig. 9, re-
spectively.

https://github.com/xingyizhou/CenterTrack


LiDAR-only LiDAR-Camera Input Image (selected view)

LiDAR-only LiDAR-Camera Input Image (selected view)

Figure 7. Qualitative comparison between TransFusion-L and TransFusion on the nuScenes dataset. Blue boxes and green boxes are the
predictions and ground-truth, respectively. Best viewed with color and zoom-in.



Figure 8. Visualization of detection results on the Waymo dataset. Our model predicts highly accurate bounding boxes for nearby vehicles
and pedestrians (note that cyclists are very rare in the dataset) and also handles objects with severe occlusion. Blue boxes and green boxes
are the predictions and ground-truth, respectively. Best viewed with color and zoom-in.

Figure 9. Visualization of detection results on the nuScenes dataset. Compared with Waymo, nuScenes has much sparser point clouds and
smaller objects such as traffic cones. Nevertheless, our model successfully detects such objects even with only few points observed. Blue
boxes and green boxes are the predictions and ground-truth, respectively. Best viewed with color and zoom-in.
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