
A6. Appendix

A6.1. Implementation and complexity of GASP

Update rules During the agglomerative process, the in-
teraction between adjacent clusters has to be properly up-
dated and recomputed, as shown in Algorithm 1. An effi-
cient way of implementing these updates can be achieved
by representing the agglomeration as a sequence of edge
contractions in the graph. Given a graph G(V, E, w) and
a clustering ⇧, we define the associated contracted graph
G̃⇧(Ṽ , Ẽ, w̃), such that there exists exactly one representa-
tive node |Ṽ \ S| = 1 for every cluster S 2 ⇧ . Edges in Ẽ
represent adjacency-relationships between clusters and the
signed edge weights w̃e are given by inter-cluster interac-
tions w̃(euv) = WSu[Sv , where Su denotes the clustering
including node u. For the linkage criteria tested in this ar-
ticle, when two clusters Su and Sv are merged, the inter-
actions between the new cluster Su [ Sv and each of its
neighbors depend only on the previous interactions involv-
ing Su and Sv . Thus, we can recompute these interactions
by using an update rule f that does not involve any loop
over the edges of the original graph G:

W(Su [ Sv [ St) =f
h
W(Su [ St),W(Sv [ St)

i
(5)

=f(w̃(eut), w̃(evt)) (6)

In Fig. A6 we show an example of edge contraction and in
Table A4 we list the update rules associated to the linkage
criteria we introduced in Table 1.

Implementation Our implementation of GASP is based
on an union-find data structure and a heap allowing deletion
of its elements. In Phases 2 and 3, GASP is equivalent to
a standard hierarchical agglomerative clustering algorithm
with complexity O(N2 logN). In Algorithm 2, we show
our implementation of phase 1, involving cannot-link con-
straints. In phase 1, the algorithm starts with each node
assigned to its own cluster and sorts all edges e 2 E in a
heap/priority queue (PQ) by their absolute weight |we| =
|w+

e � w�
e | in descending order, so that the most attractive

and the most repulsive interactions are processed first. It
then iteratively pops one edge euv from PQ and, depending
on the priority w̃uv , does the following: in case of attrac-
tive interaction w̃uv > 0, provided that euv was not flagged
as a cannot-link constraint, merge the connected clusters,
perform an edge contraction of euv in G̃⇧ and update the
priorities of new double edges as explained in Fig. A6. If,
on the other hand, the interaction is repulsive (w̃uv  0)
and the option addCannotLinkContraints of Alg. 2
is True, then the edge euv is flagged as cannot-link con-
straint.

Linkage criteria Update rule f

Sum: f(w̃1, w̃2) = w̃1 + w̃2

Absolute
Maximum: f(w̃1, w̃2) =

(
w̃1 if |w̃1| > |w̃2|

w̃2 otherwise

Average: f(w̃1, w̃2) = weightAvg{w̃1, w̃2}

Single: f(w̃1, w̃2) = max{w̃1, w̃2}

Complete: f(w̃1, w̃2) = min{w̃1, w̃2}

Table A4. The table lists the update rules f(w̃1, w̃2) associated
to the linkage criteria of Table 1 and that are used to efficiently
update the interactions between clusters.
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Figure A6. Example of edge contraction. First row: original
graph G; clustering ⇧ (gray shaded areas) with dashed edges on
cut; cannot-link constraints (violet bars). Second row: contracted
graph G̃⇧. In step ii), edge euv is contracted and node v deleted
from G̃⇧. In step iii), double edges etu and etv resulting from
the edge contraction are replaced by a single edge with updated
interaction.

Complexity In the main loop of Phase 1, the algorithm
iterates over all edges, but the only iterations presenting a
complexity different from O(1) are the ones involving a
merge of two clusters, which are at most N � 1. By using a
union-find data structure (with path compression and union
by rank) the time complexity of merge(u, v) and find(u)
operations is O(↵(N)), where ↵ is the slowly growing
inverse Ackerman function. The algorithm then iterates
over the neighbors of the merged cluster (at most N ) and
updates/deletes values in the priority queue (O(log |E|)).
Therefore, similarly to a heap-based implementation of hi-
erarchical agglomerative clustering, our implementation of
GASP - Phase 1 has a complexity of O(N2 logN). In
the worst case, when the graph is dense and |E| = N2,
the algorithm requires O(N2) memory. Nevertheless, in
our practical applications the graph is much sparser, so



Algorithm 2 Implementation of GASP - Phase 1
Input: G(V, E, w+, w�) with N nodes and M edges; boolean addCannotLinkConstraints
Output: Final clustering

1: G̃(Ṽ , Ẽ) G(V,E,w+, w�) . Init. contracted graph
2: UF initUnionFind(V ) . Init. data structure representing clustering
3: PQ.push(|we|, e) 8e 2 E . Init. priority queue in desc. order of |we| = |w+

e � w�
e |, O(|E|)

4: canBeMerged[e] True 8e 2 E . Init. cannot-link constraints
5:
6: while PQ is not empty do
7: w̃, euv  PQ.popHighest() . O(log |E|)
8: assert UF.find(u) 6= UF.find(v) . Edges in PQ always link nodes in different clusters
9: if (w̃ > 0) and canBeMerged[euv] then

10: PQ, canBeMerged, Ẽ UPDATENEIGHBORS(u, v)
11: Ṽ  Ṽ \ {v}, Ẽ  Ẽ \ {euv} . Update contracted graph
12: UF.merge(u, v) . Merge clusters, O(↵(|E|))
13: else if (w̃  0) and addCannotLinkConstraints then
14: canBeMerged[euv] False . Constrain the two clusters
15: return Final clustering given by union-find data structure UF

1: function UPDATENEIGHBORS(u, v)
2: Nu = {t 2 Ṽ |eut 2 Ẽ}

3: Nv = {t 2 Ṽ |evt 2 Ẽ}

4: for t 2 Nv do . Loop over neighbors in G̃ of deleted node v
5: Ẽ  Ẽ \ {evt}
6: w̃vt  PQ.delete(evt) . Delete edge evt from PQ and get the old edge weight, O(log |E|)
7: canBeMerged[eut] canBeMerged[eut] and canBeMerged[evt]
8: if t 2 Nu then . Check if t is a common neighbor of u and v
9: w̃ut  PQ.delete(eut) . O(log |E|)

10: PQ.push(|f(w̃ut, w̃vt)|, eut) . O(log |E|)
11: else
12: Ẽ  Ẽ [ {eut}
13: PQ.push(|w̃vt|, eut) . O(log |E|)

14: return PQ, canBeMerged, Ẽ

Algorithm 3 Mutex Watershed Algorithm proposed by [75]
Input: G(V, E, w+, w�) with N nodes and M edges
Output: Final clustering

1: UF initUnionFind(V )
2: for (u, v) = e 2 E in descending order of |we| = |w+

e � w�
e | do

3: if UF.find(u) 6= UF.find(v) then . Check if u, v are already in the same cluster
4: if (we > 0) and canBeMerged(u, v) then . Check for cannot-link constraints
5: UF.merge(u, v) and inherit constraints of parent clusters
6: else if (we  0) then
7: Add cannot-link constraints between parent clusters of u, v
8: return Final clustering given by union-find data structure UF



Figure A7. Runtimes for different implementation of GASP with
AbsMax linkage criterion. Runtimes are averaged over 5 runs.

O(|E|) = O(N). With a single-linkage, corresponding to
the choice of the Maximum update rule in our framework,
the algorithm can be implemented by using the more ef-
ficient Kruskal’s Minimum Spanning Tree algorithm with
complexity O(N logN), but only when cannotLinkCon-
straints are not used. Moreover, GASP with Absolute Maxi-
mum linkage can be implemented more efficiently (see next
section).

Efficiency of different GASP implementations with Ab-
sMax linkage criteria In Fig. A7, we compare the run-
times of three implementations of the AbsMax criteria: the
implementation from [74] for pixel graphs (Pixel-grid im-
plementation) and for general graphs (Efficient graph imple-
mentation) as well as the HC implementation with AbsMax
linkage (Naive graph implementation). The specialized im-
plementations can exploit the properties of the underlying
graph and are faster. But our generalization does not carry
a large computational penalty and only requires a few ex-
tra seconds for partitioning graphs of a million nodes. Note
that we have always used the most efficient implementation
for the results reported in the paper. We will clarify this fact.

Median linkage We implemented median linkage in our
library from the beginning but did not report on it in the
main paper for two reasons: we consider the other criteria
to span the range of interesting behavior well; and it per-
forms no better than some of the other criteria (like average
linkage) which are faster to evaluate.

A6.2. GASP relation to the multicut objective
For some of the linkage criteria, e.g. sum and average,

GASP can be understood as a local search to the objective
of the multicut optimization problem 1, see [51]. But this
does not hold in general: the Abs Max linkage for exam-
ple does not always decrease the MC objective (see counter
example in Fig. A8). Moreover, GASP cannot be seen as a
k-approximation, because it is a polynomial algorithm and

Figure A8. GASP agglomeration with the Abs Max criterion: con-
tracted edges are marked green. The last contraction increases the
MC objective from -1 to 0.

Chawla, et al. Computational complexity, 2006 has shown
that approximating the multicut objective with any constant
factor is in itself NP-hard.

A6.3. Proofs of Propositions 3.1, 3.2, A6.1, and 3.3
Lemma A6.1. If GASP Algorithm 1 with Complete link-
age criteria enforces a constraint between two clusters in
Phase 1, then the interaction between the clusters will never
become positive over the course of the following agglomer-
ation steps.

Proof. Two clusters are constrained in Phase 1 only if their
interaction is repulsive and, with complete linkage, the
signed interaction between two clusters can only decrease
over the course of the agglomeration. Thus, if two clusters
are constrained by the algorithm, their negative interaction
cannot increase and become positive later on in the agglom-
eration process.

Lemma A6.2. If GASP Algorithm 1 with AbsMax linkage
criteria enforces a constraint between two clusters in Phase
1, then the interaction between the clusters will never be-
come positive over the course of the following agglomera-
tion steps.

Proof. During the agglomeration the interaction between
two clusters can only increase in absolute value. Thus,
the negative interaction W(Si [ Sj) < 0 between two
constrained clusters can possibly become positive over the
course of next agglomeration steps only if there is at least
another pair of clusters in the graph that has a positive
interaction W(Sl [ St) > 0 higher in absolute value:
|W(Sl [ St)| > |W(Si [ Sj)|. If such clusters Sl, St with
positive interaction exist, we note that they must also be
constrained (in the opposite case, the algorithm would have
already merged them before to constrain Si and Sj , because
their priority is higher). In other words, a constrained nega-
tive interaction can become positive only if there is already
another positive constrained interaction: but this can never
be the case because initially all constrained interactions are
negative.

Lemma A6.3. In the GASP Algorithm 1 with AbsMax or
Complete linkage criteria (see linkage definition in Table 1),



the same final clustering is returned whether or not cannot-
link constraints are enforced.

Proof. In phase 1 of Algorithm 2, two clusters are merged
only if the condition at line 9 is satisfied (i.e. when an
interaction is both positive and not constrained). From
Lemma A6.2 and Lemma A6.2 follows that with Complete
and AbsMax linkage an interaction can never be both pos-
itive and constrained at the same time, so we directly con-
clude that the constrained and unconstrained versions of the
algorithm will perform precisely the same agglomeration
steps in phase 1. In phase 2 (after constraints have been
removed) no clusters are merged because all interactions
are already negative (whether they previously constrained
or not). Thus, both constrained and unconstrained versions
of GASP return the same clustering ⇧⇤.

Proposition 3.1. The GASP Algorithm 1 with AbsMax link-
age, with or without cannot link constraints, returns the
same final clustering ⇧⇤

AbsMax also returned by the Mu-
tex Watershed Algorithm (MWS) [75], which has empirical
complexity O(N logN).

Proof. From Lemma A6.3 it directly follows that GASP
with AbsMax linkage criterion returns the same final clus-
tering whether or not cannot-link constraints are enforced.
In the following, we prove that MWS (see pseudocode 3)
and the constrained AbsMax version of GASP also return
the same clustering. Both algorithms sort edges in descend-
ing order of the absolute interactions |we| and then iterate
over all of them. The only difference is that MWS, after
merging two clusters, does not update the interactions be-
tween the new cluster and its neighbors. However, since
with an Abs. Max. linkage the interaction between clusters
is simply given by the edge with highest absolute weight
|we|, the order by which edges are iterated over in GASP is
never updated. Thus, both algorithms perform precisely the
same steps and return the same clustering.

Proposition 3.2. We call an agglomerative algorithm
“weight-shift invariant” if the dendrogram T returned by
the algorithm is invariant w.r.t. a shift of all edge weights
we by a constant ↵ 2 R. Among the variations of GASP,
only hierarchical clustering with Average (HC-Avg), Sin-
gle (HC-Single), and Complete linkage (HC-Complete) are
weight-shift-invariant (see green box in Table 1).

Proof. Theorem 1 in [12] proves that hierarchical clustering
with Average (HC-Avg), Single (HC-Single), and Complete
linkage (HC-Complete) are weight-shift invariant.

The same is not true for GASP with Sum linkage criteria
(GAEC and HCC-Sum), because by adding a constant ↵ to
all edge weights we, the interaction between two clusters
Si and Sj is increased by a factor ↵|Eij |, which depends
on the number of edges |Eij | connecting the two clusters.
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Figure A9. Counter-example showing that GAEC is not weight-
shift invariant.
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Figure A10. Counter-example showing that HCC-Sum, MWS,
HCC-Avg, and HCC-Single are not weight-shift invariant.

Thus, when all edge weighs of the graph are shifted, the
agglomeration order may change. For a simple example of
this, it is enough to consider the toy graph in Fig. 1a and
shift the weights of the graph by ↵ = �3 (see Fig. A9).

The constrained versions of GASP (HCC-Avg and HCC-
Single) are also not weight-shift invariant: here, the algo-
rithm merges or constrains clusters in a given order, de-



pending on the absolute interactions |W(Si [ Sj)| between
clusters; so, when edge weights are shifted by a constant ↵,
the sorting by absolute value can change arbitrarily together
with the agglomeration order, as we show in the counter-
example of Fig. A10. Similarly, the Mutex Watershed algo-
rithm is not weight-shift invariant because it uses a linkage
criterion that compares weights by their absolute values (see
again counter-example in Fig. A10.

Proposition A6.1. Consider a graph G(V, E, we), a link-
age criterion W , and an agglomerative algorithm return-
ing a binary rooted tree T with height hT . Then, (V, dT )
defined in Eq. 3 is an ultrametric if and only if the following
is true:

8u, v, t 2 V

hT (u, v) < hT (u, t) ) WT (u, v) � WT (u, t) (7)

In words, condition 7 means: if the algorithm merges nodes
u, v before to merge nodes u, t, then the signed interaction
WT (u, v) between u and v has to be higher or equal than
WT (u, t).

Proof. From the definition of dT , it follows that:

dT (u, u) = 0 8u 2 V (8)
dT (u, v) � 0 8u, v 2 V (9)
dT (u, v) = dT (v, u) 8u, v 2 V. (10)

In order to show that (V, dT ) is an ultrametric, we only need
to prove the ultrametric property:

dT (u, v)  max{dT (u, t), dT (v, t)} 8u, v, t 2 V. (11)

When at least two of the three nodes u, v, t 2 V are the
same, this property follows from Eq. 8 and Eq. 9. When
nodes u, v, t 2 V are distinct, from the definition of dT it
follows that Eq. 11 is equivalent to:

WT (u, v) � min{WT (u, t),WT (v, t)}. (12)

In the following, we prove both sides of the if and only if
statement in the proposition. First, we prove the (() side,
i.e. that if assumption 7 holds, then (V, dT ) is an ultrametric
and 12 holds.

Case 1: in Eq. 12, t 2 V is part of the sub-tree T [u _ v].
In other words, the algorithm first merges node t with either
node u or v, and then u and v are merged together. Let us
assume that t is first merged with u (the following proof
also holds for the opposite case in which t is first merged
with v):

hT (u, t) < hT (u, v) = hT (v, t). (13)

Thus, by combining the last equation with assumption (7),
it follows that

WT (u, t) � WT (v, t) and WT (u, v) = WT (v, t)
(14)

and Eq. 12 follows (becoming an equality in this case).
Case 2: in Eq. 12, t 2 V is not part of the sub-tree

T [u _ v]. Thus, the algorithm first merges nodes u and v,
and then it merges node t together with the cluster contain-
ing u and v:

hT (u, v) < hT (u, t) = hT (v, t). (15)

Thus, from assumption 7 we have that

WT (u, v) � WT (u, t) and WT (u, v) � WT (v, t),
(16)

so also in this case Eq. 12 follows.
Next, we are left to prove the ()) side of the if and only

if statement: if (V, dT ) is an ultrametric, then assumption
7 holds. To prove this statement, we first rephrase it in the
following equivalent form: if assumption 7 does not hold,
then (V, dT ) is not an ultrametric and 12 does not hold. If
we negate assumption 7, there must be at least three u, v, t 2
V such that:

hT (u, v) < hT (u, t) and WT (u, v) < WT (u, t).
(17)

The first condition, in words, is again assuming that the al-
gorithm first merges nodes u and v, and later it also merges
node t with the cluster containing u and v. Thus, we can
rephrase this assumption as:

WT (u, v) < WT (u, t) = WT (v, t). (18)

From this, it follows that

WT (u, v) < min{WT (u, t),WT (v, t)}, (19)

which is exactly the negation of the ultrametric property 12.

Proposition 3.3. Among the algorithms included in the
GASP framework (see Table 1), only Mutex Watershed and
hierarchical clustering with Average (HC-Avg), Single (HC-
Single) and Complete linkage (HC-Complete) define an ul-
trametric (V, dT⇤), where dT⇤ is defined in Eq. 3 and T ⇤ is
the tree returned by the GASP Algorithm 1.

Proof. Thanks to Prop. A6.1, we know that (V, dT⇤) is an
ultrametric if and only if assumption 7 holds. Thus, in the
following, we will prove which variations of the GASP Al-
gorithm 1 satisfy assumption 7. In other words, we need to
prove in which cases GASP merges clusters according to a
monotonously decreasing order of signed interactions W .

GASP puts clusters in a priority queue (Algorithm 1,
lines 5 and 15) and merges them starting from those with
the highest interaction (lines 9, 19, and 26). However, the
priority queue is updated each time two clusters are merged
(lines 10, 20, and 27). Thus, to ensure a monotonously
decreasing merging order, updated interactions involving a



merged cluster should always be lower or equal than previ-
ously existing interactions (condition 1):

8Si 2 ⇧ \ {S1, S2},

W(S1 [ S2 [ Si)  max{W(S1 [ Si),W(S2 [ Si)}
(20)

where ⇧ is a clustering, W is a linkage criteria, and
S1, S2 2 ⇧ are two clusters merged by the algorithm at a
given iteration. If this condition is true then, in the follow-
ing iterations, GASP can only merge clusters with lower (or
equal) interaction values.

We also note that, in phase 1, the algorithm skips inter-
actions that are both positive and constraint (condition at
line 8 in Algorithm 1) and merges them only later in phase
2 (line 19), when constraints are removed. Clearly, when-
ever this happens, a decreasing merging order is no longer
ensured. Thus, on top of condition 1, we also have that
no merging decisions should be “delayed” from phase 1 to
phase 2 (condition 2).

Condition 1 always holds for Average, Single, Complete,
and AbsMax linkage criteria, but not for a Sum linkage cri-
teria, because the sum of two positive numbers a, b is al-
ways higher than max{a, b}. This is also demonstrated in
the toy example of Fig. 1a, proving that, in general, Sum-
linkage algorithms like GAEC or HCC-Sum do not define
an ultrametric on the graph.

Thanks to Lemma A6.3, we have that condition 2 always
holds for algorithms based on AbsMax and Complete link-
age, proving that the Mutex Watershed and HC-Complete
algorithms define an ultra-metric (whether or not cannot-
link-constraints are enforced). On the other hand, condi-
tion 2 does not hold for other variations of GASP involving
cannot-link-constraints (HCC-Sum, HCC-Avg, and HCC-
Single), which do not then define an ultrametric.

Finally, the remaining not constrained versions of GASP
(HC-Avg, HC-Single, and HC-Complete) satisfy both con-
ditions, so they define an ultrametric, confirming the well-
known results of related work in hierarchical clustering on
unsigned graphs [33, 58].

A6.4. Mutex Watershed on SSBM graphs

Proposition A6.2. Consider a graph generated by an
Erdős-Rényi signed stochastic block model (SSBM) as de-
scribed in Section 4.1, with N nodes, edges added with
probability p, sign-flip probability ⌘ < 0.5, k ground-truth
clusters, and edge weights Gaussian-distributed with stan-
dard deviation �. Then, at every iteration, GASP with Abso-
lute Maximum linkage (or, in other words, the Mutex Water-
shed algorithm) always makes a mistake with at least prob-
ability ⌘.

Proof. Thanks to Lemma A6.3 we know that GASP with
Absolute Maximum linkage returns the same clustering
whether or not cannot-link-constraints are used. Thus, in
the following, we prove the proposition considering the ver-
sion enforcing constraints. Let us consider a generic itera-
tion of the algorithm, where two clusters S↵ and S� have the
highest priority and are popped from priority queue. Then,
the MWS algorithm will either merge or constrain them de-
pending on the fact that their interaction WAbsMax(S↵[S�)
is positive or negative (note that, with AbsMax linkage, an
interaction can never be positive and constrained, as shown
in Lemma A6.3). By construction of the SSBM, every edge
e 2 E in the graph has a absolute weight distributed as
|we| ⇠ N (1, �2). Thus, every edge e0 2 (S↵ ⇥ S�) \ E
connecting the two clusters has the same probability to have
the highest absolute weight, and the sign of the interac-
tion WAbsMax(S↵ [ S�) will only depend on the sign of
this highest edge. Therefore, the probability that the MWS
merges two clusters is simply given by the fraction of posi-
tive weighted edges connecting them.

Let ⇧̃ = {S̃1, . . . , S̃k} denote the ground truth cluster-
ing, and S̃↵i = S↵ \ S̃i denote the intersection between
cluster S↵ and a ground-truth cluster S̃i. If the generated
graph is dense, i.e. p = 1, then the total number of edges
connecting clusters S↵ and S� that have a true attractive or
repulsive weight is (according to the ground truth labels)

�+ =
kX

i=1

|S̃↵i||S̃�i|, �� =
kX

i=1

kX

j=1,j 6=i

|S̃↵i||S̃�j |.

(21)
When the edges in the graph are randomly added with a
probability p, then the actual number of true attractive and
repulsive interactions connecting the two clusters is (ac-
cording to the ground truth labels):

�+
⇠ B(�+, p), ��

⇠ B(��, p), (22)

where B(�, p) is the binomial distribution:

B(�;�, p) =
�!

�!(�� �)!
p�(1� p)��� . (23)

Here, we only assume that �++�� > 0, i.e. there is at least
one edge connecting the two clusters (otherwise their inter-
action would be zero and the MWS would not have popped
them from priority queue).

So far we have been talking about attractive and re-
pulsive connections according to the ground truth labels.
In our SSBM however every edge has a uniform proba-
bility ⌘ to have its sign flip, so the actual number of at-
tractive interactions connecting the two clusters will be in-
stead given by the sum of the true attractive interactions
�+
nf ⇠ B(�+, 1 � ⌘) that have not been flipped, plus the

true negative interactions ��
f ⇠ B(��, ⌘) that have been



flipped. Putting everything together, given two clusters with
�+ true attractive interactions and �� true negative ones,
the highest-absolute-weight edge connecting them has the
following probability to be positive:

P[WAbsMax(S↵ [ S�) > 0; �+, ��] =

=
�+X

�+
nf=0

��X

��
f =0

B(��
f ; ��, ⌘)B(�+

nf ; �
+, 1� ⌘)·

·

✓
�+
nf + ��

f

�+ + ��

◆

(⇤)
=

�+(1� ⌘) + ��⌘

�+ + �� (24)

where in (⇤) we used the fact that the expected value of a
binomial distribution B(�, ⌘) is �⌘.

Now we note that this probability is bounded in the inter-
val [⌘, 1� ⌘]. So, regardless of whether the two clusters S↵

and S� should be merged or constraint according to ground
truth labels, the probability not to make the correct decision
is always at least ⌘. Remarkably, while the exact probabil-
ity in Eq. 24 depends on the number of edges connecting
the two clusters �+ + �� and thus on the cluster sizes, the
bounds do not. Thus, this result shows that, unlike Sum
or Avg linkage methods, the MWS algorithm is unable to
reliably correct for the sign flip noise even for big clusters
linked by many edges.

A6.5. Application to neuron segmentation
Training and data augmentation The data from the
CREMI challenge is highly anisotropic and contains arti-
facts like missing sections, staining precipitations and sup-
port film folds. To alleviate difficulties stemming from mis-
alignment, we use a version of the data that was elastically
realigned by the challenge organizers with the method of
S. Saalfeld, et al. Nature methods, 2012. In addition to the
standard data augmentation techniques of random rotations,
random flips and elastic deformations, we simulate data ar-
tifacts. We randomly zero-out slices, decrease the contrast
of slices, simulate tears, introduce alignment jitter and paste
artifacts extracted from the training data. Both [28] and [50]
have shown that these kinds of augmentations can help to al-
leviate issues caused by EM-imaging artifacts. We use L2
loss and Adam optimizer to train the network. The model
was trained on all three samples with available ground truth
labels.

CREMI-gridRag instances Our 3D UNet model pre-
dicts the same set of 12 long-and-short range affinities as
described in [50]. When building the pixel-grid graph, we
add both direct neighbors connections and the long-range
connections predicted by our model (every voxel is con-
nected to other six voxels via direct connections and other

18 voxels via long-range edges). Empirically, when long-
range predictions of the CNN are added as long-range con-
nections in the graph, GASP achieves better scores as com-
pared to when only direct-neighbors predictions are used.
Our intuitive explanation of this is that, where there is a
clear boundary evidence between two segments, the long-
range predictions of the CNN model are more certain than
the direct-neighbor ones, because it is often impossible to
estimate the exact ground-truth label transition for pixels
that are very close to a boundary evidence. However, empir-
ically, we also find that GASP achieves the best scores when
only 10% of the long-range connections are randomly sam-
pled and added to the grid-graph. When all the long-range
connections predicted by the CNN are added to the graph
(18 connections for every voxel), all versions of GASP tend
to perform more over-clustering errors. In practice, we ex-
plain this by observing that many challenging parts of the
studied neuron segmentation data involve thin and elon-
gated segments, and our model sometimes fails to connect
distant pairs of pixels that, according to the ground-truth
labels, should belong to the same segment (even though,
in this case, the direct neighboring predictions are correct).
To sum up, the scores we report in Tables 3a) are obtained
by using only 10% of the long-range predictions, since this
was the setup that performed the best. After running GASP,
we use a simple post-processing step to delete small seg-
ments on the boundaries, most of which are given by single-
voxel clusters. On the neuron segmentation predictions, we
deleted all regions with less than 200 voxels and used a
seeded watershed algorithm to expand the bigger segments.

CREMI-3D-rag instances We build these clustering
problems by generating superpixels and then building a 3D
region adjacency graph. Due to the anisotropy of the data,
we generate 2D superpixels by considering each 2D im-
age in the stack singularly. First, we generate a boundary-
evidence map by taking an average over the two direct-
neighbor predictions of the CNN model (one for each di-
rection in the 2D image of the stack) and applying some
additional smoothing. Then, we threshold the boundary
map, compute a distance transform, and run a watershed
algorithm seeded at the maxima of the distance transform
(WSDT). The degree of smoothing was optimized such that
each region receives as few seeds as possible, without how-
ever causing severe under-segmentation. The computed 2D
superpixels are then used to build a 3D region-adjacency
graph (3D-rag). The weights of the edges are given by av-
eraging the CNN affinities over the boundaries of adjacent
superpixels.

A6.6. Adding structured noise to CNN predictions
Additionally to the comparison on the full training

dataset, we performed more experiments on a crop of the



Clustering problem GAEC [39] HCC-Sum MWS [75] HC-Avg HCC-Avg HC-Single HCC-Single HC-Complete

Modularity Clustering -0.457 -0.453 -0.073 -0.467 -0.467 0.000 0.000 -0.201
Image Segmentation -2,955 -2,953 -2,901 -2,903 -2,896 -1,384 -1,384 -2,102
Knott-3D (150-300-450) -36,667 -36,652 -35,200 -35,957 -35,631 -2,522 -2,522 30,629
CREMI-3D-rag -1,112,287 -1,112,286 -1,109,731 -1,112,177 -1,112,100 -1,038,709 -1,038,709 -748,734,869
Fruit-Fly Level 1-4 -151,022 -151,017 -150,879 -150,909 -150,876 -71,477 -71,997 -128,733
CREMI-gridGraph -73,317,601 -73,328,867 -73,330,568 -73,502,947 -73,474,856 -45,194,180 -45,194,443 311,598,700
Fruit-Fly Level Global -151,688 -151,596 -146,315 -150,466 -150,171 -4,422 - 6,876

Table A5. We compare algorithms in the GASP framework by evaluating which of the obtained clusterings is associated to the lowest value
of the multicut objective defined in Eq. 1 (lower is better). Single and complete linkage methods performed much worse than the others.
Note that HCC-Single is the algorithm with the highest runtime (see Table 3a)) and it did not scale up to the very large clustering problem
Fruit-Fly Level Global.

more challenging CREMI training sample B, where we per-
turbed the predictions of the CNN with noise and we intro-
duced additional artifacts like missing boundary evidences.

In the field of image processing there are several ways of
adding noise to an image, among which the most common
are Gaussian noise or Poisson shot noise. In these cases,
the noise of one pixel does not correlate with its neigh-
boring noise values. On the other hand, predictions of a
CNN are known to be spatially correlated. Thus, we used
Perlin noise14, one of the most common gradient noises
used in procedural pattern generation. This type of noise
n(x) 2 [0, 1] generates spatial random patterns that are lo-
cally smooth but have large and diverse variations on bigger
scales. We then combined it with the CNN predictions p(x)
in the following way:

F̃ (x;K) = F (x) +K ·max (N(x), 0) , (25)

where N(x) = Logit[n(x)]; F (x) = Logit[p(x)] and
K 2 R+ is a positive factor representing the amount of
added noise. The resulting perturbed predictions F̃ (x;K)
are then under-clustering biased, such that the probability
for two pixels to be in the same cluster is increased only if
N(x) > 0 (see Fig. A11b and A11c). Note that in these
experiments we focused only on predictions perturbed with
under-clustering biased noise (and not over-clustering bi-
ased noise). The reason is that generating realistic over-
clustering biased CNN predictions is more complex and
cannot be simply done by adding Perlin noise: as we show
in Fig. A11c, by adding Perlin noise we can easily “remove”
parts of a boundary evidence, but it is not possible to gener-
ate random new realistic boundary evidence.

In our experiments, each pixel is represented by a node in
the grid-graph and it is linked to nnb other nodes by short-
and long-range edges. Thus, the output volume of our CNN
model is a four-dimensional tensor with nnb channels: for
each pixel / voxel, the model outputs nnb values represent-
ing affinities of different edge connections. We then gener-
ated a 4-dimensional Perlin noise tensor that matches the di-
mension of the CNN output. The data is highly anisotropic,

14In our experiments, we used an open-source implementation of sim-
plex noise [64], which is an improved version of Perlin noise [63]

i.e. it has a lower resolution in one of the dimensions. Due
to this fact, we chose different smoothing parameters to gen-
erate the noise in different directions.
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Figure A11. CNN predictions on a slice of the CREMI neuron segmentation challenge with and without additional spatially-correlated
noise. (a) Raw data (b) Original CNN predictions F (x), where blue pixels represent boundary evidence (c) Strongly perturbed version
F̃ (x;K) of the predictions defined in Eq. 25 with K = 8. Long-range predictions are not shown.

Method ARAND Error

HC-Avg (GASP with Avg Linkage) 0.1034
GAEC [39] (GASP with Sum Linkage) 0.1035
MWS [75] (GASP with AbsMax linkage) 0.1068
SPONGEsym [19] 0.4161
Lsym [46] 0.8069
SPONGE [19] 0.9211
BNC [14] 0.9926

Table A6. GASP compared to spectral clustering methods on a small crop of the CREMI neuron segmentation dataset. Since spectral
methods cannot scale to the full CREMI dataset, we evaluated them on a smaller 10⇥100⇥100 sub-volume of CREMI training sample B.
Despite the fact that the true number of ground truth clusters was given as an input to the spectral methods, GASP significantly outperformed
them.
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