
Supplementary Material for Discovering Objects that Can Move

Zhipeng Bao*,†,1 Pavel Tokmakov*,2 Allan Jabri3

Yu-Xiong Wang4 Adrien Gaidon2 Martial Hebert1
1CMU 2Toyota Research Institute 3 UC Berkeley 4 UIUC

In this Supplementary, we provide additional experimen-
tal results, visualizations and implementation details that
were not included in the main paper due to space limitations.
We begin by analysing several aspects of our approach, in-
cluding its memory constraints, effect of the network depth,
self-supervised backbone pre-training, and influence of the
number of slots in Section 1. A separate discussion of our
post-processing approach for the motion segmentation out-
puts, together with a hyper-parameter ablation, is available
in Section 2. We then report additional experimental com-
parisons in Section 3 including qualitative comparison with
SCALOR, measurement with representative segmentation
metrics, and comparison with state-of-the-art on CATER.
Finally, we provide more statistics for the synthetic TRI-PD
dataset in Section 4 and conclude by listing the remaining
implementation details in Section 5.

1. Further ablations
1.1. Memory constrains

By adopting the learnable slot initialization and one-shot
decoding strategies, our proposed method can greatly save
the GPU memory. In Table 1 we compare the memory
consumption for both the original SlotAttention architec-
ture [9] and our optimized model on CATER [5] and TRI-
PD [1] datasets for a single frame. Firstly, we observe that
on CATER our approach does results in an about 25% reduc-
tion in the amount of memory required to train the model,
though both methods are easy to fit on a single GPU due to
the low resolution of CATER frames and a small number of
slots. In contrast, on TRI-PD, where both the resolution and
the number of slots are much larger, the memory constraints
of SlotAttention become prohibitive whereas our proposed
architecture can save 90% of the GPU memory, enabling
experiments on this realistic dataset.

1.2. Deeper backbones

In the main paper, we used a ResNet18 backbone for
all the experiments. We now further evaluate the proposed

*Equal contribution
†Work done during an internship at TRI

ResNet18 ResNet50 ResNet50-pre

Figure 1. Visualizations of two samples on TRI-PD dataset with
different backbones. Deeper backbone results in a higher confi-
dence for the foreground objects, and self-supervised pre-training
of the backbone helps to better capture the object masks.

approach with ResNet34 and ResNet50 backbones on the
TRI-PD dataset in Table 2. In addition, we explore the effect
of self-supervised ImageNet [4] pre-training of the backbone
with the recent SimSam [2] approach. We evaluate these
variants with both ground truth motion segmentation and the
outputs of [3] with RAFT flow, reporting Fg. ARI for both
static and moving instance. We also visualize two generated
samples for randomly initialized ResNet50 and pre-trained
ResNet50, together with our ResNet18 baseline, for RAFT
+ [3] setting in Figure 1.

Firstly, we observe that increasing the network depth
indeed results in consistent performance improvements of
our approach both with GT and estimated motion segmen-
tation, but the improvements are somewhat larger in the
former setting. This shows that the noisy estimated mo-
tion segmentation limits the performance of our method and
improvements in motion segmentation algorithms would di-
rectly result in a better scalability. Secondly, self-supervised
pre-training of the backbone results in further improvements
for both variants, demonstrating that recent advances in self-
supervised representation learning can be easily combined
with our object discovery approach.

1.3. Stronger SlotAttention baselines

To further validate the effectiveness of both the proposed
architecture and motion supervision, we now report two ad-
ditional baseline for SlotAttention [9]. Firstly, we apply the
same learning signal in the form of motion masks to [9] on

1



Model Dataset Resolution #Slots GPU Memory
SlotAttention [9] CATER 128× 128 10 652 MB
Ours CATER 128× 128 10 483 MB
SlotAttention [9] TRI-PD 548× 1123 45 23,796 MB
Ours TRI-PD 548× 1123 45 2,297 MB

Table 1. GPU memory consumption for SlotAttention and our
proposed method measured with Megabytes (MB). By applying
learnable slot initialization and one-shot decoding, our model can
save 90% of the GPU memory on the realistic TRI-PD datset with
a large resolution and dozens of objects.

Backbone Motion seg. Fg. ARI Stat. Fg. ARI Mov. Fg. ARI All
ResNet18 GT moving 48.4 66.7 59.6
ResNet18 RAFT flow + [3] 45.6 56.7 50.9
ResNet34 GT moving 50.1 69.0 61.3
ResNet34 RAFT flow + [3] 46.2 57.1 51.7
ResNet50 GT moving 51.3 69.7 62.0
ResNet50 RAFT flow + [3] 47.2 57.2 52.0
ResNet50-pre GT moving 53.6 71.2 64.1
ResNet50-pre RAFT flow + [3] 48.5 68.6 53.1

Table 2. Analysis of the effect of the backbone depth and self-
supervised pre-training on the model’s performance on the vali-
dation set of TRI-PD. Both deeper backbones and better weight
initialization result in performance improvements with either GT
or estimated motion segmentation, but the improvements are some-
what higher in the former setting.

Model Motion masks Fg. ARI
SlotAttention ✗ 64.4
SlotAttention ✓ 83.1
Ours ✓ 92.7

Table 3. Comparison with SlotAttention using motion masks su-
pervision on CATER. Independent motion signal can also improve
the perofrmance of this baseline, but it remains below that of our
model, indicating the effectiveness of our model design.

CATER and report the results in Table 3. We observe that the
independent motion prior indeed also improves the perfor-
mance of the SlotAttention, but it remains 9.6 Fg. ARI points
below our method. This result indicates that our model archi-
tecture not only dramatically reduces memory consumption,
enabling the experiments on the realistic TRI-PD and KITTI
datasets, but also improves the object discovery capabilities
of the approach.

Next, we explore whether the supervised pre-training of
the motion segmentation approach of Dave et al. [3] on the
FlyingThings3D dataset [10] provides an unfair advantage
to our method. To this end, we pre-train SlotAttention on
FlyingThings3D, which is a more direct form of utilizing
these labels, and report the results in Table 4. The results
indicate that while pre-training on object segmentation labels
in [10] does result in a small improvement for the SlotAtten-
tion, its the performance remains low and the model fails to
discover the objects in realistic images. This is due to the
large domain gap between the toy FlyingThings3D and the
photo-realistic TRI-PD datasets. This toy data, however, is

Model Pre-training Fg. ARI
Slot Attention None 10.2
Slot Attention FlyingThings3D [10] 19.1
Ours None 50.9

Table 4. Comparison with SlotAttantion pre-trained on FlyingTh-
ings3D [10] on the validation set of TRI-PD. Direct pre-training
only results in minor improvements for SlotAttention, whereas
using these labels to train a motion segmentation approach which
later bootstraps object discovery in our framework is a much more
effective strategy.

sufficient to learn to segment moving objects in the optical
flow field - a low level task with an appearance agnostic
input. The resulting model can then be used to bootstrap
object discovery in real world environments.

1.4. Influence of the number of slots

In the main paper, we use a fixed number of slots, which
is slightly larger than the maximum number of objects for
each dataset. Here we ablate the effect of the number of
slots on our method’s performance and run-time on CATER
and TRI-PD in Figure 2. Firstly, we observe that, unsur-
prisingly, using fewer slots than the maximum object count
in a dataset results in a decrease in performance. However,
increasing the slot number has a minimal effect on Fg. ARI
and run-time. The latter is due to our efficient 1-shot decod-
ing strategy, described in Section 3.2 of the paper. These
results demonstrate the flexibility of our method, which does
not require the ground truth object count for training.

Figure 2. Influence of the number of slots on our method’s perfor-
mance and run-time on CATER and TRI-PD.

2. Motion-segmentation post-processing
We now describe the motion segmentation post-

processing steps applied in our work. Firstly, we filter out ex-
tremely small (fewer than 100 pixels, or smallest dimension
of the enclosing bounding box less than 10) and extremely
large (occupying more than 60% of the image) segments
since those typically correspond to random noise or capture
background regions. We then additionally remove the seg-
ments that are within 15 pixels from the image boundary,
as well as segments containing more than one connected
component, which also typically correspond to background
and noisy regions respectively.



Method Tcon Tmag #Seg mIoU (↑)
CUT [7] - - 1.53 2.5
TSAM [3] 0.4 0.1 0.38 2.9
TSAM [3] 0.4 0.05 0.51 3.1
TSAM [3] 0.25 0.1 0.57 3.2
TSAM [3] 0.25 0.05 0.63 3.4
TSAM [3] 0.1 0.1 0.71 3.4
TSAM [3] 0.1 0.05 0.92 3.3

Table 5. Fg. ARI measurements and averaged number of segments
on TRI-PD dataset with different threshold for the post-processed
motion segments. We set Tcon as 0.25 and Tmag as 0.05 in the
main paper based on the ARI scores.

These rules are applied to the outputs of both the heuristic-
based (CUT) [7] and the learning-based (TSAM) [3] motion
segmentation algorithms, with the only difference being that,
since [7] outputs spatio-temporal segments, we average the
frame-level statistics over time. For the method of Dave et
al. [3] we directly apply the rules at every frame.

In addition, unlike the heuristic-based approach, the
method of Dave et al. [3] also predicts a confidence score for
each segment and applies an internal pre-processing step to
the optical flow, zeroing out flow vectors with a low magni-
tude, since those are unreliable. We integrate both of these
components into our post-processing algorithm by filtering
out segments with confidence score lower than Tconf , and
average normalized flow magnitude lower than Tmag (we
first normalize flow magnitude to be ∈ [0, 1] for each frame).

We select these two thresholds on the validation set of
TRI-PD using the FG.ARI score between the post-processed
motion segments and ground-truth segments corresponding
to the moving objects in Table 5. In addition, we report the
average number of segments per frame after post-processing
under #Seg. Firstly, we evaluate the motion segments pro-
duced by [7] for reference and observe that while this ap-
proach outputs more segments, its accuracy is quite low, as
indicated by the mIoU score. In contrast, the learning-based
approach of Dave et al. [3] produces fewer segments, but
they are a lot more accurate across a variety of thresholds.
We also visualize 2 sample frames in Figure 3 for a qualita-
tive comparison. For our main paper, we set Tcon to 0.25 and
Tmag to 0.05 to balance segmentation precision and recall.

3. Additional experimental comparisons
3.1. Qualitative comparison to SCALOR

Here we qualitatively compare our approach to the top-
preforming SCALOR [6] baseline on the validation set of
TRI-PD in Figure 4. Since SCALOR does not provide
scores for the generated segments, we sampled 10 masks
uniformly to generate the visualizations. The results indi-

Slot Attention MONet SCALOR S-IODINE MCG Ours
Fg. ARI 10.2 11.0 18.6 9.8 25.1 50.9

F-measure 11.0 9.4 14.1 10.2 25.8 47.1
mIoU 9.2 7.7 12.9 13.6 24.5 38.0

Table 6. Evaluation on TRI-PD with with Fg. ARI, F-measure and
mIoU. Metrics that do not penalize background over-segmentation
are more informative but our approach shows top results overall.

cate that SCALOR also did not work well with complicated
backgrounds and could not discover the objects.

3.2. Evaluation with segmentation metrics

We use Fg. ARI as the standard metric for object dis-
covery in the main paper. The key reason is that it ignores
the (unimportant) differences in how methods segment the
background. For a more comprehensive understanding of
the method, we also evaluate with F-measure [11] and mIoU,
which are more standard segmentation metrics, on TRI-PD
dataset and report the results in Table 6. Firstly, we observe
that our method still outperforms prior work on both metrics.
Secondly we notice that F-measure has the same property as
Fg. ARI (ignoring the background segments) and provides
similar conclusions. In contrast, mIoU penalizes background
over-segmentation and thus is less informative in this setting.

3.3. Comparison with SOTA on CATER

For completeness, we now compare our approach (with
estimated motion segmentation) to state-of-the-art on the toy
CATER dataset, and report the results in Table 7. For these
experiments, we use the original, shallow backbones for prior
works, in contrast to ResNet18 used in KITTI evaluation,
since we observed that they achieve higher performance
on CATER. We find that: (1) the baselines’ performances
are lower compared to CLEVR used in these works due to
higher scenes complexity (e.g., more occlusions); (2) The
conclusions from the main paper hold, with our method
showing top results; (3) heuristic-based MCG outperforms
most of the recent object-centric learning approaches even
on this toy dataset, highlighting the importance of using
strong baselines.

SlotAttention MONet S-IODINE SCALOR MCG Ours
Fg.ARI 67.3 88.6 73.5 74.6 84.0 90.4

Table 7. Comparison with prior art on CATER. Our method shows
top results, and MCG outperforms most learning-based methods.

4. Parallel Domain dataset details
In this section we describe the details of our synthetic

TRI-PD dataset, which was collected through a state-of-
the-art synthetic data generation service [1]. The whole
dataset contains 200 photo-realistic scenes with driving sce-
narios in city environments captured at 20 FPS. Each video
is 10 seconds long, with a fixed shape at 1936× 1216, and
comes with 7 different independent camera views. A com-
prehensive set of ground truth labels is provided for every



CUT TSAM-0.4-0.1 TSAM-0.25-0.05 TSAM-0.1-0.05Ground-Truth

Figure 3. Visualizations of the motion segmentation post-processing with different methods and thresholds. For TSAM, with a loosing
constrain, we can find more segments, but also more noisy parts. We set Tcon as 0.25 and Tmag as 0.05 to balance the quality and quantity
of the segments.

Ours

SCALOR

Figure 4. Visual comparison of our method and SCALOR. Despite
relatively high performance, this approach also fails to discover
most of the objects.

video, which include: camera pose, calibration, depth, in-
stance segmentation, semantic segmentation, 2D bounding
box, 3D bounding box, depth, forward 2D motion vectors,
backward 2D motion vectors, forward 3D motion vectors,
and backward 3D motion vectors. Figure 5 shows several
samples of the data and corresponding annotations. We fil-
ter out scenarios with low visibility (e.g. foggy and dark
scenes) which are not useful in the context of object dis-
covery, resulting in 154 scenes which we use for train-
ing. In addition, we render another 17 scenes separately
for evaluation. We use 6 camera views for training, and 3
for evaluation, resulting in 924 training and 51 test videos.
The dataset is available at our project web page: https:
//github.com/zpbao/Discovery_Obj_Move.

We define the objects belonging to the following cate-
gories as the foreground objects: Pedestrian, Bus, Car, Bi-
cyclist, Caravan/RV, OtherMoveable, Motorcycle, Motorcy-
clist, OtherRider, Train, Truck, ConstructionVehicle, and
Bicycle. We filter out the objects with over 50% occlusion
and fewer than 150 visible pixels. To find the independently
moving objects in a pair of consecutive frames F t, F t+1,
we first propagate all the object centers from F t to F t+1

with the ground truth camera motion. Then we calculate the
distances between these propagated object centers and the
ground truth centers in F t+1. If the distance is larger than

Category Num./f RoM RoS SObj MObj LObj
Pedestrian 0.12 0.76 0.24 0.82 0.16 0.02
Bus 0.13 0.73 0.27 0.21 0.46 0.33
Car 5.44 0.37 0.63 0.49 0.38 0.13
Bicyclist 0.15 0.73 0.27 0.79 0.19 0.02
Caravan/RV 0.05 0.75 0.25 0.20 0.56 0.24
OtherRider 0.09 0.78 0.22 0.72 0.25 0.03
ConstructionVehicle 0.01 0.78 0.22 0.72 0.25 0.03
Bicycle 0.15 0.73 0.27 0.79 0.19 0.02

Table 8. Statistics of Parallel Domain (TRI-PD) dataset. The
averaged number of object per frame (Num./f), Ratio of Moving
objects (RoM), Ratio of Static objects (RoS), Small Object ratio
(SObj), Medium Object ratio (MObj), and Large Object ratio (LObj)
are reported.

0.05, we label that object as moving independently from the
camera.

We also report some statistics for each foreground cat-
egory, including averaged number of object per frame
(Num./f), Ratio of Moving objects (RoM), Ratio of Static
objects (RoS), Small Object ratio (SObj), Medium Object
ratio (MObj), and Large Object ratio (LObj) in Table 8. No-
tice that for some foreground categories, there is no object
found in our subset. We define objects that cover fewer than
2000 pixels in the original resolution as small objects, larger
than 2000 pixels but fewer than 30000 pixels as medium
objects, and larger than 30000 pixels as large objects. We
only count the objects for which at least 50% of the object
mask is visible. Although for most categories more than half
of the objects are in motion, in practice only a tiny fraction
of these objects are captured by our motion segmentation
algorithm (see low FG.ARI values in Table 5).

5. Implementation details
To increase the output resolution of the feature map of the

encoder, we modify the standard PyTorch implementation of
a ResNet 1. In particular, we reduce the downsampling ratio

1https://github.com/pytorch/vision/blob/main/
torchvision/models/resnet.py

https://github.com/zpbao/Discovery_Obj_Move
https://github.com/zpbao/Discovery_Obj_Move
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py


Figure 5. Several samples from the synthetic TRI-PD dataset, together with corresponding annotations.



from 16 to 4 by using stride 1 for for all the convolutional
blocks except for the first one. We further drop the last
fully-connected layers of the ResNet to obtain a feature
map. For the decoder, we adopt the 4-layer shallow decoder
following [9].

All the models are trained for 500 epochs using Adam [8]
with a batch size 20 and learning rate 0.001. Following [9],
we use a learning rate warm up for 2000 iterations. For the
exponential learning rate decay schedule, we set the decay
rate as 0.5 and the decay step as 500000. We set λM to
0.5 and λT to 0.01. Dslot and the output dimension for
convGRU are set to 64.

To convert the attention maps W to segmentation masks,
we first apply a SoftMax along the slot dimension to obtain
a distribution over slots for each pixel. We then take the
argmax of this distribution to assign each pixel to one of the
slots and treat the resulting assignment as the masks.

References
[1] Parallel domain. https://paralleldomain.com/,

November 2021. 1, 3
[2] Xinlei Chen and Kaiming He. Exploring simple siamese

representation learning. In CVPR, 2021. 1
[3] Achal Dave, Pavel Tokmakov, and Deva Ramanan. Towards

segmenting anything that moves. In ICCV Workshops, 2019.
1, 2, 3

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. ImageNet: A large-scale hierarchical image database.
In CVPR, 2009. 1

[5] Rohit Girdhar and Deva Ramanan. CATER: A diagnostic
dataset for compositional actions and temporal reasoning. In
ICLR, 2020. 1

[6] Jindong Jiang, Sepehr Janghorbani, Gerard De Melo, and
Sungjin Ahn. SCALOR: Generative world models with scal-
able object representations. In ICLR, 2020. 3

[7] Margret Keuper, Bjoern Andres, and Thomas Brox. Motion
trajectory segmentation via minimum cost multicuts. In ICCV,
2015. 3

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 6

[9] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner,
Aravindh Mahendran, Georg Heigold, Jakob Uszkoreit,
Alexey Dosovitskiy, and Thomas Kipf. Object-centric learn-
ing with slot attention. In NeurIPS, 2020. 1, 2, 6

[10] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In CVPR, 2016. 2

[11] Peter Ochs, Jitendra Malik, and Thomas Brox. Segmentation
of moving objects by long term video analysis. PAMI, 2013.
3

https://paralleldomain.com/

	. Further ablations
	. Memory constrains
	. Deeper backbones
	. Stronger SlotAttention baselines
	. Influence of the number of slots

	. Motion-segmentation post-processing
	. Additional experimental comparisons
	. Qualitative comparison to SCALOR
	. Evaluation with segmentation metrics
	. Comparison with SOTA on CATER

	. Parallel Domain dataset details
	. Implementation details

