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In this supplementary material, we include further details
on the following:

• Detailed steps to obtain hyper-parameters a, b and fo-
cal length c.

• Details of model structure and training procedure.

• More analysis on our method.

Our code, model and generated data, including 3D point
clouds and 3D ground truth, will be publicly available.

1. Hyper-parameter a, b and focal length c

We first remind the reviewers of the definitions of our
variables in Fig. 1. Then we provide more details about
how to compute a, b and c with these variables.

For each person l = [1, . . . , Ni] in image Ii, we denote
its head size as hl

i and its average absolute depth as dr,h,l∗i .
Then we have:

dr,h,l∗i = eh,li · hl
i · c =

1

a · (dh,li + b)

Then we get the equation a ·c ·hl
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i ·(dh,l

i +b)
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that hl
i are of the same size for all l, our goal becomes to

minimize the variance of 1

eh,l
i ·(dh,l

i +b)
w.r.t. b for all l in

image Ii:
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⇒
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where ∗ =
∑

l(∗)
Ni

denotes the average function over ∗. Then
we differentiate the above mentioned equation and we have:

2b
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Ni∑
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(eh,li − eh,li )(eh,li dh,li − eh,li dh,li ) = 0
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l(e
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l(e
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Unlike b that works on all Ni persons, our a and focal length
c rely on the best-represented person instead. The main rea-
son is that 3D key point estimator fkd3 is more likely to
generate accurate estimation on the best-represented person
as it provides more 2D visual cues. Mathematically, we
have:

l∗ = argmax
l

area(l) · key(l) · prob(l)

where area(l) denotes the size of the l-th person measured
by the size of its tightest bounding box. key(l) measures
the proportion of 2D key points that have been detected in
person l and prob(l) is its probability of classifying as ”per-
son”.

After obtaining the best represented person l∗, we
then can then have max(dr,l∗i ) = 1

a(min(dl∗
i )+b)

and

min(dr,l∗i ) = 1
a(max(dl∗

i )+b)
, where min(dr,l∗i ) and

max(dr,l∗i ) denotes the the minimum and maximum abso-
lute depth value on l∗-th person’s mask. Similarly, min(dl∗i )
and max(dl∗i ) denotes the the minimum and maximum rel-
ative depth value on l∗-th person’s mask instead. And Then
we have:

max(dr,l∗i )−min(dr,l∗i )

= sd,l∗i

=
1

a(min(dl∗i ) + b)
− 1

a(max(dl∗i ) + b)

Then we have:

sd,l∗i · a =
1

(min(dl∗i ) + b)
− 1

(max(dl∗i ) + b)

⇒ a = (
1

(min(dl∗i ) + b)
− 1

(max(dl∗i ) + b)
)/sd,l∗i

1



Figure 1. Definitions of used variables.

Given a and b, we can easily obtain the absolute depth
by Dr

i = 1
a(Di−b) . Denoting the average absolute depth of

l∗-th person as dr,l∗i , we have:

c

dr,l∗i

=
1

ew,l∗
i ∗ sw,l∗

i

which gives us an estimation of c = dr,l∗i /(sw,l∗
i · ew,l∗

i )

2. Model Structure and Training Procedure

2.1. Model Structure

We provide more details for each module of our ESCNet
in this section. Specifically, Tab. 1 describes detailed struc-
ture of feature extractor, e.g. head, view field and scene
feature extractor, in geometry and scene parsing model fgp
and fsp. As we described in our main paper, they all share
the same ResNet50 [2] backbone. Tab. 2 and Tab. 3 shows
the detailed encoder-decoder structure in fgp and fsp re-
spectively. In Tab. 4, we provide details about the binary
prediction module in fsp, which includes MLP and in-out
feature extractor.

2.2. Training Procedure

On GazeFollow [4], we train our ESCNet from scratch
for 40 epochs, with learning rate set to 0.00025 and batch

feature extractor in fgp, fsp
Layer type Dimensions Output (h,w,c)
ResNet-50 - 7,7,2048
Deconv2D∗ 1 × 1, stride 2 14,14,512

Table 1. Summary of the feature extractors for head, view field and
scene. Layer marked with ∗ are followed by batch normalization
and Relu.

size of 92. As for VideoAttentionTarget [1] dataset, we ini-
tialize our ESCNet with the above mentioned model that
is pre-trained on GazeFollow and then finetune it for 10
epochs with learning rate of 0.00025 and bath size of 92.
As for out-of-frame prediction, we again initialize ESCNet
with model that finetuned on VideoAttentionTarget and then
only update parameters of binary prediction module. We
use ADAM [3] as our optimiser and set λ to 10 according
the performance on validation set.

3. Analysis on Our Method
3.1. 3D Visualization

We visualize our results on GazeFollow [4] in Fig. 2.
Compared to figures in our main paper that mainly in 2D,
we would like to highlight the 3D property of our proposed
method instead in supplementary. From left to right, we
visualize the original RGB with the target person and 2D



encoder-decoder in fgp
Layer type Dimensions Output (h,w,c)
Conv2D∗ 1 × 1, stride 1 14,14,512
Conv2D∗ 1 × 1, stride 1 14,14,256

Deconv2D∗ 3 × 3, stride 2 28,28,128
Deconv2D∗ 3 × 3, stride 4 112,112,16
Deconv2D∗ 4 × 4, stride 2 224,224,1
Deconv2D 1 × 1, stride 1 224,224,1

Table 2. Summary of the encoder-decoder in fgp. Layer marked
with ∗ are followed by batch normalization and Relu.

encoder-decoder in fsp
Layer type Dimensions Output (h,w,c)
Conv2D∗ 1 × 1, stride 1 14,14,1024
Conv2D∗ 1 × 1, stride 1 14,14,512

Deconv2D∗ 3 × 3, stride 2 30,30,256
Deconv2D∗ 3 × 3, stride 2 61,61,128
Deconv2D∗ 4 × 4, stride 1 64,64,1
Deconv2D 1 × 1, stride 1 64,64,1

Table 3. Summary of the encoder-decoder in fsp. Layer marked
with ∗ are followed by batch normalization and Relu.

feature extractor and MLP in binary prediction module
Layer type Dimensions Output (h,w,c)
Conv2D∗ 1 × 1, stride 1 14,14,512
Conv2D∗ 1 × 1, stride 1 14,14,1

Linear 196 × 1 1

Table 4. Summary of binary prediction module in fsp. Layer
marked with ∗ are followed by batch normalization and Relu.

ground truth highlighted, generated 3D point clouds Pi,
ground truth annotations in 3D, front-most points in 3D,
initial heatmap in 3D and our final prediction in 3D. Note
that in GazeFollow we have 10 annotations for each given
person, so we visualize both the averaged position over 10
annotations and individual annotations in 3D, with red and
green.

We can see that firstly, our proposed method can generate
satisfactory 3D point clouds Pi with single image (the sec-
ond column). Secondly, the individual ground truth annota-
tions capture the gaze target well but the averaged position
can sometimes be very noisy (the third column). The forth
column, or the one reflects the front-most points, can almost
always captures the occlusion relationship by excluding the
occluded 3D points w.r.t. the given person. Finally, we can
see that out initial heatmap and final prediction can gradu-
ally narrow down the target area and provide good estima-
tion about the gaze fixation in last two columns.

Metric X (pix.)
1 2 5 10 20 50 100

Recall 1.0 3.5 13.7 30.2 49.8 73.8 90.1
Normalized Distance

.002 .005 .01 .02 .05 .1 .2
Recall 1.1 5.3 13.8 30.2 54.9 72.3 95.8

Table 5. Recall rate of front-most points on GazeFollow test set.

Metric 2D 3D
Dist.(pix.) Ang.(◦) Dist.(mm) Ang.(◦)

141.2 17.7 3026 25.4

Table 6. Evaluation of the highest probability point in A∗
i w.r.t.

the averaged ground truth on GazeFollow test set.

3.2. Reliability of Our Representations

To evaluate how reliable our representations are, we de-
sign several evaluation metrics on test set of GazeFollow in
below.

We firstly report the percentage of annotations that falls
into the range of front-most points, which can be regarded
as recall of front-most points. For instance, if 2 annotations
out of 10 in one test image are within X-pixel distance of
any front-most points in this image, then the recall rate is
20%. Since image size varies in GazeFollow, we also nor-
malize them to 1 and report the recall rate of our front-most
points in normalized images. The higher the recall rate is,
the more reliable our front-most points are.

We report the recall rate in percentage in Tab.5. As a ref-
erence, the average normalized distance in terms of human
annotations are reported to be 0.096 [4]. In comparison, we
can see that our front-most points can almost always capture
the ground truth, e.g. we can capture 72.3% of ground truth
when the normalized distance threshold is set to 0.1. We
also notice that 10% of ground truth annotations are more
than 100 pixels away from any front-most points. We visu-
alize such cases in Fig. 3. As can be seen in this figure, the
ground truth annotations can sometimes be very noisy thus
are far away from our generated front-most points. For in-
stance, one cannot see the salad in the ball due to occlusions
but some annotations actually fall into such area.

Our second setting focuses more on the averaged loca-
tions. Rather than measuring over 10 annotations indepen-
dently, we use their averaged location as ground truth. For
each test image, we first obtain the averaged location over
10 annotations in 2D and then map it to 3D. In the mean-
time, we get the 2D point with the highest probability in A∗

i

and map it to 3D as well. Later, we report their 1) average
distance in 2D image space 2) average distance in 3D space
3) angular gap in 2D image space and finally 4) angular gap
in 3D space.



Figure 2. From left to right, we visualize the original RGB with the target person and 2D ground truth highlighted, generated point clouds
Pi, ground truth annotations, front-most points and initial heatmap and our final prediction in 3D. We highlight individual annotations in
red and averaged position in green.

Figure 3. We visualize the ground truth annotations and our front-
most points in this figure. We highlight individual annotations in
red and averaged position in green.

In Tab. 6 we demonstrate the results of our second set-
ting. The angular error of human annotations is 11.0 [4]
while we achieve 17.7 with generated A∗

i in 2D image
space. We also report our numbers in 3D, which are miss-
ing in literature. Though we have about 3m distance w.r.t.
average ground truth location in 3D, we can see that it is
also mainly due to the noisy averaged location (see third
column in Fig. 2). Again, we would like to note that the av-
eraged location can be noisy (see Fig. 2 and Fig. 3) and our
measurements on averaged location can be less meaningful.
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