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1. Additional Model Details
Our model contains some small components not dis-

cussed in the main paper that improve performance slightly.

Off-Axis Positional Encoding. When constructing inte-
grated positional encoding features, we must select a ba-
sis P. In mip-NeRF [1], this basis is selected as the iden-
tity matrix. This is convenient, because it means that only
the diagonal of the covariance matrix Σ is required to con-
struct IPE features, and off-diagonal components need not
be computed. However, the reparameterization used by our
model requires access to a full covariance matrix, as other-
wise the Kalman-like warping we use would be inaccurate
in the presence of highly anisotropic Gaussians (which are
frequent in distant parts of the scene). So given that we
are required to construct a full Σ matrix, we take advantage
of the extra information presented therein, and encode not
just axis-aligned IPE features but off-axis IPE features as
well. As our basis P, instead of an identity matrix we use a
large skinny matrix that contains the unit-norm vertices of

(a) Axis-Aligned IPE [1] (b) Off-Axis IPE

Figure 1. The axis-aligned positional encoding used by mip-
NeRF [1] does not capture the covariance of the Gaussian be-
ing encoded. Here we plot three bivariate Gaussians colored red,
green, and blue (a) with axis-aligned IPE and (b) with our off-axis
IPE, and show the marginal distributions produced by projecting
each Gaussians onto the basis used by each encoding. Because
these Gaussians have identical marginal distributions, mip-NeRF’s
axis-aligned IPE produces identical features, while the off-axis
projections of our approach allow them to be disambiguated.

a twice-tessellated icosahedron, where redundant negative
copies of vertices are removed. For reproducibility’s sake
this matrix is:

P =



0.8506508 0 0.5257311
0.809017 0.5 0.309017
0.5257311 0.8506508 0

1 0 0
0.809017 0.5 −0.309017
0.8506508 0 −0.5257311
0.309017 0.809017 −0.5

0 0.5257311 −0.8506508
0.5 0.309017 −0.809017
0 1 0

−0.5257311 0.8506508 0
−0.309017 0.809017 −0.5

0 0.5257311 0.8506508
−0.309017 0.809017 0.5
0.309017 0.809017 0.5

0.5 0.309017 0.809017
0.5 −0.309017 0.809017
0 0 1
−0.5 0.309017 0.809017

−0.809017 0.5 0.309017
−0.809017 0.5 −0.309017



T

. (1)

These off-axis features allow the model to encode the shape
of anisotropic Gaussians (with a similar intuition as the ran-
dom Fourier features explored by Tancik et al. [17]) which
otherwise are indistinguishable using axis-aligned IPE fea-
tures, as shown in Figure 1. Ablating these off-axis fea-
tures reduces performance slightly, with SSIM for the bicy-
cle scene falling from 0.687 to 0.664.

Computing IPE features with a large P matrix using the
procedure described in mip-NeRF (diag(PΣPT)) is pro-
hibitively expensive. A tractable alternative is to instead
compute the equivalent expression sum(PT ◦ (ΣPT), 0)
where ◦ is an element-wise product and sum(·, 0) is sum-
mation over rows. With this small optimization, off-axis
IPE features are only modestly more expensive to compute
than the axis-aligned IPE features used in mip-NeRF.
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Annealing. Before resampling ray-intervals from pro-
posal weights ŵ, we anneal those weights by raising them
to a power. With N training steps, at step n we compute

ŵn ∝ ŵ
bn/N

(b−1)n/N+1 (2)

and use ŵn when drawing samples. The exponent is
Schlick’s bias function [15] applied to n/N ∈ [0, 1], which
curves the exponent such that it quickly rises from 0 and
saturates towards 1. We set the bias hyperparameter b = 10
in all experiments. At the beginning of training the expo-
nent is 0, which yields a flat distribution (ŵ0 ∝ 1), and at
the end of training that power is 1, which yields the pro-
posal distribution (ŵN = ŵ). This annealing encourages
“exploration” during training, by causing the NeRF MLP to
be presented with a wider range of proposal intervals than it
otherwise would towards the beginning of training. Anneal-
ing has a modest positive effect: ablating it causes SSIM on
the bicycle scene to decrease from 0.687 to 0.679.

Dilation. We slightly “dilate” each proposal histogram
(t̂, ŵ) before resampling it. This reduces aliasing arti-
facts, likely because the proposal MLP is supervised us-
ing only rays that correspond to input pixels, so its predic-
tions may only hold for certain angles — in a sense, the
proposal network is rotationally aliased. By widening the
intervals of the proposal MLP we help counteract this alias-
ing. To dilate a histogram (ŝ, ŵ) we first compute p̂ where
p̂i = ŵi/(ŝi+1 − ŝi), giving us a probability density that
integrates to 1 rather than a histogram that sums to 1. We
then dilate this by computing

max
s−ε≤s′<s+ε

p̂ŝ(s
′) (3)

where p̂ŝ(s) is interpolation into the step function defined
by ŝ, p̂ at s. Equation 3 can be computed efficiently by
constructing a new set of intervals whose endpoints are
sort(ŝ ∪ ŝ − ε ∪ ŝ + ε}) and computing the max of all in-
tervals in that expanded set. After dilation, we convert the
dilated p̂ back into a histogram by multiplying each element
by the size of its interval, and then normalizing the resulting
histogram to sum to 1.

When dilating each proposal histogram, we set the dila-
tion factor ε to a function of the expected size of a histogram
bin. That is, for each coarse-to-fine resampling level k in
which we resample nk fine intervals from the coarse his-
togram that preceded it, we compute the product of all sam-
ple counts that preceded level k and set epsilon to an affine
function of the inverse of that product:

εk =
a∏k−1

k′=1 nk
+ b (4)

where a = 0.5 and b = 0.0025 are hyperparameters that
respectively determine how much a histogram is dilated rel-
ative to the expected size of a histogram bin (which is the
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Figure 2. When resampling a histogram (such as the toy 3-bin his-
togram shown here in gray) into a set of n intervals, mip-NeRF [1]
samples n+1 sorted random values (blue ticks) from the histogram
for use as the endpoints of intervals (blue boxes), which yields in-
tervals that do not cover the front and back of histogram modes,
and asymmetrically span gaps between modes. We instead draw
n + 1 sorted random values (red ticks) and use the midpoints of
those samples as the endpoints of intervals (red boxes), resulting
in less irregular resampling.

inverse of the product of prior sample counts) and in abso-
lute terms.

Sampling. Mip-NeRF generated n “fine” intervals along
each ray by sampling n + 1 distances from the “coarse”
histogram weights t̂, ŵ and using those sorted sampled dis-
tances as the endpoints of a set of n intervals. This approach
of using sampled points for use as interval endpoints can
produce unusual results, as evidenced by Figure 2 — it ef-
fectively “erodes” the coarse histogram, as the samples are
unlikely to span the extent of each coarse histogram bin.
For this reason we use a slightly modified resampling proce-
dure: We sample n sorted values from the coarse histogram,
and then use the midpoints of each adjacent sample pair as
the endpoints of our new set of “fine” intervals (and we re-
flect the first and last sample around the first and last end-
point to deal with boundary conditions). This change has
little quantitative effect on rendering quality, but we found
that it qualitatively reduced aliasing.

Background Colors. NeRF and mip-NeRF assume a
known background color, which is usually set to black
or white. This often results in scene reconstructions in
which the background is incorrectly represented as semi-
transparent instead of opaque. These semi-transparent
backgrounds may still allow for realistic view synthesis,
but they tend to yield less meaningful mean or median ray
termination distances, which results in less accurate depth
maps. For this reason, when compositing a pixel color dur-
ing training we draw a random RGB background color from
[0, 1]3 which encourages training to reconstruct a fully-
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Figure 3. A visualization of the motivation behind Lprop, the loss
used to train our proposal MLP to bound the weights emitted by
our NeRF MLP. In both plots we have two different histograms
(t,w) (shown in orange) and (t̂, ŵ) (shown in blue) generated
from points {x} and {x̂} respectively, as well as a plot of the
bound described in the paper. (a) If {x} = {x̂}, the bound im-
plied by (t̂, ŵ) is guaranteed to be an upper bound on (t,w), and
our loss must be zero. (b) If {x} 6= {x̂} (in this case, only 16 of 20
points are shared between {x} and {x̂}) then (t,w) may exceed
the upper bound implied by (t̂, ŵ), and a loss may be incurred
(shown in red). From this we see how minimizing Lprop encour-
ages the proposal weights (t̂, ŵ) to describe the same distribution
as the NeRF weights (t,w), despite their histogram bin endpoints
being different.

opaque background of the scene (at test-time we set the
background color to (0.5, 0.5, 0.5)). We use randomized
backgrounds for our 360 dataset and the LLFF dataset, but
for the Blender dataset we use the same fixed/known white
background as in prior work.

2. Implementation Details
The Jacobian Jf (µ) used by our Kalman-like reparam-

eterization can be computed straightforwardly using most
autodiff frameworks. A less expensive alternative (as it does
not require the explicit construction of a Jacobian matrix) is
to instead construct and apply a function whose application
corresponds to matrix multiplication with Jf (µ). In Jax [2],
this can be accomplished using the linearize operator,
and applying it twice in sequence to Σ, with the dimensions
of the covariance matrix transposed after each application.

3. Proposal Supervision Visualization
The loss used to supervise our proposal MLP is moti-

vated by bounds that can be established between histograms
of 1D data. The bound used by our loss is guaranteed to
hold if two histograms are constructed from the same under-
lying “true” distribution of data. By minimizing any excess
histogram mass that violates this bound, we can encourage
two histograms with differently-spaced bin locations to be
consistent with each other. In Figure 3 we provide an illus-
tration of this concept, and the supplemental video contains

additional explanatory illustrations.

4. Additional Results
Our Dataset. We captured our dataset using two different
mirrorless digital cameras. The outdoor scenes were cap-
tured with a Sony NEX C-3 equipped with a 18-55mm lens,
using the widest possible zoom level. For the indoor scenes,
we used a Fujifilm X100V camera with a fixed 22mm lens.
For each scene, we used the first camera location as a refer-
ence view, where we configured ISO, white balance, shutter
speed, aperture size, and focus. We then kept these set-
tings locked during capture, to limit the photometric vari-
ation between images of the same scene. To further limit
color harmonization issues, we captured the outdoor scene
when the sky was overcast, making sure that the camera
operator cast soft shadows that minimally affected the illu-
mination in the scene. For the indoor scenes, we relied on
large diffuse light sources (e.g. daylight reflecting off white
walls) and avoided casting shadows onto the scene.

We captured between 100 and 330 images in each scene.
This took between 1 and 20 minutes, depending on whether
we used burst mode or not. To obtain camera poses, we
use the publicly available COLMAP software [16]. We use
shared intrinsics between all images in a scene, and cal-
ibrate using the OpenCV radial distortion model. Before
training a NeRF, we use COLMAP to undistort the images,
and downsample them to a resolution of 1.0 – 1.6 megapix-
els using ImageMagick. We use 1 in 8 of the input images
as our test set, regularly subsampled to cover as many view-
points as possible.

Post-capture, we apply a rigid transform and rescaling
to COLMAP’s reconstructed poses in order to better fit the
captured scene content to our parameterization. In order
to match the global coordinate frame to the capture pattern
(assumed to be approximately circular rings orbiting a fixed
point in space), we subtract the mean camera position and
calculate the principal components of the recentered camera
position vectors. We then use these three orthogonal vectors
to form a new basis where the smallest principal component
becomes the world-space “up” vector. After recentering all
camera poses using this transformation, we rescale the cam-
era positions such that they lie within the [−1, 1]3 cube. If
the input poses lie approximately on a sphere, this usually
causes them to lie within the uniformly parameterized re-
gion of space contained by the sphere of radius 1.

In Table 3 we show an expanded table of results for our
dataset where we enumerate PSNRs, SSIMs, and LPIPS
scores for each individual scene. Each technique’s per-
scene performance is roughly consistent with its average
performance as reported in the main paper.

As discussed in the paper, Stable View Synthesis [14]
is the only baseline model we evaluate against that outper-
forms our model on any metric, which is LPIPS [19]. Upon



visually inspecting the results of SVS on our dataset, we
observed that LPIPS is often dramatically inconsistent with
our own visual perception. See Figure 6, where we visual-
ize the renderings (and depths) of our model versus SVS on
one scene where SVS yielded a lower LPIPS metric than
our model. Contrary to what the LPIPS scores indicate,
our model’s rendering is significantly more realistic and ex-
hibits significantly fewer artifacts than SVS, particularly in
the background of the scene. We believe this is due to SVS
having been trained to minimize a perceptual loss that re-
sembles LPIPS, causing it to produce results that are able to
minimize LPIPS effectively despite being visually unsatis-
fying. This is consistent with recent work that has demon-
strated vulnerabilities in LPIPS [7].

NeRF’s Blender Dataset. For completeness, in Table 1
we evaluate our model on the Blender dataset from Milden-
hall et al. [12], for which mip-NeRF is the current state-
of-the-art. This dataset consists entirely of small synthetic
objects in front of a white background, unlike the large and
unbounded scenes which motivated our model’s design. Be-
cause this task is easier than our 360 scenes, we use a sim-
plified version of our model for the sake of speed: only one
round of sampling, 128 samples for the proposal MLP, 32
samples for the NeRF MLP, a proposal MLP with 4 layers
and 256 hidden units, a NeRF MLP with 8 layers and 256
(or 512) hidden units, axis-aligned IPE, MSE loss, and no
distortion regularizer. Our model is not designed to improve
accuracy on these scenes, and as such our model’s accuracy
is comparable to mip-NeRF across all error metrics. How-
ever, we see that (due to our use of proposal networks) our
model is significantly faster to train than mip-NeRF, and
that this relative speedup increases as model capacity rises.

# hidden PSNR ↑ SSIM ↑ LPIPS ↓ Time (hrs) # Params
mip-NeRF [1] 256 33.09 0.961 0.043 2.89 0.61M
Our Model 32.96 0.960 0.043 1.86 0.84M
mip-NeRF [1] 512 33.03 0.964 0.037 7.03 2.27M
Our Model 33.25 0.962 0.039 3.42 3.23M

Table 1. Performance on the Blender dataset used in NeRF [12] as
we vary the number of hidden units in the NeRF MLP.

The LLFF Dataset. In Table 2 we evaluate against mip-
NeRF on the “front-facing” scenes presented in the LLFF
paper [11]. We use the same model as in our Blender
evaluation, except we do not disable our distortion regu-
larizer and we use Charbonnier loss instead of MSE. Our
model does not outperform mip-NeRF in terms of PSNR,
but yields improved SSIM and LPIPs metrics and a signifi-
cant speedup when the NeRF MLP is large.

The Tanks and Temples Dataset. The “Tanks and Tem-
ples” dataset is a popular dataset for 3D geometry and view

# hidden PSNR ↑ SSIM ↑ LPIPS ↓ Time (hrs) # Params
mip-NeRF [1] 256 26.93 0.830 0.177 2.48 0.61M
Our Model 26.68 0.847 0.150 2.39 0.84M
mip-NeRF [1] 512 27.01 0.845 0.148 6.15 2.27M
Our Model 26.86 0.858 0.128 3.84 3.23M

Table 2. Performance on the dataset presented with LLFF [11] as
we vary the number of hidden units in the NeRF MLP.

synthesis tasks [8]. It contains several scenes with a large
central object with the camera moving around that object.
At first glance this dataset may appear to be ideal for our
purposes, but it has significant issues that motivated the con-
struction of our own dataset. As shown in Figure 4, the pho-
tometric properties of the camera are not constant across
each scene capture. We believe this is due to the camera’s
autoexposure or auto white balance being allowed to vary
between images. Additionally, many images are overex-
posed, resulting in “clipped” RGB values (also visible in
Figure 4). These issues make evaluation difficult, as mea-
suring the accuracy of a view synthesis algorithm becomes
an ill-posed task when faced with photometric variation —
which photometric condition should the model attempt to
replicate? This challenge posed by “in the wild” images
has been investigated by Martin-Brualla et al. [10] who con-
structed specialized training and evaluation procedures for
dealing with it. But we view this challenge as orthogonal to
the challenges posed by the unbounded nature of a scene,
hence the construction of our own dataset where our cam-
era is photometrically fixed within each capture, and where
scenes are chosen to minimize saturated pixels.

Despite the mismatch between this dataset and the goals
of our work, we evaluated our model on this dataset against
our NeRF-like baselines and against SVS (which is both the
state of the art for this dataset as well as the most compet-
itive baseline for our own dataset), the results of which are

Figure 4. Crops from two images taken from the “Tanks and Tem-
ples” dataset. The capture process used in acquiring this dataset
seems to have allowed autoexposure and/or auto white balance to
vary across images, which results in the same object having a dif-
ferent appearance across scenes. This issue partially motivated the
construction of our own dataset, in which great care is taken to
prevent such photometric variation.
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Figure 5. A visualization of our model with Stable View Synthesis [14] on scenes from the Tanks and Temples dataset [8]. Image
quality is roughly comparable across the two techniques, though our renderings exhibits different failure modes than SVS’s in the absence
of observations (as in M60) and, because our model neutralizes most photometric variation during training, our renderings may have a
different global brightness or color shift (as in Train).

shown in Tables 4 and 5, and visualized in Figure 5. The
metrics used elsewhere in this paper (PSNR, SSIM, and
LPIPS) are difficult to draw meaningful conclusions from
due to the aforementioned photometric variation. In partic-
ular, our top-performing “w/GLO” model variant performs
quite poorly according to those metrics, because that model
variant learns a per-image embedding for each scene and
uses that embedding within the NeRF MLP when predict-
ing color. When we evaluate this model variant at test-time,
we set the embedding vector to 0. This gives us a pleasing
looking reconstruction that roughly corresponds to the pho-
tometric average of all input cameras, and that is consistent
across all images, which we believe to be a good goal for
view synthesis. However, SVS (and to a lesser extent, the
non-GLO NeRF baselines) do not behave this way, and in-
stead attempt to “explain away” photometric variation due
to the camera by modifying the brightness and color of the
scene as a function of viewing direction. Effectively, SVS
does not attempt to synthesize a view, it attempts to syn-
thesize a view and the most likely camera settings for that
view. This motivated us to construct “color corrected” er-
ror metrics: before evaluating each metric we solve a per-
image least squares problem that fits a quadratic polynomial
expansion of the rendering’s RGB values to the true image,
while ignoring saturated pixels. This partially reduces the
effect of photometric variation on this data, and yields re-
sults in which SVS and our model (with GLO) are roughly
quantitatively comparable.

When using these color-corrected metrics, our model
slightly outperforms SVS in terms of PSNR, but under-
performs SVS on SSIM and LPIPS. With this in mind, it
is worth reiterating the advantages that SVS has over our
model on this benchmark: 1) SVS has been trained on the
training set of this dataset, while our model does not use
that external training data — and indeed uses no external

training data at all. 2) SVS relies on a proxy geometry pro-
duced by an external system (and may fail when that ge-
ometry is incorrect), while we use no proxy geometry and
in fact produce high-quality depth maps ourselves. 3) SVS
has been trained with a perceptual loss, while our model is
trained using only a per-pixel loss on RGB. 4) Our model
is extremely compact, and requires only 10 million parame-
ters to perform view synthesis, while SVS requires multiple
large CNNs and access to all training images (because it op-
erates by blending training images together) to render novel
views.

From Table 5 we see that our model’s improvement over
SVS is most significant on the playground scene. Notably,
this is the only test-set scene that mostly consists of natural
content, while the other three scenes predominately feature
large vehicles. We speculate that SVS may be better-suited
to large piecewise planar objects (which makes sense, given
SVS’s reliance on a proxy geometry that is itself a piecewise
planar mesh) while ours may be better suited to scenes that
contain natural content (trees, grass, flowers, etc).

5. Potential Negative Impact
The broad use of neural rendering techniques carries

with it several potential negative societal impacts. NeRF-
like models have recently been incorporated into generative
modeling approaches [4], and generative modeling tech-
niques can be used to synthesize “deep fakes” that could
be used to mislead people. Though our work does not di-
rectly concern generative modeling and instead aims to re-
construct accurate physical models of a scene from which
new views can be generated, our contributions may be use-
ful for generative approaches that build on NeRF.

The ability to reconstruct accurate models of a scene
from photographs may have modest potential negative im-
pacts. Our technique could conceivably be used to construct



a surveillance system, and such a system could have nega-
tive impact if used negligently or maliciously. Additionally,
our system could be used to generate visual effects (a task
that is currently labor intensive) and as such it may nega-
tively affect job opportunities for artists.

Training a NeRF is computationally demanding, and
requires multiple hours of optimization on an accelera-
tor (though test-time rendering can be accelerated signif-
icantly [6]). This expensive training requires energy, and
this may be of concern if that energy was produced in a way
that damages the climate.
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(a) Our Model, PSNR = 16.67, SSIM = 0.493, LPIPS = 0.422 (b) SVS [14], PSNR = 16.11, SSIM = 0.488, LPIPS = 0.396

Figure 6. A rendering from (a) our model, and (b) Stable View Synthesis [14] on a scene from our dataset. The PSNR, SSIM, and
LPIPS metrics for this image are shown in each subcaption. Despite SVS producing a blurry background, it achieves a lower LPIPS score,
suggesting that this metric may be an unreliable signal in this setting. We also visualize (a) the depth map produced by our model alongside
(b) the depth map produced by COLMAP [16] which is used by SVS. The poor reconstruction quality of COLMAP in the distant trees
may explain why SVS struggles with this scene.



PSNR
Outdoor Indoor

bicycle flowers garden stump treehill room counter kitchen bonsai
NeRF [3, 12] 21.76 19.40 23.11 21.73 21.28 28.56 25.67 26.31 26.81
NeRF w/ DONeRF [13] param. 21.67 19.48 23.29 23.38 21.70 28.28 25.74 25.42 27.32
mip-NeRF [1] 21.69 19.31 23.16 23.10 21.21 28.73 25.59 26.47 27.13
NeRF++ [18] 22.64 20.31 24.32 24.34 22.20 28.87 26.38 27.80 29.15
Deep Blending [5] 21.09 18.13 23.61 24.08 20.80 27.20 26.28 25.02 27.08
Point-Based Neural Rendering [9] 21.64 19.28 22.50 23.90 20.98 26.99 25.23 24.47 28.42
Stable View Synthesis [14] 22.79 20.15 25.99 24.39 21.72 28.93 26.40 28.49 29.07
mip-NeRF [1] w/bigger MLP 22.90 20.79 25.85 23.64 21.71 30.67 28.61 29.95 31.59
NeRF++ [18] w/bigger MLPs 23.75 21.11 25.91 25.48 22.77 30.13 27.79 29.85 30.68
Our Model 24.37 21.73 26.98 26.40 22.87 31.63 29.55 32.23 33.46
Our Model w/GLO 23.95 21.60 25.09 25.98 21.99 28.24 28.40 30.81 30.27

SSIM
Outdoor Indoor

bicycle flowers garden stump treehill room counter kitchen bonsai
NeRF [3, 12] 0.455 0.376 0.546 0.453 0.459 0.843 0.775 0.749 0.792
NeRF w/ DONeRF [13] param. 0.454 0.379 0.542 0.522 0.461 0.841 0.776 0.678 0.813
mip-NeRF [1] 0.454 0.373 0.543 0.517 0.466 0.851 0.779 0.745 0.818
NeRF++ [18] 0.526 0.453 0.635 0.594 0.530 0.852 0.802 0.816 0.876
Deep Blending [5] 0.466 0.320 0.675 0.634 0.523 0.868 0.856 0.768 0.883
Point-Based Neural Rendering [9] 0.608 0.487 0.735 0.651 0.579 0.887 0.868 0.876 0.919
Stable View Synthesis [14] 0.663 0.541 0.818 0.683 0.606 0.905 0.886 0.910 0.925
mip-NeRF [1] w/bigger MLP 0.612 0.514 0.777 0.643 0.577 0.903 0.877 0.902 0.928
NeRF++ [18] w/bigger MLPs 0.630 0.533 0.761 0.687 0.597 0.883 0.857 0.888 0.913
Our Model 0.685 0.583 0.813 0.744 0.632 0.913 0.894 0.920 0.941
Our Model w/GLO 0.687 0.582 0.800 0.745 0.619 0.907 0.890 0.916 0.932

LPIPS
Outdoor Indoor

bicycle flowers garden stump treehill room counter kitchen bonsai
NeRF [3, 12] 0.536 0.529 0.415 0.551 0.546 0.353 0.394 0.335 0.398
NeRF w/ DONeRF [13] param. 0.542 0.539 0.436 0.492 0.545 0.368 0.394 0.410 0.368
mip-NeRF [1] 0.541 0.535 0.422 0.490 0.538 0.346 0.390 0.336 0.370
NeRF++ [18] 0.455 0.466 0.331 0.416 0.466 0.335 0.351 0.260 0.291
Deep Blending [5] 0.377 0.476 0.231 0.351 0.383 0.266 0.258 0.246 0.275
Point-Based Neural Rendering [9] 0.313 0.372 0.197 0.303 0.325 0.216 0.209 0.160 0.178
Stable View Synthesis [14] 0.243 0.317 0.137 0.281 0.286 0.182 0.168 0.125 0.164
mip-NeRF [1] w/bigger MLP 0.372 0.407 0.205 0.357 0.401 0.229 0.239 0.152 0.204
NeRF++ [18] w/bigger MLPs 0.356 0.395 0.223 0.328 0.386 0.270 0.270 0.177 0.230
Our Model 0.301 0.344 0.170 0.261 0.339 0.211 0.204 0.127 0.176
Our Model w/GLO 0.296 0.343 0.173 0.258 0.338 0.208 0.206 0.129 0.182

Table 3. Here we present an expanded version of Table 1 from the main paper, where we evaluate our model and multiple NeRF and
non-NeRF baselines on our new dataset, but where we report metrics for each scene separately. Though some scenes are more challenging
than others, the overall ranking of all techniques on each scene is generally consistent with the ranking suggested by the average metrics.



Color Corrected
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Time (hrs) # Params

NeRF [3, 12] 18.72 0.609 0.473 19.67 0.616 0.473 4.15 1.5M
NeRF w/ DONeRF [13] param. 18.85 0.618 0.477 20.00 0.624 0.477 4.70 1.4M
mip-NeRF [1] 18.86 0.620 0.463 19.93 0.625 0.464 3.23 0.7M
NeRF++ [18] 19.32 0.647 0.425 20.52 0.652 0.427 9.71 2.4M
mip-NeRF [1] w/bigger MLP 19.85 0.697 0.340 21.09 0.702 0.343 22.75 9.0M
NeRF++ [18] w/bigger MLPs 19.83 0.693 0.358 21.15 0.697 0.362 19.94 9.0M
Stable View Synthesis [14] 21.13 0.777 0.209 22.76 0.778 0.216 - -
Our Model 20.52 0.734 0.301 21.98 0.737 0.304 6.61 9.0M
Our Model w/GLO 19.65 0.731 0.280 22.78 0.761 0.272 7.09 9.0M

Table 4. The average performance of our model and all NeRF baselines, as well as the top-performing non-NeRF baseline on our own
dataset (Stable View Synthesis), on the “Tanks and Temples” dataset [8]. This dataset exhibits significant photometric variation across
images (see Figure 4), making it ill-suited to our goals. To partially ameliorate this we present additional “color corrected” metrics, in
which this photometric variation has been ameliorated. Our model outperforms all NeRF baselines, but is slightly outperformed by SVS
(which was designed for this dataset, and which was trained on the training set of this dataset), though this appears to be partially due to
SVS being better able to predict the photometric variation of this dataset, while the “w/ GLO” variant of our model learns to be invariant
to that photometric variation.

Color Corrected PSNR
M60 Playground Train Truck

NeRF [3, 12] 17.59 21.72 19.17 20.21
NeRF w/ DONeRF [13] param. 17.31 23.13 18.76 20.81
mip-NeRF [1] 17.58 22.21 19.42 20.50
NeRF++ [18] 18.09 23.05 19.50 21.44
mip-NeRF [1] w/bigger MLP 19.14 23.65 19.82 21.74
NeRF++ [18] w/bigger MLPs 18.81 24.01 19.84 21.94
Stable View Synthesis [14] 19.94 25.50 21.76 23.85
Our Model 19.28 26.41 18.23 24.01
Our Model w/GLO 19.50 27.00 22.15 22.48

Color Corrected SSIM
M60 Playground Train Truck

NeRF [3, 12] 0.619 0.624 0.575 0.646
NeRF w/ DONeRF [13] param. 0.622 0.659 0.559 0.657
mip-NeRF [1] 0.629 0.638 0.582 0.650
NeRF++ [18] 0.644 0.676 0.586 0.704
mip-NeRF [1] w/bigger MLP 0.694 0.726 0.642 0.747
NeRF++ [18] w/bigger MLPs 0.682 0.724 0.630 0.751
Stable View Synthesis [14] 0.756 0.788 0.731 0.836
Our Model 0.714 0.781 0.635 0.818
Our Model w/GLO 0.720 0.798 0.723 0.804

Color Corrected LPIPS
M60 Playground Train Truck

NeRF [3, 12] 0.466 0.473 0.493 0.458
NeRF w/ DONeRF [13] param. 0.466 0.458 0.514 0.468
mip-NeRF [1] 0.462 0.461 0.483 0.449
NeRF++ [18] 0.432 0.418 0.473 0.387
mip-NeRF [1] w/bigger MLP 0.367 0.330 0.379 0.296
NeRF++ [18] w/bigger MLPs 0.383 0.348 0.409 0.308
Stable View Synthesis [14] 0.251 0.212 0.247 0.152
Our Model 0.341 0.264 0.389 0.223
Our Model w/GLO 0.330 0.246 0.284 0.228

Table 5. Performance on each individual test-set scene from the “Tanks and Temples” dataset, using our color corrected metrics.
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